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Abstract 
 

In the emerging field of magnonics, spin waves are considered for information 
processing and transmission at high frequencies. Accordingly, the manipulation of 
propagating spin waves in nanostructured waveguides for novel functionality has 
attracted increased attention. Excitations with uniform magnetic fields in such 
waveguides favor symmetric spin wave modes with odd quantization numbers. 
Interference between multiple odd spin wave modes leads to a periodic self-focusing 
effect of the propagating spin waves. In this work we demonstrate how antisymmetric 
spin wave modes with even quantization numbers can be induced by local magnetic 
fields in a well-controlled fashion. The resulting interference patterns are discussed 
within an analytical model and experimentally demonstrated using micro focused 
Brillouin light scattering (μ-BLS).  
 
Introduction 
 

Collective excitations of the electronic spin structure known as spin waves and 
their quasiparticles, i.e., magnons, are promising for high-frequency information 
processing and transmission.1-4 Additional functionality can be gained because spin 
waves can also be coupled to other wave-like excitations, such as photons5, 6 and 
phonons.7 Furthermore, many classical wave phenomena, such as diffraction,8, 9 
reflection and refraction,10-12 interference,13, 14 and the Doppler effect15, 16 were 
observed with spin waves. At the same time, quantum mechanical interactions, such 
as the magnon scattering17-19 and their interactions with other quasiparticles20 were 
observed as well, providing additional avenues for utilizing spin waves. 
Understanding these phenomena is key to realizing practical applications in the 
rapidly emerging field of magnonics.  

Spin waves can encode information either in their amplitude21, 22 or their phase.23, 

24 Compared with conventional electronic approaches, spin waves possess several 
advantages, including potentially reduced heat dissipation,25 wave-based 



computation26, 27 and strong nonlinearities,28, 29 which may all be beneficial for 
efficient data processing. The recent emerging interest in magnonics can be attributed 
to the improvement of modern micro-fabrication, which enables the realization of the 
magnetic microstripes with characteristic dimensions ranging from several μm to 
below a hundred nm, 30, 31 as well as integrated micro-antenna for excitations32, 33. 
When such a magnetic microstripe is magnetized with an external magnetic field (Hext) 
in-plane and perpendicular to the stripe direction, the spin waves are called 
Damon-Eshbach modes34 and can be localized either at the edge or in the center 
region, depending on their frequencies35, 36. Previous studies have demonstrated that 
spin waves in the center region (so-called waveguide spin waves) are quantized into 
several discrete modes because of the confinement along the width of the 
waveguide.37 In addition, generally a homogenous radio frequency (rf)  field can 
only excite lateral symmetrically-distributed, odd waveguide spin wave modes.38 The 
interference of several of these modes results in a periodic self-focusing where the 
waveguide spin waves propagate in diamond chain-like channels32, 39, 40. 
Self-channeling and nonlinear beam formation of backward volume magnetostatic 
waves were also reported for thick yttrium iron garnet (YIG) single crystal films 
subjected to high power microwave excitations.41, 42 Their properties can be 
investigated in more details using optical methods than microwave means.43 

In magnonic applications, the manipulation of the spin wave propagation is of 
great significance for the functionality of such devices, especially for logic 
elements21-24 and multiplexers44. Toward this end, the constructive or destructive 
interference of multiple coherent spin waves impact the spatial intensity distributions 
of the resultant waves and therefore controls the energy and information flows 
associated with the spin waves. Previous studies focused mostly on odd spin wave 
modes because they are easier to generate with homogeneous excitations. In this work, 
we demonstrate the controlled interconversions of odd and even waveguide spin 
waves in YIG microstripes by breaking the symmetry via well-defined local 
inhomogeneous magnetic fields. This approach allows for a reconfigurable 
mechanism of mode conversion, unlike previous experiments where the symmetry is 
broken by the geometry of the waveguide or using a tilted excitation antenna.45, 46  

In our work, the local magnetic fields are generated from permalloy (Py, Ni81Fe19) 
micro-magnets placed asymmetrically next to the YIG waveguide. (Note that the 
saturation magnetization (Ms) for Py is about five times larger than that for YIG). In 
addition, the Py micro-magnets can easily perturb the effective magnetic field (Heff) in 
YIG structures, changing the symmetry of the propagating spin waves (SWs) in YIG. 
By using a combination of theoretical calculations, magnetic simulations, and 
microfocused Brillouin light scattering (μ-BLS), we demonstrate that the different 
spin wave channels are essentially controlled by the phase difference between odd and 
even modes, which can be practically modulated through the relative position of the 
micro-magnets and the magnitude of the external magnetic field. 
 
Analytical Calculations 
 



We consider a thin YIG microstripe with a thickness of t =50 nm, width of 
w = 3 μm and infinite length of l magnetized in-plane in a direction perpendicular to 
the length through a magnetic field H0 = 650 Oe, as shown in the inset of Fig. 1 (a). 
The material parameters used in the theoretical calculation are Ms(YIG) = 1960 G, 
exchange constant A(YIG) = 4�10-7 erg/cm, and damping factor 
α(YIG) = 7.561×10−4.31  

For the first step, the waveguide spin wave modes in a microstripe can be 
described based on the dipole-exchange theory of the spin wave dispersion spectra in 
a continuous magnetic film.47, 48 This theory provides an explicit relationship between 
the wave vector k = (kx, ky) and the frequency f of the spin waves: 
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2+ky

2, and λex = (2A/Ms
2)1/2 is the exchange length.49 The 

two limiting relations for kx = 0 and ky = 0 correspond to the Demon-Eshbach and 
backward volume modes. Furthermore, there are scientific constants for the 
gyromagnetic ratio γ = 2.8 MHz/Oe. 
 Neglecting the effect of the demagnetizing field (Hd), which is important only 
close to the edges of the microstripe, the waveguide spin waves are confined along the 
width direction and can be described as the quantization of planar spin waves 
propagating along the length direction. Consequently, only waveguide spin waves 
with ky components satisfying the resonant standing waves conditions can propagate 
in the microstripe. These ky components are a set of discrete values, described by a 
simple expression: 

 ,y nk n wπ=  . (2) 

Combining Eqs. (1) and (2), the dispersion relation curves for each mode with 
n = 1,2,…,5 are plotted in Fig. 1(a). Only lateral modes with odd quantization 
numbers n can be excited under a uniform rf magnetic field, and their amplitudes 
decrease with increasing n as 1/n.38 With a frequency of f =4 GHz we can calculate 
the corresponding kx,n. Then, the spatial distribution of the nth mode's dynamic 
magnetization and their integrated superpositions, i.e., the interference of the odd 
modes, can be written as 
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where φn is the excitation phase. The patterns of the first three odd modes are mapped 
in Fig. 1(b) for -2πft+φn = 0, which coincides with the maximum dynamic 
magnetization at x = 0. According to Eqs. (3) and (4), the major contribution to IΣ(x,y) 
comes from the first few modes because the intensity of the modes is proportional to 
1/n2. Therefore, n = 11 is sufficient for an accurate analysis and the corresponding 



interference pattern is mapped as shown in the upper panel of Fig. 1(c). To determine 
the amplitude of the procession of every spin, we calculated the maximum values of 
IΣ(x,y) within -2πft+φn�(0, 2π): 

 ( ) ( ) ( )2π 0, 2π, max , : nI x I y fty x ϕΣ − ∈= +⎡ ⎤⎣ ⎦ , (5) 

where I(x,y) is the amplitude of the waveguide spin wave in materials (without 
considering damping effects), which can be detected using the μ-BLS technique. The 
waveguide spin wave intensity pattern for odd numbers n is mapped in the lower 
panel of Fig. 1(c) (see supplementary Movie 150). The results show that the 
interference of the odd modes results in a symmetric rhombohedral-shaped channel. 
Here, mathematically, the phase differences of the lower modes (n=1, 3) between the 
adjacent nodes (I, II, and III in Fig. 1(c)) of the spin wave pattern are approximately 
2qπ+π, where q is an arbitrary integer, as shown in Fig. 1(d).  
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Fig. 1 Theoretical calculated results: (a) Dispersion curves for the first five Damon-Eshbach mode 
waveguide spin waves propagating in a YIG microstripe. The inset depicts a schematic of the studied 
model. (b) The spatial distribution of mn(x,y) for the first three odd modes at the initial phase 
(-2πft+φn = 0). (c) Interference patterns of the first few odd modes (n � 11), upper panel: IΣ(x,y) and 
lower panel: I(x,y). (d) The phase shift of the first and third modes along the length. Inset shows the 
normalized dynamic magnetization distribution across the stripe at the first and second nodes, as 
indicated in (c). 
 Introducing new modes to interfere with the existing modes should modify this 
flow pattern. Accordingly, we consider the even modes because they have the same 



frequency as the previously considered odd modes and therefore the coherent 
interference would lead to a time-invariant pattern and because they should be easy to 
excite and should have similar lifetimes to the odd modes in the waveguides. In 
contrast to the odd modes, the even modes have antisymmetric patterns; in other 
words, mn(x,y) + mn(x,w-y) = 0 for even n according to Eq. (3). The patterns of the 
first two even modes are mapped in Fig. 2(a). 

The interference patterns are strongly depended on the difference of the initial 
phases (Δφ=φodd-φeven), meaning that the waveguide spin wave channels can be 
controlled through tuning Δφ between the odd and the even modes. For our analysis, 
some representative values (0, π/2, π, and 3π/2) for Δφ were chosen by fixing φodd = 0 
in Eq. (3), and using φeven = 0, π/2, π, and 3π/2, respectively. The corresponding 
patterns of IΣ(x,y) and I(x,y) are shown in Fig. 2(b) – (e) (see supplementary Movies 
2-550). Compared with Fig. 1(c), the introduction of the new modes changes the 
patterns from symmetric diamond-like shapes to antisymmetric zig-zag shapes. In 
addition, the paths of the waveguide spin waves can be continuously changed if Δφ is 
varied continuously in the range from 0 to 2π. Because the phase shift is given by 
Δφ = kd, we investigated the control of the Δφ via two different pathways: the change 
of distance d, and the wave vector k. The spin wave patterns in this work were similar 
to those reported earlier.41, 42 In these papers the self-focusing and the antisymmetric 
"snake-like structures" patterns of magnetostatic backward volume waves were 
observed in thick YIG films due to the interplay between the diffraction of the beam 
and nonlinearity caused by the high microwave power of the input antenna.     

4μm

(b)

Intensity (Arb. U.)

MIN Max

Δφ =0 Δφ =π/2

Δφ =π Δφ =3π/2

IΣ(x,y)

I(x,y) I(x,y)

IΣ(x,y)

I(x,y)

IΣ(x,y)

I(x,y)

IΣ(x,y)

(a) ky,2=2π/w

ky,4=4π/w

(c)

(d) (e)

 



Fig. 2 (a) The spatial distribution of mn(x,y) for the first two even modes at the initial phase 
(-2πft+φn = 0).  Interference patterns of the odd and even modes with a phase difference (b) Δφ = 0, 
(c) π/2, (d) π, and (e) 3π/2, upper panel: IΣ(x,y) and lower panel: I(x,y).  
 
Micromagnetic Modeling 
 

In the discussions above, the introduction of even modes allows the manipulation 
of the propagating waveguide spin waves through their interference with the intrinsic 
odd modes. The generation of even modes can be realized via the breaking the 
translational symmetry, such as by passing through curved waveguides46, 51. In this 
work, we demonstrate that the magnetic symmetry of the single YIG microstripe can 
be broken by a non-symmetric distribution of lateral micro-magnets, i.e., a permalloy 
dot, as shown in Fig. 3(a). The simulations were performed using MuMax352. The 
material parameters for permalloy (Py) were Ms(Py) = 1.08�104 G, 
A(Py) = 1.3�10-11 J/m and α(Py) = 0.01.53 The external magnetic field (Hext) set in the 
simulation was 640 Oe. The y component of the static Heff distribution inside the YIG 
microstripe is shown in the color map of Fig. 3(a). The y components of the 
normalized magnetization of the Py dot and the induced static dipolar field by Py dot 
(Hdip-Py) are shown in the color maps of Fig. 3(b). Because of the strong induced 
dipolar field, the lateral symmetry of Heff across the width of the waveguide was 
gradually broken in the segment close to the permalloy dot, while Heff was symmetric 
in the segments far away from the permalloy dot. To excite the spin waves, we 
applied a continuous excitation of the sine function hx = h0sin(2πft) in the antenna 
region with f = 4 GHz and h0 = 1 Oe, which is small enough to avoid nonlinear effects. 
The total simulation time was 80 ns, to ensure that the system reaches a steady state. 
Fig. 3(c) shows the pattern of the waveguide spin waves in a single YIG microstripe, 
which is similar to the theoretical result in Fig. 1(c). The results show that the length 
of the spin wave modulation period in the simulation is slightly different from the one 
previously calculated analytically, which is because of the reduced effective width by 
the demagnetizing field and the slightly different Hext.   

Fig. 3(d) to (g) show the propagating waveguide spin wave patterns when the 
permalloy dot was located at the first node, first antinode, second node, and second 
antinode (see supplementary Movies 6-1050). These patterns are qualitatively in 
accordance with the patterns of Δφ = π, 3π/2, 0 and π/2 in Fig. 2. Practically, the odd 
modes are excited in the antenna region, with φodd = 0. As the odd modes propagate 
along the stripe for a certain distance d, the phases shift by kd, where k is the 
corresponding wavevectors. At the first node position, the phase shift of the main 
contributing odd modes is approximately φodd = 2qπ+π as discussed above. Here, 
because the symmetry is broken, the even modes are excited with φeven = 0 and 
therefore, the final interference pattern in Fig. 3(d) agrees well with the analytical 
result of Δφ = π. Similarly, the patterns of Fig. 3(e) to (g) agree with Δφ = 3π/2, 0, and 
π/2, respectively.  
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Fig. 3 (a) Schematic of the simulated model. The colormap encodes the y component of the effective 
magnetic field (Heff) distribution inside of the YIG stripe with a permalloy (Py) dot (green, same 
hereinafter). (b) The y component of the normalized magnetization of the Py dot (left) and the static 
dipolar field (right) induced by the Py dot under 640 Oe external field applied along the y direction. 
The colormaps encode the magnetization inside the Py dot and the field distribution outside the Py dot. 
The blue arrows in the left panel indicate the directions of the magnetization. Patterns of the waveguide 
spin waves propagating in the (c) single YIG stripe, and the YIG stripe with a lateral permalloy dot at 
the (d) first node, (e) first antinode, (f) second node and (g) second antinode.  

In addition, the initial phase of the newly introduced even modes is also 
determined by the side the permalloy dot is located on. For example, comparing 
Fig. 3(d) and (f), the patterns of the waveguide spin waves after passing by the 
permalloy dot are inversely mirrored. A similar behavior is also observed in Fig. 3(e) 
and (g). These results indicate that a phase difference of π can be induced by placing 
the permalloy dot on the other side. Therefore, the even modes can be annihilated 
(enhanced) by the destructive (constructive) interference with other even modes 
generated by other micro-magnets in close proximity to the waveguide on the same 
(other) side one period away. To demonstrate this relationship, we simulated the 
waveguide spin wave patterns in a YIG microstripe with three permalloy dots 
distributed on one side and two sides, as shown in Fig. 4(a) and (b), respectively (see 
supplementary Movies 11 and 1250). In Fig. 4 (a), the permalloy dots were located at 



the first three nodes on one side. The waveguide spin waves experienced the 
following processes: 1. The first even mode (EM1) was generated with φEM1 = 0 at the 
first node, resulting in the waveguide spin waves propagating non-symmetrically in 
the following self-focusing period; 2. The second even mode (EM2) was generated 
with φEM2 = 0 at the second node. However, at this point, the first even mode has a 
phase shift of π and destructively interferes with the second even mode. Therefore, the 
asymmetry disappeared in the next period; 3. The third even mode (EM3) was 
generated with φEM3 = 0 at the third node again, leading to the following asymmetrical 
pattern. In contrast, in Fig. 4(b), the second even mode was generated with φEM2 = π 
and thus constructively interfered with the first even mode, as did the third even mode. 
The antisymmetric component was therefore increased compared with Fig. 3(c). 
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Fig. 4 Simulated patterns of the waveguide spin waves propagating in YIG stripe with three lateral 
permalloy dots at the first three nodes (a) on one side and (b) with the second permalloy dot on the 
opposite side. 

In this section, we demonstrated that Δφ can be tuned by changing the relative 
position of permalloy dots near the YIG microstripe including the distance d to the 
excitation, and the side on which it is located. Changing the distance d leads to a 
phase shift of odd modes with kd, and switching the sides causes even modes phases 
to shift by π. Using multiple permalloy dots introduces multiple even modes, whose 
constructive (destructive) interference increases (decreases) the antisymmetric 
component of the propagating waveguide spin waves.     
 

Experiments 
 

According to the dispersion relation described by Eq. (1), the wave vectors k of 
the waveguide spin waves with specific frequencies can be modified by H0, which is 
the most common tunable parameter among the variables in the equation if the 
devices are already fabricated.54, 55 We have also performed experimental studies of 
the structures similar to those described in the Analytical and Micromagnetic Sections. 
Fig. 5(a) shows a schematic illustration of the test sample consisting of a input 
antenna, patterned YIG stripe and permalloy dot. Py and YIG (both are 75-nm thin) 



samples were grown using magnetron sputtering in Ar atmosphere and stoichiometric 
targets. YIG films were then ex situ annealed in air to improve their crystallinity and 
magnetic properties. The typical linewidth ΔH of the annealed YIG film at a 
frequency of 4 GHz used in our experiments was ~2.7 Oe. As-fabricated thin films 
have the magnetization of saturation (Ms) values of 9760 G and 1960 G, and damping 
factors (α) of 7.3�10-3 and 2.1�10-4 for Py, and YIG films, accordingly. The input 
antenna, 4.5-μm wide YIG stripes, and Py dot (4.5-μm in diameter) were defined 
using multi-step electron-beam lithography and the lift-off technique. (See 
Appendices A and B for details). For the excitation of the spin waves, the shortened 
end of a coplanar waveguide made of Ti(20 nm)/Au(500 nm) with a width 
approximately 2μm was placed on top of the end of the YIG microstripe. The spin 
waves excited by the antenna structure connected with a microwave generator can 
reach a frequency of in several tens of GHz. In this work, we fixed the frequency at 
4 GHz and output microwave power at 10dBm.  

 All the observations of the spin waves were performed using microfocused 
Brillouin light scattering (μ-BLS)56 with a laser wavelength of 532 nm. First, we 
measured the 4 GHz spin wave intensity versus Hext in a single YIG stripe with the 
laser spot fixed at the center of the cross in the red circle as indicated in Fig. 5(a). The 
BLS intensities versus magnetic field is shown in Fig. 5(b), where the peak is located 
around 650 Oe. Consequently, the 4-GHz spin waves propagate with the highest 
efficiency in the YIG microstripe for Hext ≈ 650 Oe. Subsequently, the intensity 
patterns of propagating spin waves in a single YIG microstripe under 630 and 670 Oe 
were mapped as shown in Fig. 5(c) and (d). By comparing the two patterns in a single 
YIG microstripe the self-focus period was expanded with increased of Hext because of  
the collective decrease and convergence of the ks for odd modes.57, 58 
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Fig. 5 (a) Schematic illustration of the device layout. The inset shows an optical microscopy image of 
the device. The spin wave patterns were imaged in the grid region. (b) 4-GHz spin wave BLS intensity 
in a single YIG stripe vs. Hext measured with the laser spot fixed at the center of the cross in the red 
circle. (c) and (d) BLS intensity images at two different applied fields. 
 

Next, we studied the sample with the 4.5-μm permalloy dot deposited on one side 
of the YIG microstripe ~3.5-μm away from the antenna almost at the first node of the 
pattern measured for 630 Oe.  The spin wave intensities were imaged in the same 
region of the YIG microstripe under various magnetic field conditions (610 to 
690 Oe), as shown in Fig. 6.  
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Fig. 6 4-GHz spin wave intensity patterns in YIG microstripe with a lateral permalloy dot measured at 



the externally applied magnetic fields of (a) 610, (b) 630, (c) 650,(d) 670, and (e) 690 Oe. 
 

 The BLS patterns in the YIG stripe without/with permalloy dot under 630 Oe 
[Fig. 5(c) and Fig. 6(b)] are in accordance with Fig. 3(c) and (d), where the spin waves 
flow toward the permalloy dot. In contrast, by comparing the patterns of Fig. 6(b) and 
(d), the effect of the permalloy dot at 670 Oe is to squeeze the spin wave flow toward 
the other side instead of attracting to the same edge, indicating that the generated even 
modes here have a π phase difference with those in Fig. 6(b). According to Fig. 5(b), 
the 4-GHz spin waves propagate with the largest amplitude in the middle of the YIG 
microstripe under Hext ≈650 Oe. The spin waves with a specific frequency in the 
waveguide could reach its highest intensity near the ferromagnetic resonant field, and 
similar phenomena were observed in measurements of the spin waves localized at the 
two edges of a stripe. The two SWs beams were split more with the increase of the 
field at a fixed frequency,59 and the decrease of the frequency at a fixed field35 
because of the demagnetizing magnetic field. To demonstrate this effect, the Heff 

across the YIG stripe versus its width is plotted in Fig. 7(a) where the black dash line 
indicates the level of 650 Oe. The integrated BLS normalized intensities across the 
width close to permalloy dot were measured for different magnetic fields, as shown in 
Fig. 7(b). The intersections between the dashed line and solid lines in Fig. 7(a) agree 
with the locations of the BLS intensity peaks in Fig. 7(b) for the different magnetic 
fields. The presence of the permalloy dot introduces an additional static dipolar field 
that shifts the position of the effective field to be 650 Oe closer to (further away from) 
the permalloy dot when Hext < 650 Oe (Hext > 650 Oe), attracting (repelling) the spin 
wave flow. 
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Fig. 7 (a) Simulated Heff and (b) integrated BLS normalized intensities across the YIG microstripe with 
a permalloy dot near at different Hext varied from 610 to 690 Oe. The horizontal black dash line in (a) 
indicates the field of 650 Oe. The intersections between the black dash line and the solid lines agree 
with the BLS intensity peaks. Figs. (a) and (b) share the same legend.   
 
Conclusion 
 
 In summary, we demonstrated a new method, using the interference of different 
spin waves, to manipulate the channels of the waveguide spin waves propagating in a 
magnetic microstripe. The waveguide spin wave channels can be tuned by the phase 
difference Δφ between the intrinsic odd modes, which are preferred by homogenous 
excitation. Additional even modes can be introduced via breaking the magnetic 
symmetry through the non-symmetrical placement of a permalloy dot next to the 
wave guide. The phase shift Δφ is controlled by the relative position of the permalloy 
dot to the antenna and the external magnetic field Hext. An additional phase difference 
of π can be introduced if the permalloy dot is located on the opposite side of the 
microstripe or the Hext exceeds the field for the most efficient spin wave propagation. 
These findings can assist with magnonic engineering, for example such as in 
designing a multiplexer combined with the piezoelectric strain control of the 
micro-magnets or the reconfigurable phase shifters, which are of interest for 



spin-wave interference-based logic gate device concepts. Furthermore, with the 
suitable design of additional magnetic structures with sufficiently high anisotropy, the 
additional stray field may be modulated in a bi-stable manner, which could provide 
additional possibilities for the energy-efficient and non-volatile control of spin wave 
propagation. Lastly, the described structures can also serve as a model system for 
fundamental studies of the physics of geometrically confined spin waves. 
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APPENDIX A: SAMPLE FABRICATION 
 
Micro-structured YIG stripe and the lateral Py dot were deposited on commercial 
polished (111)-oriented gadolinium gallium garnet (Gd3Ga5O12, GGG). YIG was RF 
magnetron sputtered at room temperature (RT) from a stoichiometric YIG target. The 
Ar gas flow, chamber pressure, and sputtering power were maintained at 16 sccm, 10 
mTorr, and 75 W respectively. The microstructures were defined using electron-beam 
lithography (Raith 150) on PMGI SF6/ZED520 bilayer resists, creating an undercut 
cross-section profile. Because GGG is an insulator, a 5-nm Au layer was DC sputtered 
on the resists to avoid charge effects during electron-beam exposure. Before the 
development, the Au was removed by exposure in a gold etcher. Then, the electron 
beam exposed resists were developed in ZEDN50 (for ZED520) and 101A (for PMGI 
SF6) developers, respectively. After the deposition of YIG, the resist was removed by 
Shipley 1165 with only the microstripe structures left. The YIG was subsequently 
annealed ex situ at 850 ºC for 3 h in a tube furnace, with ramped up time of 6 h and 
ramped down time of 14 h. After the YIG microstripe fabrication, the coplanar 
waveguide with a shorted end made of Ti(20 nm)/Au(500 nm) was fabricated via 
optical lithography. After the μ-BLS measurement on the single YIG stripe, the Py dot 
was DC magnetron sputtered laterally near the YIG stripe, followed by the same 
electron-beam lithography process. The precise alignment was performed in this step. 
The corresponding continuous YIG film and Py film capped with SiO2 (15nm) on the 
whole substrates were also fabricated using the same process and fabrication 
parameters to characterize the material features. 
 
APPENDIX B: MATERIALS CHARACTERIZATION 



 
 YIG films crystalline structure was confirmed by X-ray diffraction (XRD). The 
XRD patterns are shown in Fig. 8 (a) and (b). The data confirm the YIG phase is 
(111)-oriented without the existence of any additional phases.  
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Fig. 8 (a) XRD data of a 75-nm annealed YIG film and (b) the zoomed-in data in (a) showing the YIG 
(444) peak. 

The flip-chip vector network analyzer ferromagnetic resonance (VNA-FMR) 
method (Fig. 9) was applied to the continuous films extended on the whole substrates 
to characterize the magnetic properties. We measured the transmission coefficient by 
sweeping the frequency at every fixed field. Therefore, the frequency swept 
linewidths (ΔfVNA) were obtained via Lorentz fitting. Detailed steps, including the 
conversion from ΔfVNA to ΔH, are based on those presented in ref.60 . The resonance 
frequencies as a function of the magnetic field were fitted according to Kittel’s 
equation: 

 ( )res sf H H Mγ= +   (A1) 
where the Ms was yielded. In addition, α can be obtained through the following fit: 

 0
2 resf

H H
αΔ Δ

γ
= +   (A2) 

where ΔH0 denotes the inhomogeneous linewidth broadening. Fig. 10 depicts the 
magnetic properties of the magnetic films in the experiment. 



 
Fig. 9 Schematic diagram of the VNA-FMR. The continuous magnetic films were placed on the 
coplanar waveguide structure. The applied external magnetic static field H was perpendicular to the 
microwave field h. 

(a) (b)

(d)(c)

 
Fig. 10 (a)Py and (b)YIG FMR frequency as a function of the magnetic field. Error bars are smaller 
than the symbol size. (c)Py and (d)YIG FMR linewidth ΔH as a function of the resonance frequency  
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