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We study the laser control of magnon topological phases induced by Aharonov-Casher effect
in insulating antiferromagnets (AFs). Since the laser electric field can be considered as a time-
periodic perturbation, we apply the Floquet theory and perform the inverse frequency expansion
by focusing on the high frequency region. Using the obtained effective Floquet Hamiltonian, we
study nonequilibrium magnon dynamics away from the adiabatic limit and its effect on topological
phenomena. We show that a linearly polarized laser can generate helical edge magnon states and
induce magnonic spin Nernst effect, whereas a circularly polarized laser can generate chiral edge
magnon states and induce magnonic thermal Hall effect. In particular, in the latter, we find that the
direction of the magnon chiral edge modes and the resulting thermal Hall effect can be controlled by
the chirality of the circularly polarized laser through the change from the left-circular to the right-
circular polarization. Our results thus provide a handle to control and design magnon topological
properties in the insulating AF.

I. INTRODUCTION

Utilization of quantized spin wave, magnons, play an
increasingly important role in spintronics, spawning its
subfield, magnon-spintronics a.k.a. magnonics1,2. The
main subject in this field is the realization of rapid and
efficient transmission of information through spins. For
this purpose, antiferromagnets (AFs)3–5 have an advan-
tage over ferromagnets (FMs)6–8 in that the dynamics is
much faster in the former since the former energy scale
arising from microscopic and quantum-mechanical spin
exchange interactions is much larger than the latter en-
ergy scale governed by the macroscopic magnetic dipole
interaction.

Another important viewpoint is error-tolerance of com-
munication, and topology is a useful tool to realize the
states robust against impurities. In Ref. [9], a magnonic
topological insulator (TI) is realized in the AF with elec-
tric field gradient making use of the opposite magnon chi-
rality10–12 associated with the Néel magnetic order. This
gradient field behaves as the gauge potential for magnons
through the Aharonov-Casher (AC) effect13 and forms
the Landau level of magnons in the bulk. In particular,
magnons with the opposite magnon chirality carrying a
magnetic dipole moment σgµBez with σ = ±1, where µB

is the Bohr magneton and g is the g-factor of the con-
stituent spins, propagate along the edge of the sample in
the opposite direction and thus the helical edge modes
are realized in AFs, being in contrast to the chiral edge
mode in FMs14 characterized by the single magnon chi-
rality. The spin transport properties in such AFs have
a topological nature and cannot be disturbed by local
perturbations. Thus the next task is to elucidate how to
manipulate the topology in magnonic TIs.

A conventional way to change the physical state is tun-
ing the control parameters of the system, e.g., tempera-
ture, pressure, and a static electromagnetic field. How-

(a) (b)

FIG. 1: Schematic representation of magnon states in two-
dimensional AFs subjected to a laser. A circularly polar-
ized laser (pink-colored spiral) generates a pair of chiral edge
magnon states and induces magnonic thermal Hall effect
where up and down magnons (σ = ±1 represented by blue
and red balls with arrows, respectively) with opposite mag-
netic dipole moments σgµBez propagate along the edge of a
finite size sample in the same direction. The direction of the
magnon chiral edge modes (green lines with arrows) and the
resulting thermal Hall current (red arrows) can be controlled
by changing the chirality of the circularly polarized laser be-
tween the (a) right-circular η = −1 and (b) left-circular η = 1
polarization.

ever a remarkable advance in the field of quantum op-
tics offers a novel method to the manipulation of the
state; the application of laser. A number of studies have
been conducted both theoretically and experimentally on
the laser-induced or -controlled states such as photoin-
duced metal-insulator transition15,16, Floquet topological
phases17–21, and laser-induced magnetic states22–26. In
particular, for magnetic systems, the typical energy scale
is on the order of meV, which corresponds to the terahertz
frequency. Thus spin manipulation is performed in the
picosecond time interval and it is much faster than the
time scale of conventional spintronics. Therefore estab-
lishing the way to control magnonic TIs9 is an essential
ingredient for the ultrafast topological magnonics.

In this paper, we consider the application of laser to
the insulating AF on the square lattice with an easy-
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axis magnetic anisotropy which host two kinds of gapped
magnons with the same parabolic dispersion and the op-
posite magnetic dipole moment9. At low temperature27,
interaction effects such as magnon-magnon and magnon-
phonon interactions become negligibly small28–30. We
treat the effect of the laser as a time-periodic electric
field, which is incorporated into the Hamiltonian as the
time-periodic AC potential. This system can be analyzed
by the Floquet theory and in the high frequency regime,
we can obtain the effective Floquet Hamiltonian19,31 by
the high frequency expansion. We find that the linearly
polarized laser with nonzero time-averaged field induces
helical magnon edge states, while the circularly polarized
laser induces a pair of chiral magnon edge states (Fig. 1).
The laser response depending on the direction of mag-
netic dipole moment for each magnon plays an impor-
tant role. In another perspective, our study corresponds
to the further extension of Ref. [9] into the nonequilib-
rium regime away from the adiabatic limit. The result-
ing difference in thermomagnetic properties32–38 of Hall
transport is also discussed.

This paper is organized as follows. In Sec. II, we
quickly review the magnonic TI in the static situation. In
Sec. III, considering three types of laser, we derive each
effective Floquet Hamiltonian and find the difference in
the magnon motion focusing on the σ-dependence. The
resulting difference in thermomagnetic properties of Hall
transport is discussed in Sec. IV. In Sec. V, we pro-
vide a theoretical insight into experiments. Finally, we
remark several issues in Sec. VI and summarize in Sec.
VII. Technical details are described in the Appendix.

II. MAGNONIC TI

Before considering the laser application, we quickly
review the magnonic TI realized in the insulating AFs
with the static electric field gradient. For the details, see
Ref. [9]. The contents in this section is the basis for our
study on the case of time-dependent electric field instead
of the static field, which is discussed in the following sec-
tions.

It has been established that the spin-wave theory39,40
and its quantized version, the magnon picture41, well de-
scribes the thermomagnetic properties such as magneti-
zation and specific heat in the AFs42,43 as well as FMs.
We consider the insulating AF on a two-dimensional
square lattice residing in the xy plane with magnetic
anisotropy that prefers the Sz axis. The ground state of
this system has the Néel order along the z direction and
the low energy excitation structure is dictated in terms
of as electrically neutral bosonic quasiparticles after the
Bogoliubov transformation. Here there exist two kinds of
bosons carrying a magnetic dipole moment σgµBez with
σ ≡ δSz = 1(−1), which are respectively identified with
up (down) magnons. Due to the presence of easy-axis
magnetic anisotropy, the insulating AFs have gapped and
parabolic dispersion under the long wave-length approxi-

mation, and the dynamics can be described by using the
decoupled two magnon modes (σ = ±1) at temperature
lower than the magnon gap. In the low-energy regime,
such antiferromagnetic magnonic system effectively pre-
serves the time-reversal symmetry (TRS).

In Ref. [9], under the assumption that the total spin
along the z axis

∑
j S

z
j is conserved and remains a good

quantum number, we have proposed a magnonic analog
of the quantum spin Hall effect characterized by helical
edge states and thus established a bosonic counterpart of
TIs44,45, namely the magnonic TIs in insulating AFs us-
ing the above-mentioned picture for the clean systems
and following the work by Aharonov and Casher13,46.
The proposal is built upon the fact that an electric
field couples to the magnetic dipole moment σgµBez
through the AC effect13,47–55, which is analogous to the
Aharonov-Bohm (AB) effect56–58 of electrically charged
particles in magnetic fields. Each magnon (σ = ±1) of
the insulating AF subjected to a dc electric field with
a constant gradient E(r) = E(−x, 0, 0) as a function of
the position r = (x, y, 0) E experiences the “electric” vec-
tor potential9,14,49 Am(r) = E(r) × ez/c = E/c(0, x, 0).
The decoupled Hamiltonian for each magnon (σ ± 1) is
represented as9

Hσ =
1

2m

(
p̂ + σ

gµB

c
Am

)2

+ ∆, (1)

where p̂ = (px, py, 0) is the momentum operator, m is
the effective mass of magnons, ∆ is the magnon gap in-
duced by easy-axis spin anisotropy. See Ref. [9] for the
specific expression of m and ∆ in terms of the spin lan-
guage. The total Hamiltonian of the system is given
by
∑
σHσ, which respects the TRS effectively in the

low-energy regime. The σ-dependence stems from the
opposite magnetic dipole moments σgµBez of up and
down magnons associated with the Néel order in insu-
lating AFs. This σ-dependence is the key ingredient10–12
for qualitatively new phenomena in AFs which are not
found in FMs14 such as the violation of the magnonic
Wiedemann-Franz (WF) law for Hall transport9,14 and
the generation of helical edge magnon states. Experienc-
ing the AC vector potential Am with ∇×Am = (E/c)ez,
magnons of opposite spins form the same Landau levels9
and performs cyclotron motions with the same frequency
ωc = (gµB/mc

2)E and with the same electric length
lE ≡

√
~c2/gµBE , but in the opposite direction, lead-

ing to the helical edge magnon state59. Note that the
TRS as well as the total spin conservation along the z
axis protect the topological phase and helical edge states
against nonmagnetic impurities. The key ingredient for
the generation of topological edge states is the cyclotron
motion in the bulk of the system where up and down
magnons are decoupled.

It has been established theoretically that magnonic TIs
are realized in the gradient dc electric field. However,
whether those states remain intact or not in nonequilib-
rium, in other words, whether those topological proper-
ties are robust against time-dependent perturbation, is
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still an open issue and the scope of this paper.

III. MAGNON MOTION IN LASER

Applying the laser with a frequency Ω (a period
T = 2π/Ω) to the insulating AF described by Eq. (1),
magnons of opposite spins (σ = ±1) subjected to a peri-
odic electric field E(t) = E(t+ T ) acquire the AC vector
potential13,14,49,

Am(t) = Am(t+ T ), (2)

and the Hamiltonian Eq. (1) also becomes time-periodic
Hσ(t) = Hσ(t+T ). The decoupled Hamiltonian for each
magnon (σ = ±1) is specifically written as

Hσ(t) =
1

2m

(
p̂ + σ

gµB

c
Am(t)

)2

+ ∆. (3)

and the total Hamiltonian of the system is given as∑
σHσ(t). Assuming that the system experiences a time-

evolution away from the adiabatic limit with the applica-
tion of high frequency laser Ω� ωc, the magnon motion
is described by the effective Floquet Hamiltonian31 of
Eq. (3), which is represented asHeff =

∑∞
n=0H

(n)
eff , where

the effects of laser are taken into account perturbatively
(1/Ωn) via each component H(n)

eff of the high frequency
expansion (see Appendix for the details).

We remark that though magnetic field is accompanied
by the laser electric field, it does not couple to orbital mo-
tion of magnons, i.e., linear momentum of magnons but
enters the magnon energy directly through the Zeeman
coupling without affecting orbital motion. After time-
averaging, the effect of the time-varying magnetic field
on the magnon energy can be captured by renormalizing
the energy gap of magnons, and up and down magnons
are still degenerate due to the easy-axis spin anisotropy
and the resultant magnon energy gap60. On the con-
trary, an electric field affects orbital motion of magnons
via AC effects and thereby can induce the finite Berry
phases for magnons as studied in Refs. [9,14]. Thus we
study the effects of the coupling of an ac electric field of
laser to orbital motion of magnons on the magnon bands,
looking for possible laser-induced topological phases of
magnons. In this paper, our consideration is restricted
to the magnon dynamics in the high frequency region
Ω� ωc, where the Floquet Hamiltonian31 of Eq. (3) can
be analyzed through the high-frequency expansion.

A. Linearly polarized laser

First let us consider the case of linearly polarized laser
providing the electric field E(t) = E(−xcos(Ωt), 0, 0).
This gives rise to the periodic AC vector potential

Am(t) =
E
c

(0, xcos(Ωt), 0), (4)

which is time-reversal invariant Am(t) = Am(−t), and
the time averaged value is zero Ām(t) = 0. After the
high frequency expansion up to O(1/Ω2), we obtain the
effective Floquet Hamiltonian as Heff = H(0)

eff +H(2)
eff (see

Appendix for details), where

H(0)
eff =

1

2m

[
p2
x + p2

y +
1

2

(gµB

c

)2(E
c

)2

x2
]

+ ∆,

H(2)
eff =

( 1

2m

)3 1

Ω2

[
2
(gµB

c

)2(E
c

)2

p2
y

+
1

8

(gµB

c

)4(E
c

)4

x2
]
.

(5)

The cancellation of the H(1)
eff term reflects the time-

reversal invariance Am(t) = Am(−t). From Eq. (5), we
find that the effective magnon mass is renormalized as
for the motion along the y direction and the confine-
ment by the harmonic potential happens along the x di-
rection, and both effects are irrelevant with topological
properties of magnons. Since there are no terms coupling
momentum and spatial coordinates such as pyx and pxy
which play the role of the Lorentz force61 for magnons,
the Landau energy level9,14 is not formed and magnons
do not perform the cyclotron motion, leading to the ab-
sence of any magnon edge states in the high frequency
region. Therefore the linearly polarized laser Eq. (4)
does not bring any topological properties to magnon
transport in the insulating AFs; the absence of any edge
magnon states and the topologically trivial bulk without
any magnon Hall effects9,14,49.

B. Linearly polarized laser with nonzero
time-averaged field

In this section we consider another type of linearly po-
larized laser E(t) = E(−xcos2(Ωt), 0, 0). The resulting
periodic AC vector potential is given by

Am(t) =
E
c

(0, xcos2(Ωt), 0), (6)

being time-reversal invariant Am(t) = Am(−t), whereas
in contrast to the case of Sec. IIIA the time averaged
value becomes nonzero Āym(t) = (E/2c)x. After the
high frequency expansion (Ω� ωc), an effective Floquet
Hamiltonian Heff = H(0)

eff +H(2)
eff up to O(1/Ω2) is derived

as (see Appendix for details),

Heff =
1

2m

[
p2
x + (1 + t0)

(
py + σ

gµB

c

Eeff

c
x
)2]

+ ∆, (7)

where

Eeff =
1 + 2t0
1 + t0

E
2

(8)

is the effective electric field gradient and t0 =
(1/32)(ωc/Ω)2 ∝ 1/Ω2. Here the harmonic potential
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term is dropped since it is irrelevant to topological prop-
erties of magnons. Due to the emergence of the effec-
tive electric field gradient Eeff , magnons of opposite spins
(σ = ±1) form the same Landau energy level and per-
form the cyclotron motion9,14 with the same frequency
and the same electric length but in the opposite direc-
tion depending on σ as is seen from Eq. (7), which leads
to helical edge magnon states.

Note that the total spin conservation and the TRS still
holds in the present setup. There symmetries protect the
topological phase and helical edge states against nonmag-
netic impurities62.

C. Circularly polarized laser

Next we move on to the case of circularly polar-
ized laser17,63,64. The laser electric field is E(t) =
E(−xcos(Ωt), ηxsin(Ωt), 0), where η = 1(−1) is the index
to represent the left (right) circular polarization. Then
the periodic AC vector potential becomes

Am(t) =
E
c

(ηxsin(Ωt), xcos(Ωt), 0), (9)

where the time averaged value vanishes Ām(t) = 0 as is
the case of Sec. IIIA, though the time-reversal invariance
is violated by the circularly polarized laser E(t) 6= E(−t)
and Am(t) 6= Am(−t)24–26 in contrast to the case of Secs.
IIIA and III B. Again we obtain an effective Floquet
Hamiltonian up to O(1/Ω) using the high frequency ex-
pansion (Ω � ωc) as Heff = H(0)

eff +H(1)
eff (see Appendix

for details), where

H(0)
eff =

1

2m

[
p2
x + p2

y +
(gµB

c

)2(E
c

)2

x2
]

+ ∆, (10a)

H(1)
eff =− η ωc

2Ω
ωcpyx. (10b)

After dropping the harmonic potential term for readabil-
ity due to its irrelevance with topological properties of
magnons, the Hamiltonian is recast into

Heff =
1

2m

[
p2
x +

(
py − η

gµB

c

Eeff

c
x
)2]

+ ∆, (11a)

Eeff =
ωc
2Ω
E ∝ 1

Ω
. (11b)

Contrary to Secs. III A and III B, since the circularly
polarized laser E(t) 6= E(−t) breaks the TRS (Am(t) 6=
Am(−t)), the leading correction does not vanishH(1)

eff 6= 0
and brings the term proportional to pyx [Eq. (10b)] that
works as a Lorentz force for magnons9,14,49, namely, the
laser-induced Lorentz force proportional to 1/Ω. Note
that the force does not depend on the index σ = ±1 for
up and down magnons, while it depends on the index
η = 1(−1) for the left (right) circular polarization of the
laser. Therefore both up and down magnons perform
the cyclotron motion in the same direction depending on
the sign η, differently from the case of linearly polarized

laser in Sec. III B. In other words, the direction of the
cyclotron motion can be controlled by tuning the chirality
of the circularly polarized laser.

To conclude, in the circularly polarized laser magnons
acquire the laser-induced effective electric field gradient
Eeff ∝ 1/Ω. Thereby forming the same Landau energy
level, magnons of opposite spins (σ = ±1) perform the
cyclotron motion along the same direction, leading to the
chiral edge magnon states. The direction of the cyclotron
motion and that of the resulting chiral edge magnons
can be controlled by changing the chirality of the cir-
cularly polarized laser between the left-circular or the
right-circular polarization (η = ±1) as can be seen from
Eqs. (11a) and (11b), which are the main results of this
paper. The schematic figure of the present setup and
induced chiral magnon edge modes is shown in Fig. 1.

Since the effective gradient electric field [Eq. (11b)]
induced by circularly polarized laser vanishes in the high
frequency limit Ω→∞, it is interpreted as an ‘emergent’
field having an intrinsically nonequilibrium nature away
from the adiabatic limit Ω→ 0.

D. Laser-driven magnon and symmetry

In the high frequency regime Ω � ωc the linearly po-
larized laser [Eq. (6)] can induce the helical edge magnon
states, while circularly polarized laser [Eq. (9)] can gen-
erate the chiral edge magnon states whose direction can
be controlled by changing the chirality of the laser, i.e.,
depending on the index η = 1(−1) for the left (right) cir-
cular [Eq. (11a)]. Those insulating AFs in laser become
topologically nontrivial. Thus depending on the form of
laser, e.g., polarized linearly or circularly, the details of
the edges states (i.e., chiral or helical) in the topologi-
cal AFs vary from system to system. This indicates that
by tuning laser, we can control and design topological
properties of antiferromagnetic magnonic systems.

We remark that since Am(t) = Am(−t) for the linearly
polarized laser, those systems described by the Hamilto-
nian Hσ(t) [Eq. (3)] and the ones by the effective Flo-
quet Hamiltonian Heff = H(0)

eff + H(2)
eff possess the TRS.

The TRS of the system can be seen by the transforma-
tion p → −p and σ → −σ. On the other hand, since
Am(t) 6= Am(−t) for the circularly polarized laser, the
TRS is broken in the system described by the Hamil-
tonian Hσ(t) and in the one by the effective Floquet
Hamiltonian Heff = H(0)

eff + H(1)
eff [Eq. (11a)]. This TRS

breaking stems from the chirality dependence η = ±1.
Those results can be interpreted from the general prop-
erties of the Floquet formalism31. When the Hamilto-
nian H(t) =

∑
m∈ZHmeimΩt possesses the TRS H(t) =

H(−t), [Hm, H−m] becomes zero due to Hm = H−m.
Thus the 1/Ω order term of the effective Floquet Hamil-
tonian H(1)

eff = (~Ω)−1
∑∞
m=1 [Hm, H−m]/m vanishes . In

contrast, when the TRS is broken, the H(1)
eff term [Eq.

(10b)] can be nonzero.
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TABLE I: High frequency laser-induced magnon motion and the thermomagnetic properties of magnon Hall transport in the
insulating AF [Eq. (3)].

Laser of high frequency Ω� ωc Linearly polarized laser: Linearly polarized laser: Circularly polarized laser:
Sec. IIIA Sec. III B Sec. III C

Am(t) = Am(−t) Am(t) = Am(−t) Am(t) 6= Am(−t)
Ām(t) = 0 | Ām(t) |= (E/2c)x Ām(t) = 0

Heff σ-independent σ-dependent σ-independent
η-dependent

Eeff 0 [(1 + 2t0)/(1 + t0)](E/2) (ωc/2Ω)E
Topological properties − X X
Cyclotron motion of each mode − In the opposite direction In the same direction
Edge states − Helical edge states Chiral edge states
Magnon thermal Hall effect − − X
Magnon spin Nernst effect − X −
Magnonic WF law14 No Hall effects − X

IV. HALL TRANSPORT WITH THE
APPLICATION OF LASER

In this section, we discuss the laser-induced thermo-
magnetic properties of Hall transport in the topological
AFs. Within the linear response regime, the spin and
heat Hall current densities for each mode (σ = ±1) in
the topological AFs subjected to an effective magnetic
field gradient (i.e., a gradient of nonequilibrium magnon
chemical potential65) and a temperature gradient are de-
scribed by the Onsager matrix of Eq. (31) in Ref. [9].
Within the almost flat band approximation9,14,66,67, the
Onsager coefficients become characterized by the topo-
logical invariant (i.e. Chern integer) that edge states
bring about.

Since the linearly polarized laser [Eq. (6)] can in-
duce helical edge magnon states, the total Chern num-
ber vanishes, while the Z2 topological invariant be-
comes nonzero9. Therefore the diagonal elements of the
Onsager matrix vanishes, whereas the off-diagonal ele-
ments becomes nonzero. This leads to the generation
of magnonic spin Nernst effect, while the vanishment of
magnonic thermal Hall effect. The vanishment of the
magnonic spin Hall conductance GyxAF = 0 and the ther-
mal Hall conductance Kyx

AF = 0 in the AFs indicate that
the thermomagnetic ratio Kyx

AF/G
yx
AF becomes ill-defined

due to GyxAF = 0 and that the WF law14,28,68 character-
ized by the liner-in-T behavior at low temperature be-
comes violated due to Kyx

AF = 09.
On the other hand, since the circularly polarized laser

[Eq. (9)] can induce chiral edge magnon states14 the Z2

topological invariant9 vanishes, while the total Chern
number becomes nonzero. Therefore the diagonal ele-
ments of the Onsager matrix9 becomes nonzero, whereas
the off-diagonal elements vanishes. This leads to the gen-
eration of magnonic thermal Hall effect, while the vanish-
ment of magnonic spin Nernst effect. The direction of the
thermal Hall current can be controlled by switching the
chirality of the laser between the left-circular and right-
circular polarization (η = ±1) [Eq. (11a)] as shown in
Fig. 1. The thermomagnetic ratio satisfies the magnonic

WF law14 at low temperature27,

Kyx
AF

GyxAF

→
=
( kB

gµB

)2

T, (12)

as the topological FM14 does satisfy. Note that thermal
Hall effect of magnons has been observed in Ref. [69] and
measurement of a magnonic spin conductance has been
reported in Ref. [70] where the gradient of a nonequilib-
rium magnonic spin chemical potential65,71–75 plays the
role of an effective magnetic field gradient. Thereby we
expect that the magnonic WF law9,14,28 can be experi-
mentally confirmed55,69,70,76–85.

To conclude, depending on the form of laser such as
linearly or circularly polarization, thermomagnetic prop-
erties of Hall transport (e.g., the magnonic WF law) in
insulating AFs vary from system to system. This indi-
cates that tuning laser, we can control and design thermo-
magnetic Hall transport properties in antiferromagnetic
magnonic systems. Those results for the laser-induced
magnon motion and Hall transport properties are sum-
marized in Table I.

V. ESTIMATE FOR EXPERIMENTS

The development of laser techniques86–88 in quantum
optics89 is remarkably rapid. The advanced laser tech-
nologies such as optical tweezers90, plasmonics86,91, near-
field91, and metamaterials92 enable us to realize the vari-
ous profile of electric and magnetic fields including an ac
electric field gradient we considered in this work.

Thermal Hall effect of magnons has been observed in
Ref. [69] and experimental evidence for magnonic spin
Nernst effect has been reported in Ref. [80]. Therefore
making use of those measurement techniques, our theo-
retical predictions (Table I), i.e., laser-induced magnonic
topological phases, can be experimentally confirmed by
measuring Hall currents. As seen in Sec. IV, the linearly
polarized laser can generate helical edge magnon states
and induce magnonic spin Nernst effect, while the cir-
cularly polarized laser can generate chiral edge magnon
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states and induce magnonic thermal Hall effect (Table I).
Thereby measuring Hall currents instead of directly ob-
serving edge magnon states93, our theoretical predictions
can be experimentally confirmed94.

We estimate the experimental feasibility with taking
Cr2O3

95,96 for example following Ref. [9]. This mate-
rial has the spin quantum number S = 3/2, g-factor
g = 2, the lattice constant a = 0.5 nm, the easy-
axis anisotropy K = 0.03 meV, and the antiferromag-
netic nearest-neighbor spin exchange interaction J = 15
meV. The magnon gap arising from the easy-axis spin
anisotropy amounts to ∆ = 4 meV and the frequency
of cyclotron motions becomes ωc = O(1) GHz. Thereby
using a picosecond laser97 Ω = O(1) THz and the exper-
imental scheme proposed in Refs. [9,14], we expect that
the laser-induced magnonic topological phases can be re-
alized experimentally in the low temperature regime27,98.

Lastly, we comment on the heating effect by laser appli-
cation. In this paper, we focus on the magnetic insulators
with large electronic band gap. Hence electric excitations
by laser electric field are negligible and consequently, the
heating through the electron-phonon coupling (e.g., Joule
heating) is negligibly small. Thus we only have to con-
sider the heating problem of the isolated quantum sys-
tem. From Ref. [99], the energy-absorption rate P of the
isolated quantum system subjected to periodic driving at
the frequency Ω is bounded as P ≤ ~ω2

c exp(−Ω/ωc). It
is exponentially small in the high frequency regime we
considered above. The estimation is given as Ω/ωc ∼ 103

with the parameters ωc = O(1) GHz and Ω = O(1) THz.
Therefore, we conclude that heating effects are irrelevant
in our systems.

VI. DISCUSSION

Before conclusion, we make further discussions on sev-
eral points of this paper and the future problems. First,
the mechanism of our laser-induced magnonic topologi-
cal phases discussed in Sec. III B is different100 from that
of the so-called Floquet TIs101,102 in the sense that we
do not employ Dirac materials17,63,64 with a relativistic
spectrum (i.e., a linear dispersion) or ac filed-driven res-
onance across the band gap20,21. We remark that Dirac
magnons having a linear dispersion are available on two-
dimensional honeycomb lattices103. In Ref. [14], we have
studied those Dirac magnons in the AC effect. The cor-
respondence between Dirac magnons in the AC effect
and Dirac electrons in the AB effect63,64 is straightfor-
ward. For example, by simply replacing the Fermi veloc-
ity, electric charge, and the AB vector potential56 with
the magnon velocity, gµB, and Am, respectively, one can
map the equation for Dirac electrons in the AB effect to
that for Dirac magnons in the AC effect. Compare Eq.
(1) of Ref. [63] with Eq. (D1) of Ref. [14]. Therefore
by applying this mapping to Floquet TIs established in
Dirac electron systems63,64, magnonic analog of the Flo-
quet TIs can be derived theoretically104–107. Moreover,

while it is outside the scope of this work since we focus
on the magnon dynamics away from the adiabatic limit
Ω � ωc, the laser-induced resonance across the Landau
energy gap of magnons is expected to be generated, in
the same way as the ac field-driven resonance across the
band gap20,21, by tuning the laser frequency to the cy-
clotron frequency of magnons Ω ≈ ωc, which we leave for
the further study100.

Second, we comment on the effect of the
Dzyaloshinskii-Moriya interaction (DMI)108–110. When
the inversion symmetry is broken, a time-independent
DMI indeed can exist and work as a vector potential111
for magnons in the similar way as the AC phase Am

induced by electric field gradient. However, a spatially
uniform DMI does not give rise to any emergent electro-
magnetic field that acts as the Lorentz force on magnons
and thus should not change the qualitative behavior of
magnons obtained in our work. We thus conclude that
our results, topological phenomena associated with the
Landau quantization of Floquet magnons, qualitatively
remain unchanged even in the presence of such DMI.
Those topological phenomena are stable even with the
Rashba-like splitting of the bands provoked by the DMI,
which retains TRS. Since the possible type of DMI
strongly depends on the details of the system, e.g., the
lattice geometry and the magnetic point group, the
comprehensive study on the effects caused by DMI is
beyond the scope of the present paper. The effect from
the interplay of DMI and magnon chirality in AFs has
been investigated10–12 including the optical excitations
such as magnon photocurrents. Those results are helpful
for our future study.

Third, a general treatment of nonequilibrium-driven
topological phases in AFs beyond our theoretical frame-
work112 remains an open problem such as disorder effects
due to magnetic impurities or the effects of hybridiza-
tion of spin-up and spin-down magnons due to the sym-
metry/conservation breaking terms. While we treat the
steady state in terms of the Floquet theory in this paper,
considering the transient dynamics, thermalization, and
open systems99,113 in the laser application is an interest-
ing future problem.

Last, applying a laser to magnets is just one of the ways
to drive magnets into nonequilibrium. We envision that
subjecting magnetic systems to various types of nonequi-
librium driving, e.g., time-varying thermal environment
or charge/heat currents, can be versatile means to realize
novel topological phases in magnetic systems.

VII. SUMMARY

Let us summarize our results. Assuming that the total
spin along the z axis is conserved, we have established the
laser control of magnonic topological phases in the AF by
making use of the AC effect on magnons in laser. Using
the Floquet formalism, we have found in the high fre-
quency regime that the linearly polarized laser can gen-
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erate helical edge magnon states and induce magnonic
spin Nernst effect, while the circularly polarized laser can
generate chiral edge magnon states and induce magnonic
thermal Hall effect. We have thus provided a handle to
control and design topological properties of the insulat-
ing AF. Our result for controlling magnonic topological
phases by laser provides a new direction for development
of magnonics, and will serve as a bridge between two re-
search areas, magnonics and quantum optics.
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Appendix: Floquet formalism

In this Appendix, for the completeness, we provide the
details of the straightforward calculation of the effective
Floquet Hamiltonian. For a general framework of the
Floquet formalism, see the review article Ref. [31].

1. Floquet Hamiltonian and high frequency
expansion

First let us explain the derivation of Floquet effective
model and the high frequency expansion. This strategy
is applicable to general time-periodic systems. Assume
that the Hamiltonian has a temporal periodicity H(t) =
H(t + T ), where T is the period. We can perform the
Fourier transform on the time-dependent Hamiltonian

H(t) =
∑
m∈Z

HmeimΩt, (A.1)

where Ω = 2π/T . Although it is a difficult problem to
obtain the exact Floquet effective Hamiltonian

Heff ≡
i

T
ln T exp

[
− i
∫ T

0

H(t)dt
]
,

where T is the time-ordering, we can calculate it for the
high frequency regime Ω � ωc in the perturbation way
using the high frequency expansion19,31,

Heff =

∞∑
n=0

H(n)
eff . (A.2)

Here H(n)
eff is the 1/Ωn order term. We give the explicit

formula up to O(1/Ω2),

H(0)
eff =H0, (A.3)

H(1)
eff =

1

~Ω

∞∑
m=1

[Hm, H−m]

m
, (A.4)

H(2)
eff =

1

(~Ω)2

∑
m6=0

( [H−m, [H0, Hm]]

2m2

+
∑

m′ 6=0,m′ 6=m

[H−m′ , [Hm′−m, Hm]]

3mm′

)
. (A.5)

The 1/Ω order term Eq. (A.4) vanishes when the Hamil-
tonian has time-reversal invariance H(t) = H(−t) since
[Hm, H−m] = 0.

2. Application to the insulating AF

Next we apply the Floquet theory described in Sec. 1
to the insulating AF with the laser application.

Section IIIA in the main text: Each Fourier compo-
nent Hm [Eq. (A.1)] for the periodic AC vector potential
of Am(t) = (E/c)(0, xcos(Ωt), 0) becomes

H0 =
1

2m

[
p2
x + p2

y +
1

2

(gµB

c

)2(E
c

)2

x2
]

+ ∆,

H1 =H−1 = σ
1

2m

gµB

c

E
c
pyx,

H2 =H−2 =
1

4

1

2m

(gµB

c

)2(E
c

)2

x2,

where [H1, H−1] = [H2, H−2] = 0 due to Am(t) =
Am(−t). Using the high frequency expansion [Eqs.
(A.3)-(A.5)], we obtain the effective Floquet Hamiltonian
H(n)

eff [Eq. (A.2)] in the main text.
Section III B in the main text: Each Fourier component

Hm [Eq. (A.1)] for the periodic AC vector potential of
Am(t) = (E/c)(0, xcos2(Ωt), 0) becomes

H0 =
1

2m

[
p2
x + p2

y + σ
gµB

c

E
c
pyx+

3

8

(gµB

c

)2(E
c

)2

x2
]

+ ∆,

H2 =H−2 =
1

2m

[
σ

1

2

gµB

c

E
c
pyx+

1

4

(gµB

c

)2(E
c

)2

x2
]
,

H4 =H−4 =
1

16

1

2m

(gµB

c

)2(E
c

)2

x2,

where [H2, H−2] = [H4, H−4] = 0 due to Am(t) =
Am(−t). The high frequency expansion for Ω � ωc

[Eqs. (A.3)-(A.5)] provides the effective Floquet Hamil-
tonian up to O(1/Ω2) as Heff = H(0)

eff +H(2)
eff :

H(0)
eff =

1

2m

[
p2
x +

(
py + σ

gµB

c

E/2
c
x
)2]

+
F0

3
x2 + ∆,

H(2)
eff =

t0
2m

(
py + σ

gµB

c

E
c
x
)2

+ F2x
2,
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where F0 = (3/8)(gµB/c)
2(E/c)2/2m, F2 =

(1/2Ω2)(1/16)2(1/2m)3(gµB/c)
4(E/c)4, and

t0 = (1/32)(ωc/Ω)2 ∝ 1/Ω2. It is rewritten as

Heff =
1

2m

[
p2
x + (1 + t0)

(
py + σ

gµB

c

Eeff

c
x
)2]

+ Fx2 + ∆, (A.6)

where F = F0+F2+Ft−F3, Ft = (gµB/c)
2(E/c)2t0/2m,

F3 = [(1 + 2t0)2/(1 + t0)](gµB/c)
2(E/c)2/8m. The ef-

fective electric field gradient in Eq. (A.6) is given by
Eeff = [(1 + 2t0)/(1 + t0)]E/2.

Section III C in the main text: Each Fourier compo-
nent Hm [Eq. (A.1)] for the periodic AC vector potential
of Am(t) = (E/c)(ηxsin(Ωt), xcos(Ωt), 0) becomes

H0 =
1

2m

[
p2
x + p2

y +
(gµB

c

)2(E
c

)2

x2
]

+ ∆,

H1 =− ~
4m

σ
gµB

c

E
c
η +

1

2m
σ
gµB

c

E
c

(−iηxpx + xpy),

H−1 =
~

4m
σ
gµB

c

E
c
η +

1

2m
σ
gµB

c

E
c

(iηxpx + xpy),

where [H1, H−1] 6= 0 due to Am(t) 6= Am(−t). Using the
high frequency expansion [Eqs. (A.3)-(A.5)], we obtain
H(0)

eff and H(1)
eff in the main text, and the effective Floquet

Hamiltonian Heff = H(0)
eff +H(1)

eff is rewritten as

Heff =
1

2m

[
p2
x +

(
py − η

gµB

c

Eeff

c
x
)2]

+ ∆

+
1

2m

[
1−

( ωc
2Ω

)2](gµB

c

)2(E
c

)2

x2.
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