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The bulk Rashba semiconductors BiTeX (X=I, Cl and Br) with intrinsically enhanced Rashba
spin-orbit coupling provide a new platform for investigation of spintronic and magnetic phenomena in
materials. We theoretically investigate the interlayer exchange interaction between two ferromagnets
deposited on opposite surfaces of a bulk Rashba semiconductor BiTeI in its trivial and topological
insulator phases. In the trivial phase BiTeI, we find that for ferromagnets with a magnetization
orthogonal to the interface, the exchange coupling is reminiscent of that of a conventional three-
dimensional metal. Remarkably, ferromagnets with a magnetization parallel to the interface display
a magnetic exchange qualitatively different from that of conventional three-dimensional metal due
to the spin-orbit coupling. In this case, the interlayer exchange interaction acquires two periods of
oscillations and decays as the inverse of the thickness of the BiTeI layer. For topological BiTeI, the
magnetic exchange interaction becomes mediated only by the helical surface states and acts between
the one-dimensional spin chains at the edges of the sample. The surface state-mediated interlayer
exchange interaction allows for the coupling of ferromagnets with non-collinear magnetization and
displays a decay power different from that of trivial BiTeI, allowing the detection of the topological
phase transition in this material. Our work provides insights into the magnetic properties of these
newly discovered materials and their possible functionalization.

I. INTRODUCTION

The Rashba spin-orbit coupling (SOC) in materials
arises from broken spatial inversion symmetry. It has
been extensively studied in two-dimensional (2D) elec-
tron systems such as heterointerfaces of semiconductors,
thin films and surfaces of heavy metals [1–6]. Due to
broken inversion symmetry in these systems, electrons
experience a perpendicular electric field E, which gener-
ates a spin-orbit coupling E · (σ × k) that depends on
the electrons’ momentum k and spin σ. This Rashba
effect in a 2D electron gas splits the spin-degenerate
parabolic bands into dispersions with opposite spin po-
larizations [7].

Three-dimensional (3D) materials with intrinsically
broken inversion symmetry can also exhibit Rashba SOC.
Recent theoretical and experimental studies have re-
vealed a giant Rashba splitting in bismuth tellurohalides
BiTeX (X=I,Cl and Br) due to the large internal electric
field between the constituent layers of these materials [8–
13]. These materials became known as bulk Rashba semi-
conductors. The Rashba semiconductor BiTeI, in partic-
ular, has been shown to undergo a pressure-controlled
topological phase transition [14–18]. As this material is
subjected to an increasing hydrostatic pressure it transi-
tions from a non-topological phase to a strong topologi-
cal insulator phase, at approximately 3 GPa [14–17], and
these two phases are separated by an intermediate Weyl
phase [19–21]. Rashba semiconductors have generated
much interest as a new material platform for spintronics
and controlled topological phenomena [22–26].

Heterostructures composed of magnetic and non-
magnetic materials are an important platform that allow
controlled information transfer between spins [27, 28].

The key ingredient to this transfer is the effective in-
teraction between the magnetic moments mediated by
the conduction electrons of the non-magnetic host mate-
rial. This effective interaction is known as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) or the indirect carrier-
mediated exchange interaction [29–31]. The theory of
RKKY interaction was initially formulated to address the
problem of the interaction between magnetic impurities
in the bulk of a metal. Because it is carrier-mediated,
RKKY interaction depends on the dimensionality of the
host metal and the nature of its low-energy fermionic
excitations [32–36]. In 3D conventional metals charac-
terized by a single spin-degenerate parabolic band, the
strength of this interaction undergoes oscillations as a
function of the impurities’ separation r at a period λF /2
given by the Fermi wavelength λF , while the envelope of
the oscillations decays as r−3 [29–31]. The same phys-
ical mechanism occurs in a ferromagnet-normal metal-
ferromagnet (FM/NM/FM) trilayer structure, with each
of the ferromagnetic layers forming a 2D collection of
spins at the interface and the metal spacer mediating
the indirect exchange interaction. The RKKY theory
was generalized in the seminal work by Bruno and Chap-
pert [37] to describe the oscillatory interlayer exchange
coupling between the ferromagnetic layers. For a con-
ventional metallic spacer such as Au or Cu, it predicts
multiple oscillation periods of the coupling decaying as
the inverse square of the spacer thickness, i.e. z−2 [38]. A
review of interlayer exchange coupling in magnetic mul-
tilayers can be found in Ref. [39].

The interplay between magnetic and spin-orbit ef-
fects provides the basis for a number of wide-ranging
phenomena, such as topological phases of matter, mag-
netic domain walls, Majorana bound states and magnetic
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skyrmions [24–26, 40–42]. Hence, the strong and intrin-
sically generated Rashba SOC in bismuth tellurohalides
and their pressure-controlled topological phases promise
to provide important insights on the heretofore unex-
plored interlayer exchange coupling mediated by these
materials.

In this paper, we consider the problem of interlayer
exchange coupling mediated by conduction electrons in a
bulk Rashba semiconductor, in its trivial and topological
phases, between ferromagnetic layers. The main ingredi-
ent of our theory is the qz-dependent static spin suscep-
tibility, which we have obtained analytically. The closed-
form result of the spin susceptbility facilitates identifica-
tion of the Fermi surface singularities (Kohn anomalies)
and enables us to capture the salient long-range depen-
dence of the interlayer exchange coupling, including the
periods of its oscillations and the spatial decay of its en-
velope. In the non-topological phase, our theory predicts
that the interlayer coupling is strongly dependent on the
magnetization directions of the ferromagnets. For fer-
romagnets with magnetization orthogonal to the inter-
face, we find that SOC effects are not prominent and the
interlayer exchange coupling behaves as in conventional
3D metals, decaying with the spacer thickness z as z−2.
In contrast, SOC effects are found to play an important
role when the ferromagnets’ magnetization directions are
parallel to interface; the dominant contribution of the in-
terlayer exchange coupling is proportional to the Rashba
SOC parameter α and decays as z−1. In the topological
phase, where the bulk of these materials becomes insulat-
ing and the conduction only happens through the surface
electrons, the magnetic exchange in the system becomes
limited to the magnetic chains at the sample’s edges and
is mediated by the 2D helical surface states. Unlike the
non-topological phase, the interlayer exchange interac-
tion in the topological phase not only couples collinear
spins but also non-collinear spins via the Dzyaloshinskii-
Moriya (DM) interaction, decaying with the thickness as
z−3/2. The qualitative differences exhibited by the ar-
rangement of the ferromagnets’ magnetization directions
highlight the role of the spacer’s Rashba SOC and band
topology in the magnetic trilayer geometry.

The remainder of this paper is organized as follows. In
Sec. II we introduce the low-energy effective model for
the Rashba semiconductor BiTeI and describe its Fermi
surface and the associated spin textures. We then de-
velop the formalism for the interlayer exchange coupling
between two ferromagnets sandwiching the BiTeI layer
in Sec III. In Sec. IV, we first employ this formalism to
study the interlayer exchange coupling mediated by a 3D
electron gas with an anisotropic Fermi surface but with-
out SOC. In Sec. V we turn our attention to the case
with BiTeI as the spacer and compare critically the ob-
tained results including Rashba SOC with those obtained
without SOC from Sec. IV. The case of two ferromagnets
with magnetizations orthogonal to the interface is stud-
ied in Sec. V A and the case of two ferromagnets with
magnetizations parallel to the interface in Sec. V B. In
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FIG. 1. (a) BiTeI crystal structure. (b) Brillouin zone of
BiTeI. (c) Fermi surface of BiTeI centred at the A point for
EF > 0. (d) Outer portion of the Fermi surface with negative
helicity electrons. (e) Inner portion of the Fermi surface with
positive helicity electrons.

Secs. VI and VII we study the interlayer exchange in-
teraction in the topological phase of BiTeI. In Sec. VI
the interlayer exchange coupling formalism is adapted to
the helical surface states of topological BiTeI, the spin
susceptibility of the helical surface states is found and
a generic form of the interlayer exchange interaction is
derived. In Sec. VII the dependence of the interlayer ex-
change coupling on the thickness of topological BiTeI is
derived. Finally, Secs. VIII and IX provide a discussion
of possible experimental realizations and our concluding
remarks.

II. BULK RASHBA SEMICONDUCTOR, BiTeI

Bismuth tellurohalides BiTeX (X=I,Cl and Br) gener-
ally have a layered lattice structure. In particular, the
crystal of BiTeI is composed of a series of asymmet-
rically stacked triangular layers of Bi, Te and I atoms
which leads to an intrinsically broken inversion symme-
try along its stacking, c, axis. Fig. 1(a) shows the crystal
structure of BiTeI and its corresponding Brillouin zone
(BZ) is shown in Fig. 1(b). The asymmetric stacking of
the Bi, Te and I layers causes a net polarity along the
stacking direction [8–10]. Due to the net polarity along
the c-axis, electrons in the a-b plane experience an SOC.
The symmetry properties of this SOC are constrained
by the space symmetries of the a-b plane. Owing to the
threefold symmetry of this plane in BiTeI, the intrinsic
2D SOC in this material inherits this symmetry. At low
energies, this symmetry restricts the form of the SOC
to α(σ × p‖)ẑ, where σ = (σx, σy, σz) is the vector of
Pauli matrix representing spins, p‖ = (px, py, 0) is the
in-plane momentum and α is the Rashba SOC strength.
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The low-energy electrons of this material are centered
in the vicinity of the BZ’s hexagonal face center known
as the A-point [A= (0, 0,±π/c)] [8–13, 43, 44], and are
described by the effective Hamiltonian

HBiTeI = Ap2z +Bp2‖ + α(σ × p‖)ẑ . (1)

The material parameters A ≈ 8.04 eVÅ2, B ≈ 40.21
eVÅ2, [8, 9, 43, 44] α ≈ 3.85 eVÅ, c = 6.854 Å and
a = b = 4.34 Å have been reported in the literature
from photoemission, transport, optical experiments and
density functional theory studies [8–13, 43, 44]. Eq. (1)
is valid up to a cutoff energy Ec = 0.2eV, beyond which
the dispersion acquires trigonal warping effects and two
additional bands. Since the low-energy Hamiltonian of

BiTeI commutes with the helicity operator, ĥ = (σ ×
p‖)ẑ/p‖, the helicity eigenstates diagonalize HBiTeI and
are given by

|k, µ〉 =
1√
2

(
i

µeiφk

)
ei(k‖·r+kzz) , (2)

where k = (kx, ky, kz), φk = tan−1(ky/kx) is the az-
imuthal angle of k‖ = (kx, ky, 0) and µ = ± is the helicity
of the eigenstate. The corresponding energy eigenvalues
are

Ek,µ = Ak2z +Bk2‖ + µαk‖ , (3)

where k‖ =
√
k2x + k2y. Stoichiometric BiTeI is an n-

doped semiconductor where the Fermi energy is located
above the Dirac node that results from the Rashba
SOC [8, 9, 43, 45]. As we explain in Fig. 1, the Fermi
surface for EF > 0 consists of two segments characterized
by states with opposite helicities. The in-plane momenta
that span these two parts of the Fermi surface individu-
ally can be obtained by solving for k‖ from the dispersion
Ak2z +Bk2‖+µαk‖ = EF for a particular value of kz. The
radii kµ for a given kz plane for the positive (negative)
helicity segment of the Fermi surface is determined as

kµ = kF − µ
α

2B
, for kz ≤ kD (4a)

k− = ±kF +
α

2B
, for |kz| ≥ kD . (4b)

where ±kD, with kD =
√
EF /A, specify the loca-

tions of the two Dirac points along the kz axis and
kF =

√
EF + α2/4B −Ak2z/

√
B. Additionally, the up-

per bound on kz follows from the condition that k− and
hence kF must be real, leading to

|kz| ≤
√
k2D +

α2
R

4AB
≡ km . (5)

The helicity-resolved segments of the Fermi surface are
shown in Fig. 1(c)-(e). Outside the Dirac nodes (kD <
|kz| < km), only the negative helicity states exist. Be-
tween the Dirac nodes however (|kz| < kD), states with
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FIG. 2. (a) Atomic configuration of the Ferromagnet-BiTeI-
Ferromagnet multilayered system. The top (bottom) ferro-
magnetic layer is indicated by FT (FB), and the distance be-
tween FT and FB is z = (N + 1)c, where c is the thickness of
a BiTeI single layer and N is an integer. (b) BiTeI Fermi sur-
face projection centered at the A point. The arrows indicate
the critical spanning vectors determined by the Fermi func-
tion and the spin textures. (c) BiTeI Fermi surface projection
defined in its periodic BZ. The critical spanning vectors re-
sulting from the connection between the extrema of Fermi
surfaces at ±π/c are equivalent to those in (b) and result in
the same period of oscillation.

oppositive helicities coexist in the inner and outer sec-
tions of the Fermi surface. The spin textures associated
with the inner (µ = +) and outer (µ = −) portions of
the Fermi surface are given by

〈σx〉 = µ sinφk and 〈σy〉 = −µ cosφk . (6)

As displayed in Fig. 1(d)-(e), the two helical branches
of Fermi surface are characterized by opposite sense of
rotations of the electron spins.

III. FORMALISM OF INTERLAYER
EXCHANGE INTERACTION: TRIVIAL PHASE

We employ the RKKY formalism for interlayer ex-
change coupling in Refs. [37, 38]. Our system consists of
two ferromagnets (FT and FB) sandwiching BiTeI along
its stacking direction, as shown in Fig 2(a). The dis-
tance between the ferromagnets is z = (N + 1)c, where
c thickness of a BiTeI unit cell and N is an integer, see
Fig. 1(a). The ferromagnetic layer adjacent to BiTeI is
assumed to consist of classical spins Si located at the
atomic position Ri of the spacer material BiTeI. The
spins Si of the ferromagnetic layer are coupled to the
electron spins of the BiTeI via a contact potential at the
interface, Vi = J0δ(r −Ri)S · Si, where J0 is the ampli-
tude of the potential and S is the electron spin operator
of the BiTeI spacer. Within these considerations, the
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interlayer coupling can be expressed as follows

I(z) = −
∑

a,b=x,y,z

J2
0S

T
a S

B
b c

2(2π)3V0

∫ π/c

−π/c
dqze

iqzz

×
∫
2DBZ

d2q‖χab(q‖, qz)
∑

R∈FT

eiq‖·R , (7)

where V0 is the volume of the unit-cell, S
(T,B)
x,y,z are the spin

projections of the top (T) and bottom (B) ferromagnetic
layers, and χab(q‖, qz) is the ab component of the static
spin susceptibility tensor. The planar dimensions of the
ferromagnetic layers satisfy periodic boundary conditions
since they are assumed to be large compared to the inter-
layer distance. The last sum in Eq. (7) is then nonzero
only for q‖ = 0. Recalling that the area of the projected
2D BZ for BiTeI is (2π)3c/(2πV0) [where (2π)3/V0 is the
volume of the 3D BZ], the interlayer exchange coupling
can be written as

Iab(z) = −1

2

(
J0
V0

)2
ST
a S

B
b c

2

2π

∫ π/c

−π/c
dqz

×eiqzzχab(q‖ = 0, qz). (8)

The components of spin susceptibility, χab, for BiTeI con-
sist of intraband and interband contributions. For sim-
plicity, in the sections running up to Sec. V B we omit the
q‖ = 0 argument in χab and denote χab(qz) ≡ χab(q‖ =
0, qz). Since the bands of BiTeI are characterized by
their helicity, the spin susceptibility can be written as
χab(qz) =

∑
µ,ν=± χ

µν
ab (qz) with

χµνab (qz) =
−µ2

B

(2π)3

∫ π/c

−π/c
dkz

∫
2DBZ

d2k‖

×f(Ek,µ)− f(Ek+qz,ν)

Ek,µ − Ek+qz,ν + iδ
Fµνab (k,k + qz),

(9)

where µ, ν = ±, f(Ek,µ) is the Fermi function, µB is
the Bohr magneton, δ is a positive infinitesimal, and
Fµνab (k,k + q) = 〈µ,k|σa|k + q, ν〉〈ν,k + q|σb|k, µ〉 is a
form factor (see Appendix A). In this work, we consider
low temperatures kBT � EF and take T = 0 in Eq. (9).

The oscillatory nature of interlayer RKKY interaction
is due to the spatial oscillations of the induced spin den-
sity by the localized moments of the ferromagnetic lay-
ers and shares the same physical origin as the Kohn
anomaly [46]. It stems from the sharpness of the Fermi
surface at zero temperature and is measured by the crit-
ical spanning vectors (also called calipers). A critical
spanning vector is one that connects a pair of extremum
points of the Fermi surface along kz. These critical span-
ning vectors determine the periods of oscillations as a

function of the spacer thickness. Because the thinnest
possible spacer is one with a single unit cell, the small-
est observable period is twice the unit cell thickness 2c
corresponding to a critical spanning vector of π/c. If
the Fermi surface yields a critical spanning vector that is
larger than π/c, a period that is longer than that given
directly by the critical spanning vector will be observed
instead because the latter cannot be sampled. This effect
is known as aliasing and was observed in the interlayer ex-
change coupling mediated by noble metals, e.g., Fe/Cu,
Fe/Cr and Co/Cu [47, 48].

In BiTeI, the largest critical spanning vector defined
by its Fermi surface is 2km [see Eq. (5)] corresponding
to the period π/km, as shown in Fig. 2(b). The effect of
aliasing would manifest in the case when the period re-
sulting from the largest spanning vector is shorter than
2c. Within our low-energy model for BiTeI, the Fermi en-
ergy is bounded from above by the cutoff energy Ec = 0.2
eV, and the corresponding km is small such that π/km
exceeds 2c. Therefore, aliasing does not occur for the crit-
ical spanning vectors 2km, 2kD calipering the Fermi sur-
face from the inside. As shown in Fig. 2(c), the other two
critical spanning vectors 2π/c−2km, 2π/c−2kD caliper-
ing the Fermi surface from the outside are equivalent to
2km, 2kD, respectively. Hence, the limits of integration in
Eq. (9) are only determined by the boundaries of the two
helical Fermi surfaces through the Fermi functions. To
make this explicit, it is useful to define a function gµν(kz)
that captures the kz dependence of the helicity content
of the bands, with gµν(kz) = Θ(kD − kz)Θ(kD + kz) for
µ = −ν and µ = ν = + and gµν = 1 for µ = ν = −,
where Θ is the Heaviside step function. We can then
write Eq. (9) as an integral over the entire momentum
space constrained by gµν(kz),

χµνab (qz) =
−µ2

B

(2π)3

∫
dkz g

µν(kz)

∫
d2k‖

×f(Ek,µ)− f(Ek+qz,ν)

Ek,µ − Ek+qz,ν + iδ
Fµνab (k,k + qz),

(10)

The form factor Fµνab is independent of the momentum
along z and is given by

Fµνzz =
1− µν

2
, Fµνxx =

1− µν cos(2φk)

2
,

Fµνyy =
1 + µν cos(2φk)

2
, Fµνxy = Fµνyx = − sin(2φk)

2
,

Fµνzx = −Fµνxz =
µ− ν

2i
cos(φk),

Fµνzy = −Fµνyz =
µ− ν

2i
sin(φk) . (11)

Upon angular integration, Eq. (10) gives
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χab(qz) = C



2

∫ kD

−kD
dkz

∑
µ

P
∫ kµ

0

(
1

Ek+qz,−µ, − Ek,µ
− 1

Ek,µ − Ek−qz,−µ

)
k‖dk‖, if a = b = z

χzz(qz)

2C
+

∫ km

−km
dkzP

∫ k−

0

(
1

Ek+qz,− − Ek,−
− 1

Ek,− − Ek−qz,−

)
k‖dk‖

+

∫ kD

−kD
dkzP

∫ k+

0

(
1

Ek+qz,+ − Ek,+
− 1

Ek,+ − Ek−qz,+

)
k‖dk‖, if a = b = (x, y)

0, if a 6= b,

(12)

where C = πµ2
B/(2π)3, kµ is given in Eq. (4), kD =√

EF /A and km is given in Eq. (5) (see Appendix B).
The Rashba SOC in BiTeI is 2D in nature and only

couples to in-plane momentum. The spin susceptibility
tensor is therefore anisotropic with diagonal components
χxx(qz) = χyy(qz) 6= χzz(qz) and vanishing off-diagonal
components χab(qz) (a 6= b). For ferromagnets with spins
normal to the interface, the spin susceptibility only has
contributions from interband transitions, limiting these
contributions to the part of the Fermi surface that hosts
both helicities. When the ferromagnets have spins par-
allel to interface, the spin susceptibility has contribu-
tions from both intraband and interband processes and
all regions of the Fermi surface become relevant. RKKY
mechanism does not contribute to interlayer magnetic ex-
change when the spins of the ferromagnets are orthogonal
to each other due to the vanishing off-diagonal compo-
nents of χab(qz). Consequently, the interlayer exchange
coupling between the ferromagnetic layers is given by

I(z) = −
∑

a=x,y,z

ST
a S

B
a

2

(
J0
V0

)2
c2

2π

∫ ∞
−∞

dqze
iqzzχaa(qz).

(13)

We note that the integration over qz in the above can be
extended to ±∞, since all critical spanning vectors are
much smaller than π/c within the range of Fermi energy
EF < 0.2 eV considered in the low-energy effective theory
for BiTeI.

Having laid out the formalism for the interlayer ex-
change coupling and evaluated the spin susceptibility, we
first consider the simpler case without SOC in order to
establish a reference scenario to which the SOC effects
from a BiTeI spacer (Sec. V) will be compared.

IV. SPECIAL CASE: SPIN-DEGENERATE
METAL

In this section we consider a 3D spin-degenerate metal
with an anisotropic energy dispersion described by the
Hamiltonian in Eq. (1) with α = 0. The components of
the spin susceptibility tensor become equal and Eq. (12)
becomes

χ(qz) =
2µ2

B

(2π)3

∫
dkzP

∫
d2k‖

f(Ek)− f(Ek+qz )

Ek+qz − Ek
, (14)

where the factor of 2 results from spin degeneracy. The
integration over k‖ and kz leads to

χ(qz) =
µ2
B

(2π)2B


kD −

q2z − 4k2D
4qz

log

∣∣∣∣qz + 2kD
qz − 2kD

∣∣∣∣
for qz 6= 0

2kD for qz = 0,
(15)

with kD =
√
EF /A. The expression above yields a crit-

ical spanning vector |qz| = 2kD at which ∂χ(qz)/∂qz
has a logarithmic singularity. This singularity indicates
the presence of a Kohn anomaly which gives rise to
spatial oscillations of induced spin densities and conse-
quently the RKKY mediated interlayer exchange [46]. In
the limit of qz = 0 and a spherical Fermi surface with
A = B = ~2/2m and EF = ~2k2F /2m, Eq. (15) recovers
the Pauli susceptibility of a non-interacting 3D Fermi gas
χ(0) = 3nµ2

B/(2EF ) ≡ µ2
BD(EF ), where n = k3F /(3π

2)
is the number of electrons per unit volume and D(EF ) is
the density of states [29].

We now evaluate the interlayer exchange coupling
Eq. (13) between the ferromagnetic layers. Since the sys-
tem is spin-degenerate and χ(qz) is an even function of
qz, we can write Eq. (13) for ferromagnetic layers with
parallel spins as

I(z) = −1

2

(
J0
V 2
0

)2

ST
a S

B
a

c2

2π

∫ ∞
0

dqz cos(qzz)χ(qz) .

(16)
The dominant contribution to Eq. (16) can be extracted
analytically by expanding the integrand near the Kohn
anomaly qz ∈ [2kD − ε, 2kD + ε] (where ε� 2kD)

I(z) ≈ − ST
a S

B
a

(2π)3B

(
µBJ0c

V0

)2 ∫ 2kD+ε

2kD−ε
dqz cos(qzz)

×
[
kD +

(qz − 2kD)

2
log |qz − 2kD|

]
. (17)

Changing variable q′ = qz−2kD and integrating by parts
twice lead to

I(z) ≈ − ST
a S

B
a

2(2π)3B

(
µBJ0
V0

)2 ( c
z

)2
sin(2kDz)

×
∫ ε

−ε
dq′
[

sin(q′z)

q′

]
. (18)
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FIG. 3. Exchange coupling between two ferromagnets with
parallel spins mediated by a spin-degenerate spacer metal as
a function of the ferromagnets’ separation z. (a) Shows the z
dependence of I(z) for thin spacers. (b) Shows the behaviour
of I(z) as function of z for thick spacers. In both (a) and (b)
I(z) oscillates with a period π/kD and this coupling transi-
tions from ferromagnetic (FM) to anti-ferromagnetic (AFM)
while decaying as z−2. The Fermi energy for both (a) and (b)
is EF = 0.18 eV.

Since the main contribution of the integral above comes
from the vicinity of q′ = 0, one can extend the limits of
this integral to ±∞, arriving at

I

I0
≈ −

( c
z

)2
sin(2kDz) , (19)
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FIG. 4. Thickness dependence of the BiTeI-mediated inter-
layer magnetic exchange between two z-polarized ferromag-
nets (Fig. 2) for EF = 0.18 eV. (a) Shows the interlayer ex-
change coupling for relatively thin samples. (b) Shows the
long-range behaviour of the interlayer exchange coupling, i.e.
relatively thick samples. In both (a) and (b) Izz(z) oscillates
with a period π/kD and this coupling transitions from ferro-
magnetic (FM) to anti-ferromagnetic (AFM) while decaying
as z−2. [Panels (a) and (b) also represent the interband con-
tributions to Ixx(z) in Sec. V B].

where

I0 =
ST
a S

B
a

16π2B

(
µBJ0
V0

)2

. (20)

The analytic result Eq. (19) indicates that the interlayer
exchange interaction has a single period of oscillation de-
termined by the critical spanning vector 2kD, given by
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#10-4
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@zz(0)=7

2
B

@xx(0)=7
2
B
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@aa(0)=7
2
B

FIG. 5. Long-wavelength behaviour of the spin susceptibility
components χzz(0) and χxx(0) (χxx = χyy) as a function of
the Fermi energy. One can notice that χxx(0) > χzz(0), and
that χxx(0) is non-vanishing for EF = 0.

π/kD, and the envelope of the oscillations decay as z−2.
In Figs. 3(a) and (b), we plot and compare the inter-
layer exchange coupling obtained from direct numerical
evaluation of Eq. (16) and from Eq. (19). The excel-
lent agreement between the two results confirms that the
dominant contribution to the interlayer exchange inter-
action indeed originates from the critical spanning vector
given by the Kohn anomaly of the system, as captured by
our approximate analytic result Eq. (19). In the isotropic
limit of a spherical Fermi surface with A = B = ~2/2m
and EF = ~2k2F /2m, one recovers the well-known result
of interlayer exchange interaction obtained by Yafet [49],

I(z) ≈ −S
T
a S

B
am

8π2~2

(
µBJ0
V0

)2 ( c
z

)2
sin(2kF z) . (21)

In this section we have quantified the interlayer ex-
change coupling between two ferromagnetic layers me-
diated by a spacer without SOC. In the next two sec-
tions, we restore SOC effects and consider BiTeI as the
spacer. We will study the interlayer exchange coupling in
FM/BiTeI/FM for the two cases when the ferromagnets’
spins are aligned perpendicular to the plane and parallel
to the plane.

V. INTERLAYER EXCHANGE INTERACTION
MEDIATED BY BiTeI

A. Out-of-Plane Magnetization

When the spins of the ferromagnetic layers shown in
Fig. 2(a) are in the z-direction, the exchange interac-
tion between FT and FB is mediated by BiTeI electrons

1 3 5 7 9 11 13 15
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2 Numerical : Eq:(31)
Approximation : Eq:(34)
Approximation : Eq:(35)

FM

AFM

z=c

(a) I intra
xx =I0

15 17 19 21 23 25 27
-0.015

-0.01

-0.005

0

0.005

0.01

0.015 Numerical : Eq:(31)
Approximation : Eq:(35)

FM

AFM

z=c

(b) I intra
xx =I0

FIG. 6. Intraband contributions to the interlayer exchange
coupling Ixx(z) for EF = 0.18 eV. Panel (a) shows the depen-
dence for thin BiTeI films. In this case these contributions
oscillate with a period π/km, the coupling transitions from
FM to AFM, and both powers z−2 and z−1 are necessary
to describe its decay. (b) For relatively thick BiTeI samples,
the intraband contributions are dominated by a single decay
power of z−1, while oscillating with the same period as in (a).

that are spin polarized out of the plane and therefore
depends on the χzz(qz) component of the spin suscepti-
bility. Since the spin textures of the electronic states in
BiTeI are helical and have no out-of-plane components,
only interband processes contribute to χzz(qz) and its
form factor Fµνzz = (1 − µν)/2 vanishes for µ = ν. Since
interband transitions require a change in helicity, the re-
gion of the Fermi surface that contributes to χzz(qz) is
limited to |kz| < kD, leading to the form of χzz(qz) in
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Eq. (12). Integrating χzz(qz) over k‖ and kz leads to

χzz(qz)

2C
=

2kD
B

+
Aqz

8

[(
4k2D + q2z

α2
− q2z − 4k2D
ABq2z + α2

)
log

∣∣∣∣2kD + qz
2kD − qz

∣∣∣∣+

(
4k2D + q2z

α2
+

q2z − 4k2D
ABq2z + α2

)
× log

∣∣∣∣qz(2kD − qz)− 2α2/(AB)

qz(2kD + qz) + 2α2/(AB)

∣∣∣∣]+
AkDq

2
z

2α2
log

∣∣∣∣ q2z(q2z − 4k2D)

[qz(2kD + qz) + 2α2/(AB)][qz(2kD − qz)− 2α2/(AB)]

∣∣∣∣ , (22)

where C = µ2
Bπ/(2π)3. The long-wavelength limit of

the spin susceptibility due to z-polarized ferromagnets is
χzz(0) = 4CkD/B. This component of the spin suscepti-
bility is known as the van Vleck susceptibility, originating
from virtual interband transitions and in this case is iden-
tical to the case without SOC [Eq. (15)] [50–54]. Since
the spin susceptibility χzz(qz) is an even function of qz,
we can express the interlayer exchange coupling as

Izz(z) = −
(
J0
V0

)2

ST
z S

B
z

c2

2π

∫ ∞
0

dqz cos(qzz)χzz(qz) .

(23)
The spin susceptibility in Eq. (22) reveals the pres-

ence of three critical spanning vectors at |qz| = 2kD, and

|qz| = kD ±
√
k2D − 2α2/(AB) = k±n . When |qz| takes

the value of a critical spanning vector, ∂χzz(qz)/∂qz has
a logarithmic divergence, i.e. Kohn anomaly [46]. The
contributions of the Kohn anomalies to interlayer ex-
change interaction depend on the Fermi energy of the sys-
tem. The anomalies associated with the vectors k±n con-
tribute to the interlayer exchange interaction only when
EF > 2α2/B, while 2kD contributes for any value of the
Fermi energy. We numerically evaluate the integral in
Eq. (31), and analytically determine the dominant be-

havior of Izz(z) by considering the contributions I
(1)
zz (z)

and I
(2,3)
zz (z) of the Kohn anomalies associated with 2kD

and k±n , respectively. The latter is done by integration
over a small interval enclosing these anomalies.

In the vicinity of qz ≈ 2kD, the interlayer exchange
interaction is

I(1)zz (z) ≈ −S
T
z S

B
z

(2π)3

(
µBJ0c

V0

)2 ∫ 2kD+ε

2kD−ε
dqz

[
C +

Ak2D(qz − 2kD)

4ABk2D + α2
log |qz − 2kD|

]
cos(qzz) .

(24)

Here ε � 2kD, and C is a constant. Following similar
steps that lead to Eq. (19), we obtain the contribution of
2kD to the interlayer exchange interaction

I(1)zz (z) ≈ −2I0

(
Ak2D

4ABk2D + α2

)( c
z

)2
sin(2kDz) , (25)

where I0 is given in Eq. (20). In the vicinity of k±n the

interlayer exchange coupling I
(2,3)
zz (z), where the super-

script 2 (3) denotes the contribution of k+n (k−n ), takes

the form

I(2,3)zz (z) ≈ −S
T
z S

B
z

(2π)3

(
µBJ0c

V0

)2 ∫ k±n+ε

k±n−ε
dqz

[
C± +

k±n − kD
B(2kD + k±n )

log |qz − k±n |
]

cos(qzz) ,

(26)

where C± is a constant. Following a similar procedure as
in the case of kD we obtain the contributions of k±n to
the interlayer exchange interaction

I(2,3)zz (z) ≈ −2I0

[
k±n − kD

B(2kD + k±n )

]( c
z

)2
sin(k±n z) . (27)

Hence, the total exchange interaction Izz(z) =∑3
i=1 I

(i)
zz (z) is given by

Izz(z) ≈ −2I0

[(
Ak2D

4ABk2D + α2

)( c
z

)2
sin(2kDz)+

Θ

(
EF −

2α2

B

)∑
j=±

kjn − kD
B(2kD + kjn)

( c
z

)2
sin(kjnz)

 .

(28)

Within our low-energy theory for BiTeI, the maximum
Fermi energy given by the energy cutoff of 0.2 eV is
smaller than the value of 2α2/B = 0.74 eV, and thus the
second term in Eq. (28) does not contribute. Hence, as
shown in Figs. 4(a) and (b), the BiTeI-mediated exchange
between two z-polarized magnetic layers only has a single
period of oscillation determined by π/kD. In addition to
the oscillatory behavior of the interlayer exchange cou-
pling we notice that Izz(z) decays as z−2. This behavior
is reminiscent of conventional 3D metallic spacers. More-
over, in the limit of α = 0, k+n = 2kD and k−n = 0, we
recover the interlayer exchange coupling in the absence
of SOC in Eq. (19).

In this section we have seen that the interlayer ex-
change coupling between two z-polarized ferromagnets
mediated by BiTeI displays a behavior similar to that
of a conventional 3D metal and that the SOC coupling
only renormalizes the amplitude of this coupling by a
factor 2Ak2D/(4ABk

2
D +α2). In the next section, we will

show that the SOC has a dramatic effect on the inter-
layer exchange coupling between two ferromagnets with
spin polarization parallel to the interface with BITeI.
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B. In-Plane Magnetization

In order to study the interlayer exchange coupling be-
tween two ferromagnets with spins parallel to the inter-
face with BiTeI [Fig. 2(a)], we consider both ferromag-
nets [FT and FB in Fig. 2(a)] to have spins aligned in
the x-direction without loss of generality. The interac-
tion between the ferromagnets FT and FB depends on
the element χxx(qz) of the spin susceptibility tensor in
Eq. (12), which contains contributions from both inter-
band and intraband transitions. Hence, unlike the case
of the z-polarized ferromagnets, the spin susceptibility in
this case has contributions from all regions of the Fermi
surface as shown in Eq. (12).

The interband contribution of χxx(qz) is given by

χzz(qz)/2, and its contributions to the interlayer ex-
change coupling is Izz(z)/2, where Izz(z) is given in
Eq. (28). On the other hand, the intraband component
of the spin susceptibility, χxx(qz) in Eq. (12), can be
written as

χintra
xx (qz)

C
=

∫ kD

−kD
dkz

∑
µ=±
P
∫ kµ

0

[
2

A(q2z − 4k2z)

]
kdk

+2

∫ km

kD

dkz
∑
µ=±
P
∫ −µkµ
0

[
2

A(q2z − 4k2z)

]
kdk ,

(29)

where kD =
√
EF /A, and kµ, km are given in Eq. (4)

and Eq. (5), respectively. Integrating Eq. (29) over k‖
and kz gives

χintra
xx (qz) =

C

B


km −

(q2z − 4k2m)

4qz
log

∣∣∣∣qz + 2km
qz − 2km

∣∣∣∣+
α2

4ABqz
log

∣∣∣∣qz + 2km
qz − 2km

∣∣∣∣ , if qz 6= 0

2km +
α2

4ABkm
, if qz = 0.

(30)

Before proceeding to the interlayer exchange interac-
tion between the x-polarized ferromagnets, we find the
long-wavelength limit of the spin susceptibility χxx(0) =
χzz(0)/2 + χintra

xx (0) = C[2km + 2kD + α2/(4ABkm)]/B,
where C = µ2

Bπ/(2π)3. The latter is the sum of the van
Vleck and Pauli susceptibilities [50–53]. Moreover, we
notice that χxx(0) > χzz(0) for EF ≥ 0 (see Fig. 5) and
therefore electron spins in BiTeI are more easily polarized
in response to a uniform in-plane magnetic field than an
out-of-plane field.

The intraband contribution to the interlayer exchange
interaction is

I intraxx (z) = −
(
J0
V0

)2

ST
x S

B
x

c2

2π

∫ ∞
0

dqz

× cos(qzz)χ
intra
xx (qz) , (31)

and the total interlayer exchange interaction is given by

Ixx(z) = I intraxx (z) +
Izz(z)

2

∣∣∣∣
S

(T,B)
z →S(T,B)

x

, (32)

where Izz(z) is given in Eq. (28).
The intraband component of χxx(qz) Eq. (30) reveals

the presence of a critical spanning vector that leads to a
Kohn anomaly at |qz| = 2km. The contribution of this
anomaly to the exchange coupling is found by integrating
around a small interval containing it, such that for |qz| ≈
2km,

I intraxx (z) ≈ − S
T
x S

B
x

16π3B

(
µBJ0c

V0

)2 ∫ 2km+ε

2km−ε
dqz

[
km +

(qz − 2km)

2
log |qz − 2km|−

α2

4ABkm
log |qz − 2km|

]
cos(qzz) . (33)

Following similar steps as before,

I intraxx (z) ≈ −I0
2

[( c
z

)2
sin(2kmz)+

α2c

4ABkm

( c
z

)
cos(2kmz)

]
. (34)

The numerical and analytical evaluations of intraband
component of I(z) are shown in Figs. 6(a) and (b). We
find that this part of the interlayer exchange interaction
oscillates with a period π/km. For thin films of BiTeI
[Fig. 6(a)], both decay powers [z−1 and z−2 in Eq. (34)]
are essential for I intraxx (z). However, for relatively thick
samples of BiTeI [Figs. 6(a) and (b)], i.e. z ≈ 5c, the
interlayer exchange interaction is solely determined by
the spin-orbit dependent part of I intraxx (z), i.e,

I intraxx (z) ≈ −I0
2

[
α2c

4ABkm

( c
z

)
cos(2kmz)

]
, (35)

where the decay power law z−1 is sufficient to describe
I intraxx (z), as shown in Fig. 6.

Combining the interband and intraband contributions
as in Eq. (32), the total exchange between these ferro-
magnets is given by
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Ixx(z) ≈ −I0
2

( cz)2
sin(2kmz) +

2ABk2D sin(2kDz)

4ABk2D + α2
+ Θ

(
EF −

2α2

B

)∑
j=±

2(kjn − kD) sin(kjnz)

(2kD + kjn)


+
( c
z

) α2c

4ABkm
cos(2kmz)

}
. (36)

Here we notice that the two different periods of oscillation
result from the interband and intraband contributions
to the magnetic exchange interaction. In the limit α =
0, k+n = 2kc and k−n = 0, one recovers the interlayer
exchange coupling in the absence of SOC in Eq. (19).

The interlayer exchange coupling Ixx(z) displays four
periods of oscillation for EF > 2α2/B. However, for the
low-energy electrons in BiTeI the Fermi energy EF <
2α2/B restricts the periods to oscillation to π/kD and
π/km.

The presence of a SOC in BiTeI makes the inter-
layer exchange coupling Ixx(z) mediated by this material,
Eq. (36), qualitatively different from that of a conven-
tional 3D metal, Eq. (19). These differences are reflected
in the experimentally relevant characteristics of this ex-
change, i.e. its oscillation periods and its dependence on
the spacer thickness. Whereas the interlayer exchange
interaction mediated by a conventional 3D metal has a
single oscillatory period and decays as z−2, the interlayer
exchange coupling Ixx(z) mediated by BiTeI has two pe-
riods of oscillation and more strikingly it decays as the
inverse the spacer thickness z−1.

A close look at Ixx(z), Fig. 7(a), shows that the intra-
band contribution of Ixx(z) is dominant due to its pe-
culiar dependence on z, Eq. (35). Hence, the interband
contribution to the interlayer exchange coupling can only
be discerned for small BiTeI thickness, z < 5c. Moreover,
for relatively large thicknesses of BiTeI, z > 5c [Figs. 7(a)
and (b)], the interlayer exchange coupling is uniquely de-
termined by the term proportional to the SOC coupling
that decays as z−1 in Eq. (35). Consequently, unlike the
case in a conventional 3D metal, the exchange coupling
displays an intriguing dependence on the thickness of the
BiTeI decaying as z−1, which is reminiscent of the cou-
pling between two magnetic chains mediated by a 2D
conventional metal [55, 56]. We attribute this unusual
dependence to the 2D nature of the Rashba SOC cou-
pling in BiTeI.

VI. FORMALISM OF INTERLAYER
EXCHANGE INTERACTION: TOPOLOGICAL

PHASE

BiTeI has been theoretically predicted to undergo a
topological phase transition under moderate hydrostatic
pressure [14–17]. Subjecting this material to an increas-
ing pressure leads to its transition from its trivial phase
to a strong topological insulator phase at approximately
3 GPa [14–17]. These two topologically distinct phases

are separated by Weyl semi-metallic phase [19–21]. Ex-
perimentally, transport measurements suggest that the
topological phase transition happens at the theoretically
expected value [18], 3 GPa, while optical experiments
suggest that this topological phase transition happens at
9 GPa [15, 17]. In the following two sections, we ana-
lyze the interlayer exchange interaction between two fer-
romagnets mediated by BiTeI in its topological insula-
tor phase and show that it exhibits important differences
compared to that in the trivial phase.

In the previous sections we have shown that the in-
terlayer exchange interaction mediated by BiTeI in its
trivial phase is dependent on the spin orientation of the
magnetic layers [Fig 2(a)] and it only couples collinear
spins. The transition of BiTeI from its trivial to its topo-
logical insulator phase crucially changes the nature of
the magnetic exchange in the system. In its topological
phase, BiTeI becomes insulating in the bulk and conduct-
ing only through its surfaces. The exchange interaction
between magnetic impurities mediated by topological in-
sulator surface states was previously studied [57–65]. In
our case, the exchange interaction couples not only two
magnetic impurities but two one-dimensional chains of
spins at the top and bottom edges of the sample, medi-
ated by the helical electrons residing on the side surfaces.
Fig. 8(a) shows our setup with the side surfaces of the
rectangular BiTeI sample indicated by Si, i = 1, 2, 3, 4.

In order to study the properties of the interlayer ex-
change interaction of topological BiTeI we assume that
the surface states present on the surfaces Si are helical
and satisfy [24–26, 66–69]

HSi(p‖) = ~vF (σ × p‖)n̂i , (37)

where n̂i is the normal to the surface Si, and vF is the
Fermi velocity of the surface states. Adapting Eq. (7) to
describe the 2D metallic states that mediate the exchange
interaction between two magnetic chains, Fig. 8(b), one
arrives at

Ii(z) = −
∑

a,b=x,y,z

J2
0S

T
a S

B
b c

2(2π)2A0

∫ π/c

−π/c
dqze

iqzz

×
∫
1DBZ

dqjχ
i
ab(qj , qz)

∑
j∈FT

eiqjj , (38)

here, i = (1, 2, 3, 4) is the surface index [Fig. 8(a)], ST
a

(SB
b ) is the spin of the top (bottom) magnetic layer, j = x

or y depending on the surface Si, χ
i
ab(qj , qz) is the ab

component of the spin-susceptibility for a given surface
Si, and A0 is the area of the 2D BZ enclosing the surface
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FIG. 7. Thickness dependence of the interlayer exchange cou-
pling between two ferromagnets with spins parallel to the in-
terface (Fig. 2) with EF = 0.18 eV. Panel (a) shows this de-
pendence of Ixx(z) for relatively thin samples of BiTeI. In this
case Ixx(z) oscillates between FM and AFM couplings with
two periods, π/km and π/kD. Additionally, the intraband and
interband contributions to the coupling can be discerned in
this regime since the coupling decays as z−1 and z−2, respec-
tively. (b) For relatively thick films of BiTeI, the coupling is
dominated by the intraband contributions. It oscillates with
a period π/km and decays as z−1.

states. It is convenient to analyze the interlayer exchange
coupling in Eq. (38) in the set of local coordinates of each
surface that transforms the Hamiltonian in Eq. (37) to
H(p‖) = ~vF (σ×p‖)ẑ for all surfaces. The advantage of
this transformation is that the susceptibility components
χiab = χjab for i 6= j. This transformation is achieved
by making the local z-axis normal to each surface and

FT

FB

z
yx

S1

x
z

FT

FB

(a) (b)

S3 S1

FIG. 8. Schematic representation of (a) magnetic layers sand-
wiching topological BiTeI. The surface states at Si=1,2,3,4 me-
diate the exchange between the magnetic chains at the edges
of the sample as shown in (b). The coordinate axes indicate
the global coordinate frame of the system.

the local y-axis pointing to the global z-direction. This
also requires the transformation of the magnetic layers’

spins S
(T,B)
a,b in the global coordinates to S(T,B)

c,d in the
local coordinates as indicated in Table I and the cor-
responding transformation of the susceptibility compo-
nents χiab → χcd. In the local coordinate frame, the in-
terlayer exchange coupling associated with each surface
is given by

Ii(y) =−
∑

a,b=x,y,z

sgn(Si,Tc S
i,B
d )

J2
0S

T
a S

B
b c

2(2π)2A0

∫ π/c

−π/c
dqye

iqyy

×
∫
1DBZ

dqxχcd(qx, qy)
∑
x∈FT

eiqxx , (39)

here, Si,(T,B)
c,d are the locally transformed spins of the top

and bottom magnetic layers, corresponding to S
(T,B)
a,b in

the global coordinates, χcd(qy) is the susceptibility com-
ponent in local coordinates corresponding to χiab in global
coordinates. The transformation of the spins and the
spin susceptibility indices between global and local co-
ordinates is given in Table I. The local x-dimensions of

Global Spins Surface Local Spins

(Sx, Sy, Sz) 1 (−S1
x,S1

z ,S1
y)

(Sx, Sy, Sz) 2 (S2
z ,S2

x,S2
y)

(Sx, Sy, Sz) 3 (S3
x,−S3

z ,S3
y)

(Sx, Sy, Sz) 4 (−S4
z ,−S4

x,S4
y)

TABLE I. Transformation of the global spins into the local
coordinate system of the surfaces S(1,2,3,4) in Fig. 8. The
indices of the global susceptibility transform as the indices of
the global spins.

the ferromagnetic layers satisfy periodic boundary con-
ditions since they are assumed to be large compared to
the interlayer distance. The last sum in Eq. (39) is then
nonzero only for qx = 0. Recalling that the length of
the projected 1D BZ of BiTeI is (2π)2c/(2πA0) [where
(2π)2/A0 is the area of the 2D BZ containing the surface
states], the interlayer exchange coupling can be written
as

Iiab(y) = −
sgn(Si,Tc S

i,B
d )

2

(
J0
A0

)2
ST
a S

B
b c

2

2π

∫ π/c

−π/c
dqy

×eiqyyχcd(qx = 0, qy). (40)
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The components of spin susceptibility, χcd, for a helical
system described by H = ~vF (σ×p‖)ẑ consist of helicity-
preserving and helicity-mixing contributions. For sim-
plicity, hereafter we omit the qx = 0 argument in χcd
and denote χcd(qy) ≡ χcd(qx = 0, qy). Since the surface
states are characterized by their helicity, the spin sus-
ceptibility can be written as χcd(qy) =

∑
µ,ν=± χ

µν
cd (qy)

with

χµνcd (qy) =
−µ2

B

(2π)2

∫ π/c

−π/c
dky

∫
1DBZ

dkx

×
f(Ek‖,µ)− f(Ek‖+qy,ν)

Ek‖,µ − Ek‖+qy,ν + iδ
Fµνcd (k‖,k‖ + qy),

(41)

where µ, ν = ± are the helicities of the surface states,
f(Ek‖,µ) is the Fermi function, Fµνcd (k‖,k‖ + q‖) is the

form factor defined in Eq. (9) with the state |k‖, µ〉 =

(−i, µe−iφk)†eik‖·r/
√

2. By considering that the largest
critical spanning vector 2kF = 2Ec/(~vF ), where Ec ≈
0.2eV is the cutoff energy of the low-energy theory of
the surface states [70], one obtains a period of oscillation
that is larger than 2c, thus, the limits of the integral in
Eq. (41) will be restricted only by the Fermi functions,
i.e.,

χµνcd (qy) =
−µ2

B

(2π)2

∫
dky

∫
dkx

×
f(Ek‖,µ)− f(Ek‖+qy,ν)

Ek‖,µ − Ek‖+qy,ν + iδ
Fµνcd (k‖,k‖ + qy).

(42)

In general, for a 2D electron system described by the
Hamiltonian H = ~vF (σ × p‖)ẑ we evaluated the spin
susceptibility tensor components (see Appendix A)

χcd(q‖) =
−µ2

B

(2π)2

∑
µ,ν=±

∫
d2k‖

×
f(Ek‖,µ)− f(Ek‖+q‖,ν)

Ek‖,µ − Ek‖+q‖,ν + iδ
Fµνcd (k‖,k‖ + q‖),

(43)

and find that [71]

χ(q‖) =

 g1(x) cos2(φq)
g1(x)

2 sin(2φq) g2(x) cos(φq)
g1(x)

2 sin(2φq) g1(x) sin2(φq) g2(x) sin(φq)
g∗2(x) cos(φq) g∗2(x) sin(φq) g3(x)


(44)

where φq = tan−1(qx/qy), x = 2kF /q‖, q‖ =
√
q2x + q2y,

kF is the Fermi momentum, and

g1(x) =
−µ2

B

4π~vF
Re
[√

1− x2 +
q

2
sin−1

(√
1− x2

)]
,

g2(x) =
−iµ2

Bq

8π~vF

[
1− 1

2
Re
(√

1− x2
)]
,

g3(x) =
−µ2

B

2π~vF

{
kF +

q

2
Re
[
sin−1

(√
1− x2

)]}
. (45)

In the literature there has been a disagreement on the
forms of the functions g1,2,3(x) [57, 58]. In order to
find these functions we derived the renormalized sus-
ceptibility, which required the substraction of intrinsic
susceptibility (the susceptibility at EF = 0) at q‖ = 0,
χintrinsic
cd (0), from the total susceptibility χcd(q‖). This

method is consistent with Refs. [72] and [73] and leads
to identical results for the polarization function therein.
Taking qx = 0, φq = ±π/2 [+ (−) for positive (negative)
values of qy], the susceptibility tensor reduces to

χ(qy) =

 0 0 0
0 g1(x) sgn(qy)g2(x)
0 sgn(qy)g∗2(x) g3(x)

 , (46)

where x = 2kF /qy in this case. Since
the elements χcd(qy) = 0 for (c, d) =
{(x, x), (x, y), (x, z), (y, x), (z, x)}, their associated
interlayer exchange coupling is zero. With the remaining
non-vanishing susceptibility elements we find that the
interlayer exchange coupling for the different surfaces,
when expressed in the global coordinates of the system
as indicated in Fig. 8, is given by

Ii(z) = AST
z S

B
z +BST

|n̂i|S
B
|n̂i| +D(ST ×SB)ẑ×n̂i , (47)

where n̂i is the normal to the surface Si in global coordi-
nates, and

A = − 1

2(2π)

(
J0c

A0

)2 ∫ ∞
−∞

eiqzzχyy(qz)dqz , (48)

B = − 1

2(2π)

(
J0c

A0

)2 ∫ ∞
−∞

eiqzzχzz(qz)dqz , (49)

D = − 1

2(2π)

(
J0c

A0

)2 ∫ ∞
−∞

eiqzzχyz(qz)dqz , (50)

where

χyy(qz) =
−µ2

B

4π~vF
Re

[√
1− x2 +

|qz|
2

sin−1
(√

1− x2
)]
,

χzz(qz) =
−µ2

B

2π~vF

{
kF +

|qz|
2

Re
[
sin−1

(√
1− x2

)]}
,

χyz(qz) =
−iµ2

Bqz
8π~vF

[
1− 1

2
Re
(√

1− x2
)]
, (51)

and x = 2kF /qz. The integrals in Eqs. (48)-(50) are
written in the global coordinates, where this is achieved
by replacing (y, qy)→ (z, qz) in Eq. (46). Notice that the
integration over qz in Eqs. (48)-(50) can be extended to
±∞, since all critical spanning vectors are much smaller
than π/c within the range of Fermi energy EF < 0.2eV
considered in the low-energy effective theory for BiTeI
surface states.

Unlike non-topological BiTeI, the magnetic interlayer
exchange coupling, Eq. (47), mediated by the surface
states of topological BiTeI allows for the coupling of
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FIG. 9. Thickness dependence of amplitude for collinear parts
of the interlayer exchange coupling per surface for (a) rela-
tively thin samples of BiTeI and (b) thick samples of BiTeI.
In (a) and (b) we take the parameter values ~vF = 1 eVÅ and
EF = 0.1 eV. In both (a) and (b), the collinear exchange in-
teraction oscillates with a period π/kF ≈ 4.5c and decays as

z−3/2.

collinear and non-collinear spins. The coupling be-
tween non-collinear spins is mediated by the DM in-
teraction [74, 75] which in itself arises due to the spin-
momentum coupling of the surface states. The appear-
ance of the DM-mediated interlayer coupling is inter-
twined with the appearance of the topological phase of
BiTeI, hence, the experimental measurements of such an
interaction can be used as an indicator of a topological
phase transition in this material.

Having found the general expression of the interlayer

1 3 5 7 9 11 13 15
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z=c

FIG. 10. Thickness dependence of amplitude for DM (non-
collinear) part of the interlayer exchange coupling per surface
for (a) relatively thin samples of BiTeI and (b) thick samples
of BiTeI. In this figure we take the parameter values ~vF = 1
eVÅ and EF = 0.1 eV. In both (a) and (b), the DM inter-
action oscillates with a period π/kF ≈ 4.5c and decays as

z−3/2.

exchange coupling in the topological phase of BiTeI,
Eq. (47), we proceed to determine its dependence on the
sample thickness in the next section.

VII. SPATIAL DEPENDENCE OF EXCHANGE
INTERACTION IN THE TOPOLOGICAL PHASE

In the trivial phase of BiTeI we have found that the in-
terlayer exchange interaction for the system in Fig. 2(a)
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decays with the thickness of BiTeI as z−2 for perpendic-
ularly magnetized layers and z−1 for layers with magne-
tization parallel to the interface. In this section we inves-
tigate the change in this z dependence as BiTeI becomes
a strong topological insulator.

The thickness dependence of the interlayer exchange
coupling of topological BiTeI in Eq. (47) is numerically
determined by the integrals in Eqs. (48)-(50). Due to the
presence of a Kohn anomaly at |qz| = 2kF the long-range
behaviour of the interlayer exchange interaction between
the magnetic chains, Fig. 8(b), can be obtained by inte-
grating near the Kohn anomaly qz ∈ [2kF − ε, 2kF + ε]
where ε � 2kF . Taking into account that χzz,yy(qz) =
χzz,yy(−qz) are even in qz and χyz(qz) = −χyz(qz) is odd
in qz, the integrals in Eqs. (48)-(50) close to the Kohn
anomaly become

A ≈ γ
√
kF

∫ 2kF+ε

2kF−ε
Re
(√

qz − 2kF

)
cos(qzz)dqz,

B ≈ γ
∫ 2kF+ε

2kF−ε

[
kF +

√
kFRe

(√
qz − 2kF

)]
cos(qzz)dqz,

D ≈ γ
∫ 2kF+ε

2kF−ε

[√
kFRe

(√
qz − 2kF

)
− 2kF

]
sin(qzz)dqz,

(52)

where γ = [(J0µBc)/(2πA0

√
~vF )]2. Recalling that the

domain of the function Re(
√
qz − 2kF ) is qz ≥ 2kF , inte-

grating Eq. (52) by parts once and then changing to the
variable q′ =

√
qz − 2kF , one obtains

A = B ≈ −γ
√
kF
z

∫ √ε
0

sin(q′2z + 2kF z)dq
′ ,

D ≈ γ
√
kF
z

∫ √ε
0

cos(q′2z + 2kF z)dq
′ . (53)

Since the dominant contribution of the previous integral
comes from q′ = 0, we can extend its upper limit to +∞
arriving at

A = B ≈ −Ĩ0
( c
z

)3/2
cos
(

2kF z −
π

4

)
, (54)

D ≈ −Ĩ0
( c
z

)3/2
sin
(

2kF z −
π

4

)
, (55)

where

Ĩ0 =

√
kF cπ

2~vF

(
J0µB
2πA0

)2

. (56)

Then the interlayer exchange coupling between the mag-
netic chains for each surface is

Ii(z) = −Ĩ0
( c
z

)3/2 [(
ST
z S

B
z + ST

|n̂i|S
B
|n̂i|

)
× cos

(
2kF z −

π

4

)
+ (ST × SB)ẑ×n̂i sin

(
2kF z −

π

4

)]
.

(57)

II

I

III

k

kz

FIG. 11. Schematic representation of the types of electronic
transitions along kz through the Fermi surface: interband
transitions between states with different helicities (I) and in-
traband transitions between states with the same helicities
(II and III). Red (light) color indicates states with negative
helicity and black (dark) color indicates states with positive
helicity.

A comparison between the numerical calculation of the
integrals Eqs. (48)-(50) with the analytical formulas in
Eq. (54) in Figs. 9(a) and 10(a) reveals a close agreement
for thicknesses z/c < 5. As the sample thickness exceed
z/c > 5, the numerical and analytical results become es-
sentially equal and overlap with each other as shown in
Figs. 9(b) and 10(b). The interlayer exchange interaction
mediated by the different surface states is characterized
by a single period of oscillation, π/kF , and the envelope
of these oscillations decays with the thickness of the sam-
ple as z−3/2.

We have seen that the magnetic exchange of the sys-
tem in Fig. 2(a) for topological BiTeI reduces to the ex-
change between the magnetic chains at the edges of the
sample and it is mediated by the surface states, Fig. 8(b).
Unlike the trivial phase of BiTeI, the magnetic interlayer
exchange interaction per surface in topological BiTeI cou-
ples both collinear and non-collinear spins due to the ap-
pearance of the DM interaction, and it decays with the
thickness of BiTeI as z−3/2.

VIII. DISCUSSION

In this section, we start by first highlighting the physi-
cal differences of the interlayer exchange interaction me-
diated by BiTeI in its trivial and topological phases. In
the trivial phase of BiTeI, we have found that the inter-
layer RKKY interaction is collinear and anisotropic for
spin alignment between the out-of-plane and in-plane di-
rections. This can be understood from a clear picture
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Matrix Element (x, y, z)
Interband
(ν = −µ)

Intraband
(ν = µ)

〈µ, k′z,k‖|σx|k‖, kz, ν〉 iµeiqzz cos(φk) µeiqzz sin(φk)
〈µ, k′z,k‖|σy|k‖, kz, ν〉 iµeiqzz sin(φk) −µeiqzz cos(φk)
〈µ, k′z,k‖|σz|k‖, kz, ν〉 µeiqzz 0

TABLE II. Matrix elements of the k‖-preserving interband
and intraband transitions along kz due to interaction with
a ferromagnetic layer with magnetization in the x, y or z-
directions. Here, qz = kz−k′z and |k, µ〉 are given by Eq. (2).

of the underlying physical processes contributing to the
interlayer RKKY interaction, which are k‖-preserving in-
terband and intraband transitions along kz through the
Fermi surface (Fig. 11). For an electron undergoing an
interband transition between bands with different helic-
ities, the requirement of in-plane momentum conserva-
tion means that its spin must flip (shown as process I in
Fig. 11). This spin flip can be achieved through interact-
ing with a ferromagnetic layer magnetized either in the
out-of plane or in-plane directions, since the correspond-
ing matrix elements are all nonvanishing, as shown in Ta-
ble II. On the other hand, an electron’s spin is preserved
for intraband transitions (shown as processes II and III
in Fig. 11). This is only possible via interacting with a
ferromagnetic layer with an in-plane magnetization, since
the matrix element corresponding to the interaction with
a z-polarized ferromagnet is zero, as shown in Table II. It
follows from Table II that the interlayer exchange interac-
tion is collinear with vanishing interaction between mag-
netizations along different directions, because the prod-
uct of any two different matrix elements within the same
type of transitions averages out to zero over all directions
[76]. Futhermore, since the interlayer exchange coupling
between layers with out-of-plane magnetizations Izz is
contributed only by interband transitions, it is different
from that between layers with in-plane magnetizations
Ixx,yy that is contributed by both interband and intra-
band transitions. The asymptotic behavior of the two
cases are distinguished by their distinct power laws go-
ing as z−2 and z−1 respectively at large thicknesses.

In the topological phase of BiTeI, we have shown that
the interlayer exchange interaction becomes limited to
the magnetic chains residing at the edges of the sample
and it is mediated via the spin-momentum-locked surface
states. Unlike the trivial phase of BiTeI, surface helical
electrons in the topological phase mediate the RKKY in-
teraction and due to their SOC they allow for magnetic
exchange between non-collinear spins arising from the
DM interaction. In general, the collinear and DM contri-
butions of the exchange coupling on each surface oscillate
with a single period determined by the Fermi wavelength
and decay with the thickness of BiTeI as z−3/2. The DM
term is present on each surface but the sign of its cou-
pling is dependent on the surface orientation (e.g., it has
opposite signs on opposite surfaces) while the collinear
terms carry the same sign for all surfaces.

We now discuss how the main features of the inter-
layer exchange interaction in the trivial and topological
phases may allow for the experimental detection of the
topological phase transition via the measurement of this
interaction. Two setups can be devised for the detec-
tion of the topological phase transition in BiTeI. First,
using ferromagnets with orthogonal magnetizations, the
collinear exchange terms will vanish in the topological
phase and the exchange is contributed only by the non-
collinear DM terms from each surface. Since the non-
collinear terms are absent in the trivial phase, the inter-
layer exchange coupling for this setup will be zero when
the pressure is below the critical pressure for topologi-
cal phase transition. Beyond this pressure, the interlayer
exchange coupling will be dominated by the surface DM
terms. As noted in Eq. (57), the DM term has opposite
signs for surfaces with opposite normal vectors n̂i, and
all the DM contributions will cancel from pairs of oppo-
site surfaces in a BiTeI sample with an even number of
perfectly aligned side surfaces. Therefore, experimental
detection of a non-vanishing interlayer exchange coupling
in the topological phase requires a sample with an odd
number of side surfaces (e.g., a pentagonal prism) or ir-
regular side surfaces with minimum cancellation of DM
coupling from opposite surfaces. Another possibility is
to avoid cancellation from opposite surfaces altogether
by localizing the measurement geometry on only one side
surface.

Second, using ferromagnets with parallel magnetiza-
tions, the DM part of the exchange will vanish in the
topological phase and the exchange interaction is con-
tributed only by collinear terms in both phases. Even
though both phases are characterized by collinear ex-
change terms, there is a distinct dependence of the ex-
change on the thickness, z−1 (z−2) for magnetization
parallel (orthogonal) to the interface in the trivial phase
and z−3/2 in the topological phase, and the change of
this thickness dependence can serve as an indicator for
the topological phase transition, with the advantage that
this measurement scheme does not rely on the number of
surfaces simultaneously measured.

Experimentally, the interlayer exchange coupling
in heterostructures composed of magnetic and non-
magnetic materials can be determined by the magneto-
optical Kerr effect, magneto-resistance oscillations, po-
larized neutron reflectrometry and ferromagnetic reso-
nance experiments [27, 28, 47, 48, 77–84]. In the triv-
ial phase of BiTeI the observation of the phenomena
described in our work requires a quantitative determi-
nation of the interlayer exchange coupling for both fer-
romagnetically and anti-ferromagnetically coupled sys-
tems, together with the ability to discern the in-plane
and out-of-plane components of the coupling. To this
end, we suggest that experiments relying on ferromag-
netic resonances would be a suitable platform for this
observation [81–84]. The detection of the interlayer ex-
change coupling in the topological phase and the topo-
logical phase transition requires pressure-controlled mea-
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surements of magneto-resistance, spin susceptibility or
ferromagnetic resonances. These methods have been pre-
viously utilized to study the pressure effects on the in-
terlayer exchange coupling in Fr/Cr multilayers [85], 2D
ferromagnets [86] and FeCoB/Ru/FeCoB heterostruc-
tures [87]. These well-established experimental methods
coupled with the controlled growth of bulk Rashba semi-
conductors [8–12] should make the observation of the un-
conventional interlayer exchange interaction mediated by
these exotic materials readily accessible.

IX. CONCLUSIONS

We have presented a theory for the interlayer exchange
coupling between two ferromagnets deposited on opposite
surfaces of the bulk Rashba semiconductor BiTeI, in its
non-topological and topological phases. Our work high-
lights the unconventional dependence of the exchange
interaction on the BiTeI spacer’s topological phase and
thickness, as well as the ferromagnets’ spin orientations.

In the non-topological phase of BiTeI, our calculation
of the interlayer exchange coupling revealed that the lat-
ter only couples collinear spins and is strongly dependent
on the magnetization direction of the ferromagnets. If the
ferromagnets are deposited on opposite surfaces along the
stacking direction of BiTeI and have an out-of-plane mag-
netization direction, then the interlayer exchange cou-
pling behaves in a qualitatively similar way to that in
a metallic spacer with an ellipsoidal Fermi surface. The
interlayer exchange coupling shows a single period of os-
cillation and decays with the thickness of the spacer z as
z−2, and the only effect introduced by the Rashba SOC is
the renormalization of the amplitude of the exchange in-
teraction. However, if the ferromagnets have an in-plane
magnetization direction, the interlayer exchange interac-
tion exhibits significant qualitative differences compared
to a spin-degenerate metal. The exchange interaction
displays two periods of spatial oscillations and decays as
z−1 with an amplitude that is proportional to α2 (where
α is the strength of the Rashba SOC) due to the interplay
between the Rashba SOC and interfacing spins.

In the topological phase of BiTeI, only the surface
states can mediate the interlayer exchange interaction
resulting in a coupling between the one-dimensional spin
chains at the edges of the two ferromagnets. In addi-
tion to collinear spins coupling, coupling of non-collinear
spins emerges due to the presence of DM interaction, and
both are characterized by a single oscillation period given
by the Fermi wavelength and decay with the thickness of
BiTeI as z−3/2. The qualitative differences in the inter-
layer exchange coupling of BiTeI between the trivial and
topological phases can be used as a signature to detect
the topological phase transition in this exotic material.
The theory and findings we obtained for the topological
phase of BiTeI are also applicable to other strong topo-
logical insulators such as Bi2Se3 and Bi2Te3.
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Appendix A: Spin Susceptibility of
Spin-Orbit-Coupled Systems

In this section we provide a derivation of the non-
interacting spin susceptibility of a spin-orbit-coupled
electron gas from the Matsubara Green’s function for-
malism. The spin susceptibility can be written as

χab(q, iqn) = −µ2
B

1

β

∑
ikn

∑
k

Tr {Gk(ikn)σa

×Gk+q(ikn + qn)σb} , (A1)

where β = 1/(kBT ), kB is the Boltzmann constant and T
is the temperature, kn and qn are the fermionic Matsub-
ara frequencies, and Tr denotes a trace. The Matsubara
Green’s function Gk(ikn) is

Gk(ikn) =
∑
µ=±

|k, µ〉〈µ,k|
ikn − Ek,µ

, (A2)

where µ = ± denotes the band index and |k, µ〉 the spinor
wavefunction of the µth-band energy eigenstate. Substi-
tuting Eq. (A2) into Eq. (A1) yields

χab(q, iqn) = −µ2
B

1

β

∑
ikn

∑
k

∑
µ,ν

Tr

{
|k, µ〉〈µ,k|
ikn − Ek,µ

σa

× |k + q, ν〉〈ν,k + q|
ikn + iqn − Ek+q,ν

σb

}
.

(A3)

Invariance of the trace under cyclic permutations leads
to

χab(q, iqn) = −µ2
B

1

β

∑
ikn

∑
k

∑
µ,ν[

〈µ,k|σa|k + q, ν〉〈ν,k + q|σb|k, µ〉
(ikn − Ek,µ)(ikn + iqn − Ek+q,ν)

]
. (A4)

Performing the Matsubara sum, the above reduces to

χab(q, iqn) = −µ2
B

∑
k

∑
µ,ν

f(Ek,µ)− f(Ek+q,ν)

iqn + Ek,µ − Ek+q,ν

×Fµνab (k,k + q) . (A5)

where f(Ek,µ) is the Fermi function, and Fµνab (k,k+q) =
〈µ,k|σa|k + q, ν〉〈ν,k + q|σb|k, µ〉 is a form factor. An-
alytically continuing to the real frequency iqn → ω + iδ
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FIG. 12. Comparison of limω→0 χ
µν
ss′(q, ω) to the analytical expressions in Eq. (22) (left panel) and (30) (right panel). In both

panels we can notice the equivalence of limω→0 χ
µν
ss′(q, ω) and the analytical forms.

(δ = 0+), one obtains the final expression of the retarded
spin susceptibility

χab(q, ω) = −µ2
B

∑
k

∑
µ,ν

f(Ek,µ)− f(Ek+q,ν)

Ek,µ − Ek+q,ν + ω + iδ

×Fµνab (k,k + q). (A6)

Eq. (A6) in its static limit, ω → 0, reduces to Eq. (9) for
three dimensions and q‖ = 0, and for two dimensions it
reduces to Eq. (43) in the main text.

Appendix B: Static Spin Susceptibility of Bulk
Rashba Semiconductors

In this appendix we discuss the static limit of the spin
susceptibility in a bulk Rashba semiconductor. Here we
start with the dynamic spin susceptibility, i.e.,

χµνab (q, ω) = −µ2
B

∫
d3k

(2π)3

× f(Ek,µ)− f(Ek+q,ν)

Ek,µ − Ek+q,ν + ω + iδ
Fµνab (k,k + q). (B1)

The real part of the spin susceptibility is

χµνab (q, ω) = −µ2
BP

∫
d3k

(2π)3

×f(Ek,µ)− f(Ek+q,ν)

Ek,µ − Ek+q,ν + ω
Fµνab (k,k + q), (B2)

where P denotes the principal value of the integral. The
latter integral, in its most general form, has contribution

from complex and real poles, and in order to correctly
account for these contributions in the static limit, one
needs to consider limω→0 χ

µν
ss′(q, ω). However, we have

two distinct cases that can be treated differently. First:
the case in which the complex poles have vanishing con-
tributions as ω → 0. In this case, we can directly take
ω → 0 in the integral in Eq. (B2), such that

χµνab (q, 0) = µ2
BP

∫
d3k

(2π)3

×f(Ek,µ)− f(Ek+q,ν)

Ek+q,ν − Ek,µ
Fµνab (k,k + q), (B3)

An example of such a case is the 3D electron gas [29]. Sec-
ond: the case in which the complex poles of the integral
in Eq. (B2) have non-vanishing contributions as ω → 0.
In this case taking ω → 0 in Eq. (B2) leads to unphysi-
cal results. Instead, one needs to find limω→0 χ

µν
ss′(q, ω)

to correctly account for the contribution from all poles.
This scenario is displayed in the Rashba SOC metal in
2D [88].

For a bulk Rashba semiconductor, even though it may
seem similar to the 2D Rashba SOC metal, we find that
for (qx, qy) = (0, 0) the contributions of the complex poles
vanish as ω → 0 because of the additional kz dependence,
and that the static spin susceptibility is given by Eq. (10).
We have numerically verified the equivalence of our an-
alytical forms of the static spin susceptibility, Eqs. (22)
and (30), and limω→0 χ

µν
ss′(q, ω), as shown in Fig. 12.
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[23] I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys.
76, 323 (2004).

[24] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[25] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[26] B. A. Bernevig and T. L. Hughes, Topological Insulators
and Topological Superconductors (Princeton University
Press, New York, 2013).

[27] P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and
H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).

[28] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau,
F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and
J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

[29] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
[30] T. Kasuya, Progress of Theoretical Physics 16, 45 (1956).
[31] K. Yosida, Phys. Rev. 106, 893 (1957).
[32] A. M. Black-Schaffer, Phys. Rev. B 81, 205416 (2010).
[33] H. Hatami, T. Kernreiter, and U. Zülicke, Phys. Rev. B
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