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Abstract: A detailed structure analysis for the site-diluted SnxFe4-xN (x = 0.25, 0.41, and 0.88) has been carried out 
through complex modeling of the neutron total scattering data. We present quantitative evidence showing the local 
ferromagnetic cluster size extending to ~8 Å on average when Sn0.88Fe3.12N undergoes the spin-glass transition (the other 
two not showing such transition). The modeling methodology used in this work involving the co-refinement of the nuclear 
and magnetic structure in both real and reciprocal space can potentially be applied generally to explore a variety of spin-
glass material problems. 

Starting from the 1970s, there has been research into 
theoretically describing the unusual properties (e.g. 
susceptibility, specific heat, electrical resistivity, etc.) of 
spin-glass materials using the cluster approach [1-7]. To 
this aim, the spin cluster size is an important concern 
and there have been various experimental approaches for 
characterizing the cluster size, or local correlation length. 
A commonly used approach is to measure the 
temperature dependence of AC susceptibility with 
different frequency and amplitude variations, where the 
cluster size can be estimated by the change in the cusp 
position with frequency following the Vogel-Fulcher law 
[8-16]. Other approaches for identifying the cluster spin-
glass and revealing the local correlation length include 
nuclear magnetic resonance (NMR) [17-19], inelastic 
neutron scattering [19-26] and Mössbauer spectroscopy 
[27-32]. Here we provide an alternative approach using 
neutron total scattering. Through modeling the data, a 
direct picture of the local magnetic ordering in real space 
can be established [33] and the cluster spin-glass can 
then be inspected, quantitatively. In contrast to Bragg 
diffraction which focuses on the long-range order of 
crystalline system, the total scattering includes both 
Bragg peaks and diffuse scattering. Through Fourier 
transform, the corresponding real-space pair distribution 
function (PDF) pattern can provide information focusing 
on the local ordering even in the absence of long-range 
crystalline structure [34,35]. Therefore, with the neutron 
total scattering data fitted in both real and reciprocal 
space, the structure (nuclear and magnetic) extending 

from local to medium range can be covered. Concerning 
the magnetic ordering, such local-to-medium range 
information can be utilized to provide an estimation for 
the spin-glass cluster size. In fact, neutron total 
scattering has been used as a powerful tool to examine 
the local magnetic ordering for frustrated or spin-
freezing systems [36-38]. Here in this report, we first 
focus on the nuclear-only PDF pattern (with magnetic 
contribution carefully removed), providing a quantitative 
characterization of the site-dilution. Then the nuclear 
and magnetic co-refinement for the neutron total 
scattering data is presented. By defining a local magnetic 
order parameter, we were able to inspect the spin-glass 
clustering quantitatively. 
The phase-pure, polycrystalline SnxFe4–xN used in this 
study were synthesized by a two-step ammonolytic 
reaction starting from the powdered reactants Sn and 
Fe2O3 that were mixed and finely ground using various 
ratios of the metal atoms (refer to Ref. [39] for detailed 
synthesis description). According to our previous report, 
the samples with x = 0.25, 0.41 does not show spin-glass 
transition, and the sample with x = 0.88 does show the 
spin-glass transition at 12 K [40]. Here, the x values 
were obtained from Rietveld refinement, according to 
our previous report. The neutron total scattering data 
were measured on the NOMAD time of flight (TOF) 
diffractometer at Spallation Neutron Source (SNS), 
ORNL, and the measurements were taken at 300 K, 100 
K and 10 K, respectively for all three samples. The 300 
K and 100 K data were collected for 1 hour at each point 
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in the cryostream sample environment and the 10 K data 
were collected for 2 hours in a cryostat. Both the 
Rietveld-like refinement (with DiffPy-CMI [41]) and 
supercell-based reverse Monte Carlo (RMC) modeling 
(with RMCProfile [42]) were used for the data analysis. 
A conceptual diagram demonstrating such a 
comprehensive analysis approach employing neutron 
total scattering is presented in Fig. 1. Here it should be 
mentioned that the magnetic scattering is implemented 
in real and reciprocal space, respectively in DiffPy-CMI 
and RMCProfile. 

 
Figure. 2. The PDF fitting with SN approach using 
RMCProfile for (a) Sn0.25Fe3.75N, (b) Sn0.41Fe3.59N, 

and (c) Sn0.88Fe3.12N, respectively, at 10 K. The R-
factor given in the figure is defined as follows: 

R = ( yC ,i − yO ,i )i∑ 2
/ yO ,i

2
i∑ , where yC  and yO  

represents the calculated and observed value, 
respectively. The same definition applies across the 
whole article. 
 
Before the co-refinement, we first focus on the pure-
nuclear PDF (SN approach, the RMCProfile D(r)  
function is used in this paper. Refer to the report by D. 
Keen [43] for terminology of various PDF functions) 
data using RMCProfile with the magnetic signal 
excluded (technical details can be found in the SI [44]). 
The fitting result of the pure-nuclear PDF is shown in 
Fig. 2 for 10 K dataset (results for 100 K and 300 K 
datasets are shown in Fig. S1 and Fig. S2) with the 
corresponding R-factor (refer to Fig. 2 for the definition) 
presented for each sample. Using the obtained structure 
configuration, we calculated the local correlation 
coefficients (LCCs) with respect to various distance 
window for all the three samples. The mathematical 
formulation defining the local correlation coefficient is 
given as [44]: 

min max
1 1( , ) ( , )

ji NN

ij
k li j shell

P D D f k l
N N N

=
+ ∑ ∑

  (1) 
where 

Figure. 1. The conceptual diagram showing the two different approaches for modeling the total scattering data. Apart 
from the pure-nuclear Rietveld refinement, all the other three approaches are used in the paper. Here short names are 
given for the four approaches – UN, UNM, SN and SNM, where ‘U’ represents unit-cell, ‘S’ for supercell, ‘N’ for nuclear 
and ‘M’ for magnetic. 
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min max1, if 
( , )

0, otherwise
k lD r r D

f k l
⎧ ≤ − ≤⎪= ⎨
⎪⎩

ur ur

 (2) 
With such notations, the inner summation represents the 
number of atoms of type j within a certain shell 
surrounding the kth atom of type i. The normalization 
factor Nshell is the total number of type-i and type-j atoms 
contained in the corresponding shell. Ni and Nj then refer 
to the total number of atoms with type i and j, 
respectively. 
From its definition, the LCC concerns only the static 
nuclear structure. Therefore, we ignore its temperature 
dependence and picked one temperature point as a 
representative. Here the 10 K data is used for all three 
samples. 

 
Figure. 3. The local correlation coefficients for (a) Fe1–
Fe1 and (b) Fe1–Fe2 pairs, with respect to various 
distance windows. Here  is defined as the center of 
the distance window: . The inset 
of (a) shows the unit cell of SnxFe4–xN with the 
antiperovskite crystal structure in space group . 
The body center (1b) is occupied by N. The face center 
(3c) is fully occupied by Fe, and the substitution occurs 
only on the 1a position according to Ref. [40]. 

As shown by the inset of Fig. 3 (a), there are two 
crystallographic sites for the Fe atoms in the γ′-Fe4N 
lattice, and it was previously shown that the substitution 
takes place on the 1a Wykoff site with the 3c site fully 
occupied by Fe [39]. Here the iron atoms sitting on the 
1a and 3c sites are denoted as Fe1 and Fe2, respectively. 
The LCCs for the Fe1 atoms involved pairs – Fe1–Fe1 
and Fe1–Fe2 – are then shown in Fig. 3. By comparing 
across the three samples, one can observe the LCC of 

Sn0.88Fe3.12N (which shows the spin-glass state) is 
significantly reduced as compared to Sn0.25Fe3.75N and 
Sn0.41Fe3.59N across the whole distance window range. 
Considering the LCC (refer to Eqn. 1) has already been 
normalized, the low LCC corresponding to the distance 
window from local to medium range is an intrinsic 
property of the sample due to the site dilution effect. 
From another perspective, the LCC can be regarded as 
an indicator for randomness of the magnetic site 
occupation [45], which is one of the crucial ingredients 
for the spin-glass state transition. 

Next, we focus on the magnetic structure of the three 
samples, using the Rietveld-like refinement for the PDF 
data. Here the nuclear and magnetic PDF data are co-
refined (thereby the UNM approach), by employing the 
magnetic PDF (mPDF) functionality [46] implemented 
in the DiffPy-CMI framework. The refinement result for 
the data measured at 10 K is presented in Fig. 4. The 100 
K and 300 K datasets, together with the extracted lattice 
parameters, are shown in Fig. S10 to Fig. S12 in the SI 
[44]. From Fig. 4 (a) to (c), one can observe a good 
quality of the co-refinement for each of the samples. 
Furthermore, by subtracting the pure nuclear 
contribution from the raw PDF data, the magnetic PDF 
is obtained, which is shown in Fig. 4 (d) together with 
the refinement result. Here, the magnetic PDF can only 
be clearly observed (considering the noise level of the 
data) within the region bounded with the green-dashed 
line (1.6 – 6.0 Å) as indicated in Fig. 4 (d). Therefore, 
only this region is considered for the refinement, with 
the calculated value for all the points beyond that region 
set to zero. The interesting aspect is that the magnetic 
PDFs for all the three samples are quite similar and does 
not distinguish the spin-glass state sample, Sn0.88Fe3.12N. 
To inspect the result quantitatively, the magnetic 
moments are extracted from the refined parameters using 
the following formulation [47,48]: 

 
2

fit norm
s

gB b
S S

An
=  (3) 

where  (dimensionless) and  (with dimension of L-2, 
refer to the SI [44] for details) are the nuclear and 
magnetic PDF scale factor, respectively. b  refers to 

the average nuclear scattering length, sn  the fraction of 
the magnetic atoms and g  the Landé factor (here the 
value of 2 is used, assuming pure spins without orbital 
contributions). normS  then is the norm of the moment 
specified internally for the magnetic species, and here 

R
min max( ) / 2R D D= +

3Pm m



 4

the two different types of Fe atoms are treated to be the 
same (i.e. with the same norm of the magnetic moment) 
for the magnetic PDF refinement. The extracted average 
magnetic moment for each sample is shown in Fig. 4 (d) 
alongside the corresponding refinement result. The 
similar magnitude of the moment concerning the local 
magnetic order for all the three samples then infers that 
even though the Sn0.88Fe3.12N is in a spin-glass state, 
locally the ferromagnetic (FM) ordering persists up to ~6 
Å. 

Although the total scattering data presented in the real- 
and reciprocal-spaces are mathematically just the Fourier 
transform pairs, they reflect different aspects of the 
examined structure – the real-space PDF emphasizes the 
local ordering and the reciprocal pattern emphasizes the 
long-range ordering, or average structure. To further 
examine the clustering in the spin-glass state, we inspect 
the total scattering data in reciprocal space. Again, 
RMCProfile modeling is used, including the magnetic 
contribution to the reciprocal space pattern (therefore, 
SNM approach here, for more technical details about the 
modeling, refer to the SI [44]. Also, refer to the report by 
D. Keen [43] for terminology of the Q-space total 
scattering functions). First, the fitting with only the 

nuclear contribution taken into account is shown in Fig. 
5 (a), (c) and (e) for the 10 K datasets. Here, one can see 
clear discrepancies between the RMCProfile modeling 
and the experimental data, especially in the low-Q region 
where the magnetic signal mainly resides owing to the 
strongly Q-dependent magnetic form factor. The result 
for 100 K and 300 K datasets can be found in Fig. S22 to 
S25 in the SI [44], where no such clear discrepancy can 
be observed even without considering the magnetic 

contribution to the calculated ( )S Q . 

According to our previous results [39,40], SnxFe4-xN is 
ferromagnetic in the magnetically ordered region before 
undergoing the spin-glass transition. Here, it should be 
pointed out the principle of magnetic-nuclear co-
refinement for the neutron total scattering data is that the 
two contributions can be decoupled. In another word, 
when one does the pure-nuclear refinement, the 
remainder beyond the noise level can then be attributed 
to the magnetic contribution. For the 100 K and 300 K 
datasets, the ( )S Q  pattern can be fully rebuilt through 
structural distortion. Therefore, in such situations, the 

Figure. 4. The PDF refinement (following the UNM approach) result for (a) Sn0.25Fe3.75N, (b) Sn0.41Fe3.59N and (c) 
Sn0.88Fe3.12N data (at 10 K), respectively. In (d), the magnetic PDF is presented for all samples with the extracted magnetic 
moments labeled out for each. The green-dashed line and arrow indicate the region of interest for the magnetic PDF 
refinement. 
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magnetic and nuclear contributions cannot be decoupled 
due to the relatively stronger thermal effect (as 
compared to the 10 K datasets). In comparison, the extra 
features around 3 Å-1 in the 10 K datasets are beyond the 
level of thermal effect. Therefore, those features should 
come from the magnetic contribution. In another word, 
for the 10K datasets, the magnetic and nuclear 
contributions can be decoupled, considering the fact that 
the magnetic moments for samples at 10 K is larger than 
that for 100 K and 300 K situations. 

Focusing on the 10 K dataset, the experiment-modeling 
discrepancy concerning the two main magnetic Bragg 
peaks (indicated by the magenta arrows in Fig. 5 a, c, 
and e) is more significant for Sn0.25Fe3.75N and 
Sn0.41Fe3.59N (non-spin-glass) than that for Sn0.88Fe3.12N 
(spin-glass). This result clearly infers the loss of the 
long-range magnetic ordering for the Sn0.88Fe3.12N spin-
glass sample. Once the magnetic contribution is taken 

into account, better agreement is obtained for all the 
three temperature points across the whole Q-range, as 
can be observed in (b), (d), and (f) of Fig. 5. Here for 
clarity of presentation, only the region below 10 Å-1 is 
shown, and the corresponding plot for the Q-range 
beyond 10 Å-1 can be found in Fig. S21. For the 
magnetic contribution, the magnetic form factor of Fe2+ 
(Fe1 atom) and Fe1+ (Fe2 atom) was used [49] and the 
magnetic moments of Fe1 and Fe2 atoms are assumed to 
be the same (see the SI [44] for more information). Here 

the reason why the same magnetic moment but different 
magnetic form factor was used is that the magnetic 
moment behaves simply as a Q-independent scale factor 
in the magnetic scattering calculation. Therefore, an 
average value for both Fe1 and Fe2 atoms was used. 
However, the magnetic form factor is strongly Q-
dependent, and the dependence for Fe1 and Fe2 is quite 
different (see Ref. [49]). Therefore, the magnetic form 

Figure. 5. The result of the RMCProfile modeling for the S(Q) data. (a), (c) and (e) is the pure nuclear modeling without 
considering the magnetic contribution, for Sn0.25Fe3.75N, Sn0.41Fe3.59N and Sn0.88Fe3.12N, respectively. (b), (d) and (f) is the 
result when magnetic scattering is taken into account, corresponding to (a), (c) and (e), respectively. 



 6

factor for Fe1 and Fe2 atoms should be treated 
differently. Furthermore, larger magnetic moments for 
both Fe1 and Fe2 atoms were used, as compared to those 
obtained from the Rietveld-like refinement (see Fig. 4d) 
– 4.5 μB for Sn0.25Fe3.75N and Sn0.41Fe3.59N, 4.0 μB for 
Sn0.88Fe3.12N. Here unlike the Rietveld-like refinement, 
the supercell-based fitting of the total scattering data 
relies on absolute scaling of the data. Therefore, in 
principle there shouldn’t be any scale factor during the 
refinement. However, since the nuclear and magnetic 
scattering is convolved in the Q-space data, it’s 
challenging to separate out the magnetic scattering signal 
on an absolute scale with RMCProfile. Therefore, a 
reasonable value of the magnetic moments to be used in 
the RMCProfile modeling has to be obtained through 
trial-and-error. What we found is that only when using 
the values given above can we get an overall reasonable 
agreement with the experimental S(Q)  data, especially 
concerning the two main magnetic scattering Bragg 
peaks (refer to the magenta arrows in Fig. 5). For 
example, the results with the several trials of magnetic 
moments are presented in Fig. S13-S15, from which one 
can clearly observe a worse fit for the two magnetic 
Bragg peaks, as compared to the results shown in Fig. 5. 
Quantitatively, we changed the magnetic moments used 
for the refinement and uncertainty of the magnetic 
moment values could be estimated based on the criterion 
that the fitting quality is not changed significantly. With 
the allowance of R-factor changing set to be 5%, the 
estimated uncertainty of the magnetic moments is ~0.4 
μB. 

 

Figure. 6. The average LMOP across all local clusters 
with various cluster radius for all the three samples. 

For further quantitative discussion, we carried out 
magnetic clustering analysis. First, one specifies a 
certain cluster radius (e.g. 6 Å). Then each single Fe 
atom in the system is taken as the center atom 
respectively and the corresponding local cluster is built 
up – all Fe atoms (including the center atom itself) with 
distance from the center atom smaller than the pre-
specified cluster radius are included in the local cluster. 
For each Fe atom pair, the dot product of the magnetic 
moment vectors (  for the ith Fe atom), called the local 
magnetic order parameter (LMOP), is used to determine 
the ferromagnetic/antiferromagnetic (FM/AFM) 
property for that pair. Mathematically, the LMOP is 
defined as: 

 i j
ij

i j

S S
LMOP

S S

⋅
=

uur uur

uur uur  (2) 

Then, the LMOP of the cluster is calculated by first 
summing up the LMOPs for all possible Fe atom pairs 
and then averaging over the total number of pairs within 
the cluster, as illustrated by the inset in Fig. 6. 
Furthermore, for each cluster size, a single LMOP is 
obtained by averaging over all the local clusters with the 
specified radius, and the result is presented in Fig. 6. For 
Sn0.25Fe3.75N and Sn0.41Fe3.59N, the LMOP stays at a level 
close to 1, which indicates the FM characteristics is well 
maintained locally (or even to a medium-range). For the 
spin-glass Sn0.88Fe3.12N sample, an FM feature can still 
be observed locally when the cluster size is below ~8 Å. 
Beyond that, the LMOP suddenly drops as can be 
observed clearly in Fig. 6. Quantitatively, it shows that 
for Sn0.88Fe3.12N, the local FM correlation is well 
maintained till the cluster size reaches ~8 Å. Here the 
local cluster size obtained from fitting the ( )S Q  data is 
larger than that (~6 Å) obtained from the mPDF anlaysis. 
Concerning such a discrepancy, it should be pointed out 
that the determination of the upper limit for mPDF 
(where the signal extends to) is based on an arbitrary 
selection. As aforementioned, the reason for this is the 
low signal-to-noise level around and beyond 6 Å. In 
contrast, the spin cluster size is determined in a 
systematic way based on the model obtained from fitting 
the ( )S Q  data. Therefore, in the latter approach, one can 
observe an obvious falling-off of the calculated LMOP 
parameter beyond 8 Å. 

In summary, a complex modeling scheme has been used 
to identify critical ingredients for the spin-glass state 
formation – owing to the substitution on the magnetic 
sites, the local correlation coefficient of the magnetic 
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species is significantly reduced. Furthermore, through 
modeling the magnetic total scattering in both real and 
reciprocal space, local FM cluster is identified for the 
Sn0.88Fe3.12N sample in the spin-glass state, with a cluster 
size of ~8 Å on average. We believe revealing such 
correlation length should benefit the theoretical 
description for the spin-glass systems. For example, it 
could provide guidance for the cluster size control when 
simulating spin-glass systems following the three-
dimensional Edward-Anderson model [3]. Also, it is 
worth pointing out that the comprehensive 
methodologies used in this report could be applied 
extensively in probing both the nuclear and magnetic 
structure of spin-glass systems in general sense. 
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