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Phonons and their interactions are necessary for determining a wide range of materials properties.
Here we present four independent advances which facilitate the computation of phonons and their
interactions from first-principles. First, we implement a group-theoretical approach to construct the
order N Taylor series of a d-dimensional crystal purely in terms of space group irreducible derivatives
(ID), which guarantees symmetry by construction and allows for a practical means of communicating
and storing phonons and their interactions. Second, we prove that the smallest possible supercell
which accommodates N given wavevectors in a d-dimensional crystal is determined using the Smith
Normal Form of the matrix formed from the corresponding wavevectors; resulting in negligible
computational cost to find said supercell, in addition to providing the maximum required multiplicity
for uniform supercells at arbitrary N and d. Third, we develop a series of finite displacement
methodologies to compute phonons and their interactions which exploit the first two developments:
lone and bundled irreducible derivative (LID and BID) approaches. LID computes a single ID,
or as few as possible, at a time in the smallest supercell possible, while BID exploits perturbative
derivatives for some order less thanN (e.g. Hellman-Feynman forces) in order to extract all ID in the
smallest possible supercells using the fewest possible computations. Finally, we derive an equation
for the order N volume derivatives of the phonons in terms of the order N = N + 2 ID. Given
that the former are easily computed, they can be used as a stringent, infinite ranged test of the ID.
Our general framework is illustrated on graphene, yielding irreducible phonon interactions to fifth
order. Additionally, we provide a cost analysis for the rock-salt structure at N = 3, demonstrating
a massive speedup compared to popular finite displacement methods in the literature.

I. INTRODUCTION

A. General Background

Phonons and phonon interactions dictate a wide ar-
ray of materials properties, often including thermal
conductivity, thermal expansion, linear and nonlinear
elasticity, structural phase stability, and many other
properties1–5. Even when studying purely electronic phe-
nomena, knowledge of phonons and their interactions
can be critical to interpreting experimental measure-
ments. While computing phonons from first-principles
is largely considered a solved problem, practical short-
comings of existing methods still preclude their use on a
broad swath of materials with select first-principles ap-
proaches. Furthermore, computing phonon interactions
from first-principles is still a rapidly evolving field, and
the basic form of phonon interactions is not well known
even in classic materials systems.

The problem of computing phonons and their interac-
tions from first-principles is equivalent to computing the
Taylor series expansion of the Born-Oppenheimer energy
surface with respect to the nuclear displacements of the
crystal. The second order terms (i.e. harmonic) dictate
the phonons, while higher order terms (i.e. anharmonic)
dictate phonon interactions. Given that a crystal is infi-
nite in extent, the computed Taylor series at each order
will necessarily be truncated at some maximum resolu-
tion. An important task is to obtain a sufficiently high
resolution such that the expansion is converged at a given

order, meaning that a higher resolution will have no ap-
preciable influence on relevant observables.
There are two basic approaches to computing

phonons6,7 and the same can be claimed regarding their
interactions: perturbation theory and finite displace-
ments; where the latter encompasses usual finite differ-
ence approaches or more complicated fitting procedures
based on finite displacements. Furthermore, these ap-
proaches are naturally combined, using perturbation the-
ory to obtain some low order derivatives (e.g. Hellman-
Feynman forces) and finite displacements for higher or-
der derivatives. For an early example at second order
within density functional theory (DFT), Ihm et al. used
the Hellman-Feynman forces and finite difference to com-
pute phonons8. In this same spirit, Bonini et al. used
density functional perturbation theory (DFPT) to com-
pute second order terms and then used finite difference
to compute third and fourth order terms in graphene9.
In any case, whether it be perturbation theory or fi-

nite displacement or a combination thereof, the de facto

standard is to compute all derivatives associated with dis-
placements that transform as irreducible representations
of some finite translation group (FTG) (i.e. q-points com-
mensurate with a Born-von-Karman supercell, described
further in Section II B). This set of derivatives allows
for a Fourier interpolation, which exactly preserves the
derivatives at a q-point that is an irreducible representa-
tion of the FTG while providing a smooth interpolation
for all other q-points (see Refs. 10 and 11 for early ex-
amples at second order). Assuming that the discretiza-
tion errors of finite difference calculations are properly
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extrapolated to zero; and that spurious behavior is prop-
erly handled when encountered via perturbation theory
(e.g. see Ref, 12); and that the underlying first-principles
approach is properly converged with respect to its own
discretizations (e.g. plane wave cutoff, k-point density,
etc); and that the energy function is analytic; then all
approaches must agree on derivatives with respect to
displacements which transform as irreducible represen-
tations of the FTG.

Within DFT at second order, it should be noted that
a distinct advantage of perturbation theory (i.e. den-
sity functional perturbation theory) is that an arbitrary
point within the Brillouin Zone may be computed with
a cost on the order of a standard DFT calculation of
the primitive unit cell7, while finite displacement ap-
proaches are limited to supercells for which a DFT cal-
culation can be tractably performed. However, not all
mainstream DFT codes have fully implemented DFPT
yet. Moreover, perturbation theory is not ubiquitous for
techniques which go beyond DFT, and even simple ap-
proaches like DFT+U only have a few demonstrations to
date where perturbation theory has been executed at sec-
ond order13,14. Therefore, both perturbation theory and
finite displacement approaches will continue to play an
important role for the foreseeable future in the context
of computing phonons and their interactions.

This paper describes several novel approaches, applica-
ble to a broad variety of phonon and phonon-interaction
methodologies. First, we write the Taylor series purely in
terms of space group irreducible derivatives, building in
all possible symmetry by construction; we are not aware
of existing studies that employ this in complex scenarios
beyond second order (i.e. for a sufficiently large FTG
to describe generic observables). Aside from computa-
tional efficiency, symmetry is essential for characterizing,
storing, and disseminating the vibrational Hamiltonian.
Second, we devise two finite displacement approaches,
which focus on getting the most precise answer or getting
a robust answer as efficiently as allowed by group theory.
Finally, we evaluate various approaches to assessing the
integrity of the Taylor series.

The remainder of the paper is organized as follows.
Sections I B-I E review the relevant literature with re-
spect to group theory, perturbation theory, and previous
approaches using finite displacements. Section II outlines
our group theoretical methodology, which is illustrated
throughout with examples from graphene for the sake of
clarity. Additionally, a glossary of all key variables can
be found in Supplementary Material15, Table SI. Section
III puts forward our finite displacement approaches. Sec-
tion III B solves the minimum supercell problem using the
Smith Normal Form, resulting in the Minimum Super-
cell Multiplicity equation; while Sections IIID-III F in-
troduce our LID and BID finite displacement approaches.
Finally, Section IV focusses on how to assess the quality
of the extracted irreducible derivatives, including the N -
th order strain derivatives of the phonons.

Applications are presented throughout the manuscript,

and DFT calculations were executed as follows (unless
otherwise noted). DFT calculations within the local den-
sity approximation (LDA)16 were performed using the
Projector Augmented Wave (PAW) method17,18, as im-
plemented in the Vienna Ab-initio Simulation Package
(VASP)19–22. A plane wave basis with a kinetic energy
cutoff of 625 eV was employed. We used a Γ-centered k-
point mesh of 100×100×1. All k-point integrations were
done using Gaussian smearing with a smearing width of
0.2eV. The DFT energies were converged to within 10−8

eV, while ionic relaxations were converged to within 10−7

eV. The relaxed lattice parameter in graphene was found
to be a0=2.44994Å.

B. Symmetry and Irreducible Derivatives

Group theory is a central tenet of physics23,24, and it
should characterize phonons and their interactions; re-
gardless of how these quantities are computed (i.e. fi-
nite displacement or perturbation theory). In the con-
text of atomic physics, for example, where continuous
groups characterize the invariance of the Hamiltonian,
the notion of a “reduced matrix element” as given by the
Wigner-Eckart theorem is textbook material25; and the
same could be said for nuclear physics26. The beauty of
reduced matrix elements is that absolutely no excess in-
formation needs to be provided, beyond the chosen phase
conventions, to characterize any possible matrix element;
and one is guaranteed that the theory satisfies symme-
try by construction. Generically, we refer to this type of
symmetrization as “intrinsic symmetrization”, because
it begins with basis functions that transform like irre-
ducible representations of the group, and determines the
existence of an arbitrary matrix element a priori.
In the context of lattice vibrations, the correspond-

ing quantities are “space group irreducible derivatives” of
the Born-Oppenheimer potential. Such an approach will
automatically satisfy all space group symmetry by con-
struction, in addition to homogeneity of free space and
permutation symmetry of each derivative. At second or-
der, space group irreducible derivatives are constructed
using standard tools of solid state physics23,27: the ir-
reducible Brillouin zone and the little group of a given
q-point. Beyond second order, the use of space group
irreducible derivatives is far less common, most likely
because the group theory is more complex. Nonethe-
less, constructing the symmetric products of irreducible
representations of space groups was essentially a solved
problem by the year 1980, and the history of this saga is
well described by Cracknell et al. (see Vol. 1 of Ref. 28).
There are two complimentary approaches29–36: the full
group approach and the subgroup approach. While both
approaches have their respective merits, Cracknell et al.
used the subgroup formulation of Gard34,35 to completely
automate the process, resulting in a code which could be
executed at an arbitrary orderN [28]; only limited by the
computers of their time period. They produced printouts
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containing the selection rules for third order symmetric
products within all crystallographic space groups, and
therefore the composition of the third order Taylor series
in terms of space group irreducible derivatives can be
obtained for any possible crystal. They also report that
they produced an archived volume with quartic symmet-
ric products for all space groups.

Despite the power of intrinsic symmetrization in the
context of lattice dynamics, which works with basis func-
tions that transform as irreducible representations of the
space group and obey clear selection rules which can be
determined once and for all a priori, it remains highly un-
derutilized; with applications beyond second order often
involving Landau expansions, where a phase transition
may be associated with a single star of wavevectors37; or
optical transitions36. However, we are not aware of any
systematic approach which utilizes intrinsic symmetriza-
tion to construct phonon interactions in general, which
is an intent of this paper.

The major alternative to utilizing intrinsic sym-
metrization is to start with the order N Taylor series
in real space (i.e. with displacements labeled by a lat-
tice translation) and then impose invariance with respect
to the space group operations, permutation symmetry
of the derivative, and homogeneity and isotropy of free
space38–40; and this results in a system of linear equa-
tions that the real space derivatives must obey. This ap-
proach is the direct opposite of intrinsic symmetrization:
instead of starting with symmetry and only creating al-
lowed polynomials, one starts with the most general poly-
nomials and then determines their relations. We refer to
this alternate procedure as “extrinsic symmetrization”.
While extrinsic symmetrization is most naturally associ-
ated with a real space basis, we note that it can be used
for an arbitrary basis. Extrinsic symmetrization can be
straightforwardly implemented in scenarios that are suf-
ficiently low order and short range, allowing one to solve
for a set of irreducible real space derivatives. However,
this approach quickly becomes challenging as the size of
the initial unsymmetrized polynomial will grow rapidly
with order and range.

Practitioners typically numerically implement extrin-
sic symmetrization while simultaneously fitting the real
space derivatives, resulting in a procedure where it is
unclear to the outside observer if symmetry is actually
being fulfilled. This even happens regularly at second or-
der. For example, in the well known paper of Parlinski et
al., which puts forward an approach to compute phonons
using finite difference11, they implement point symmetry
using extrinsic symmetrization and apply this to the case
of ZrO2. For a 2× 2× 2 supercell relative to the conven-
tional cubic cell, their symmetry analysis finds that there
are 68 independent parameters, though they report that
only 59 of these 68 are nonzero. Nonetheless, group the-
ory dictates that there are precisely 52 irreducible deriva-
tives, all of which can be chosen as real numbers (see
Appendix B for details). Strictly speaking, their Born-
Oppenheimer potential will not satisfy symmetry, though

their results are clearly robust and not affected by this
inefficacy. However, it is also worth noting that group
theory dictates that all irreducible derivatives can be ex-
tracted with a single central finite difference measure-
ment instead of two which are used in their study (see
Sections III C and III E for background and Appendix B
for detailed results). Clearly, it is much easier to em-
ploy intrinsic symmetrization instead of a numerical im-
plementation of extrinsic symmetrization where the an-
swer is not obvious. While the aforementioned paper
is relatively old, extrinsic symmetrization still persists
at second order41–43 and is commonplace beyond second
order44–47. More importantly, we demonstrate that the
practical inefficacy of extrinsic symmetrization is dramat-
ically worse in some popular approaches for computing
cubic interactions (See Section III E).

An important point to consider is how the Taylor series
is truncated at a given order, and there are two natural
approaches to doing this. First, one can create a homo-
morphic mapping between the infinite translation group
and a finite translation group (FTG) via a Born von Kar-
man (BvK) supercell23,27; and this type of truncation is
naturally compatible with the irreducible representations
of the space group and the accompanying intrinsic sym-
metrization. Second, one can retain the infinite crystal,
or a sufficiently large BvK supercell, and define a range in
real space via nearest neighbor shells or some cluster size
beyond which all derivatives are zero; and this type of
truncation is naturally compatible with a real space ba-
sis and extrinsic symmetrization. We refer to these two
types of truncation as reciprocal space truncation and
real space truncation, respectively, given that the former
restricts to some finite number of q-points and the latter
restricts to some neighbor shell in real space. An impor-
tant point to realize is that these two truncations do not
have a direct correspondence in general, and it is often
not clear which truncation a practitioner is using.

An additional important point is that translation
group irreducible derivatives, and therefore space group
irreducible derivatives as well, are invariant to the su-

percell in which they are computed, whereas real space
derivatives are only exact in the infinite crystal. Of
course, a real space basis can always be used in any su-
percell, even very small supercells, but in such situations
the real space derivatives are simply containers and inter-
polants for the space group irreducible derivatives. Un-
der normal circumstances, the real space derivatives will
converge when taken in a sufficiently large supercell, but
space group irreducible derivatives are always converged
with respect to supercell size by construction. However,
a sufficient number of space group irreducible derivatives
must be resolved in order to precisely interpolate to an
arbitrary q-point, which is equivalent to the real space
derivatives being sufficiently diminished within the trun-
cation range.

Finally, we point out that there is a middle ground
between intrinsic and extrinsic symmetrization, which
can be convenient if a real-space truncation is needed.
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One can consider the crystal to be an infinite array of
overlapping clusters, and the local modes of each cluster
can then be used as the new degrees of freedom sub-
ject to a constraint. Such a program was originally put
forth and implemented for model Hamiltonians in two
dimensions48–50. The same type of framework, called the
slave mode expansion, was put forward purely for the
purpose of symmetrizing the lattice potential51,52. The
basic idea is to perform intrinsic symmetrization with
respect to the point group, and then to perform extrin-
sic symmetrization with respect to the translation group;
assuming that the clusters overlap (see Ref. 53 for an ap-
proach similar in spirit, yet distinct).

C. Perturbation theory

Perturbation theory is normally the preferred method
for computing derivatives, and should be used when
possible. The Hellman-Feynman theorem provides first
derivatives of the energy (i.e. the force) at a very small
computational cost6, and have become standard in den-
sity functional theory codes. Perturbative forces are of-
ten implemented in static approaches like DFT+U , and a
few studies have succeeded in computing forces in more
advanced methods such as DFT plus dynamical mean-
field theory54,55.

For second order derivatives, density functional pertur-
bation theory (DFPT)7,56–59 may be executed at an arbi-
trary reciprocal space point, with a cost which is on the
order of a primitive cell self-consistent DFT calculation7;
and there is a large literature of such calculations. DFPT
is not as widely available as the ubiquitous Hellman-
Feynman forces, and therefore DFPT may not be avail-
able for all codes or basis sets in practice. Furthermore,
DFPT often does not support even simple beyond DFT
methods such as DFT+U, and at present we are only
aware of several examples in the literature13,14. There-
fore, DFPT is not always an option for second order
derivatives.

DFPT may be extended to third order58–60, and this
has been implemented for the most general case (i.e. ar-
bitrary q vectors, metals and insulators)61,62. A small
number of applications can be found in the literature
thus far63–68. We are not aware of any studies using
third order DFPT within DFT+U .

DFPT naturally works with irreducible derivatives of
the translation group, and at least some implementations
at second order work with irreducible representations of
the space group when performing perturbation theory69.
It is unclear to what extent point symmetry, or full space
group symmetry, is exploited for third order. In any case,
it would be ideal if DFPT studies reported space group
irreducible derivatives, as this would allow for a direct
comparison with competing methods.

D. Finite displacement phonon approaches

Finite displacement approaches are those which explic-
itly move the atoms in a series of different displacement
fields and perform a full, self-consistent first-principles
calculation in each case. This could range from perform-
ing a first-principles molecular dynamics trajectory, to a
more standard central or forward finite difference calcu-
lation; and we focus on the latter. We begin by reviewing
the earliest papers in the literature, and discuss them in
terms of the framework we will be presenting. Perhaps
the earliest study performed second and third order finite
difference derivatives of the energy using a displacement
which transforms as an irreducible representation of the
space group70, and this came to be known as a “frozen-
phonon” calculation. In terms of our categorization, the
preceding paper falls under LID with PD0 (see Section
IIID).
Several similar studies followed soon after on vari-

ous materials8,71,72, and Ihm et al. used the Hellman-
Feynman forces in this same context8, which we catego-
rize as LID using PD1. Martin subsequently announced
a major advance which further exploited Hellman-
Feynman forces73, whereby the displacement field was
intentionally chosen not to transform as an irreducible
representation of the space group such that many inde-
pendent force constants could be simultaneously mea-
sured. This general philosophy falls under the category
of second order SS-BID (see Section III E). A subse-
quent study then executed Martin’s previous announce-
ment with an application to GaAs74, showing the power
of this approach. However, several additional steps would
be needed to satisfy all the conditions of SS-BID. First,
the force constants should be extracted in a manner
which preserves the irreducible derivatives of the trans-
lation group. Second, the approach for displacing the
atoms could be optimized.

In order to better exploit the forces, displacement
should be constructed so as to sample as many irreducible
derivatives as possible in a single calculation. Frank et

al. made another step forward, performing finite differ-
ence calculations where they displaced a single atom at a
time75. This approach goes a long way towards achieving
the goal, given that a local displacement in real space is
guaranteed to sample all q-points in the supercell; though
a shortcoming is that point symmetry is not explicitly
dealt with in any way. More problematic is that care is
needed to ensure the translation group irreducible deriva-
tives are extracted properly.
Parlinski et al. resolved a main shortcoming of the pre-

ceding studies11, introducing a proper weighting of the
real space force constants on the boundary of the Wigner-
Seitz supercell, which ensures their Fourier interpolation
yields the numerically exact irreducible derivatives of the
finite translation group for the supercell being used. The
authors also directly account for point symmetry, deter-
mining the minimum number of calculations required to
extract all force constant in conjunction with the forces
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(though there were some inefficacies in their analysis, see
discussion in Section IB). We categorize this method as
a second order SS-BID approach (see Section III E). The
same categorization would be applied to the similar al-
gorithms used in the software packages Phonopy43 and
PHON41.
A relevant factor which had not been considered by

the aforementioned approaches is that they extract all
force constants from a single supercell, and we refer to
these as single supercell (SS) approaches. An important
development occurred relatively recently with the work
of Monserrat et al.76, which recognized the importance of
using so-called non-diagonal supercells. They show that
given a three dimensional crystal, all q-points within a
n1 × n2 × n3 supercell can always be probed in a super-
cell containing lcm(n1, n2, n3) primitive cells. This result
has far reaching implications for computing phonons, of-
fering a massive speedup for first-principles approaches
which scale in a super-linear manner. It should be noted
that their result is a special case of our Minimum Super-
cell Multiplicity equation (Eq. 36), and Eq. 37 which
follows. We categorize their method as a hierarchical
supercell approach, similar to HS-BID for the specific
case of N = 2. We emphasize that single supercell ap-
proaches offer absolutely no extra information (i.e. irre-
ducible derivatives) as compared to hierarchical supercell
approaches.

E. Finite displacement anharmonic approaches

Finite displacement approaches have also been em-
ployed to compute anharmonic terms. As mentioned, the
very first frozen phonon calculation by Wendel and Mar-
tin computed a third order derivative using finite differ-
ence of the energy70. More systematic approaches began
to appear thereafter, such as when Vanderbilt et al. used
the forces and finite displacement calculations to fit an
assortment of cubic and quartic phonon interactions at
products of the Γ and X points in diamond77,78. These
interactions were then fit to a modified Keating model
which was then used to extrapolate throughout the Bril-
louin zone; and this approach provided reasonable results
for the phonon lifetimes in Si.
As time progressed and computing resources increased,

new efforts emerged to systematically compute more in-
teractions. Esfarjani and Stokes employed an extrinsic
symmetrization approach with a real space truncation
(see Section IB) in order to compute the real space force
constants up to fourth order44. They suggested that
a data set of forces could be obtained from DFT cal-
culations on a sufficiently large supercell by generating
a first-principles molecular dynamics trajectory, random
displacements, or symmetrically displacing one atom at
a time; and they opted for the latter in a test on Si.
Using this data set and the aforementioned symmetriza-
tion constraints, they fit the real space force constants
up to fourth order. Applications of this method in a

wide range of materials soon followed, all in the context
of thermal conductivity79–82. Many approaches similar
to the aforementioned approach, yet distinct in various
ways, soon followed45,47,51,53,83–85, with each producing
the real space force constants up to some order and within
some real space truncation range. In section III E, we
compare our SS-BID approach to several of the afore-
mentioned approaches45,84,85, demonstrating that we can
extract all space group irreducible derivatives far more ef-
ficiently for a given test case in rock salt. Furthermore,
all of the above approaches could benefit from our hier-
archical supercell approach (see Sections III B and III F).

While all the preceding studies relied upon forces (i.e.
PD1), third and fourth order phonon interactions have
been computed using finite difference of second order
DFPT calculations in graphene and graphite9. In that
study, a FTG is used for truncation (i.e. with graphene,

they used ŜBZ = 41̂ for N = 3 and N = 4 with PD2)
instead of a real space truncation, and the cubic and
quartic derivatives appear to be translation group irre-
ducible. A study of this sort could fully exploit both the
SS-BID and the HS-BID approaches we outline in this
paper, which would yield a major increase in efficiency
(see Section III E and III F).

II. GROUP THEORETICAL METHODOLOGY

A. Crystalline potential and its derivatives

We begin by discussing the Born-Oppenheimer poten-
tial energy, V , defined over the set of all nuclear displace-

ments in the crystal, {u(b,β)t }; where t labels a unit cell in
lattice coordinates, b labels one of the na different atoms
within the unit cell, and β labels one of the np possible
displacements of the atom. The function V is invariant
to all operations of some space group and conserves total
linear and angular momentum; and V is presumed to be
analytic. Our convention is to define V as the energy
of the crystal per unit cell, so it is an intensive quan-
tity. While we focus on V in this work, any function
defined over the lattice could be considered. Due to the
large number of variables defined in this paper, a glos-
sary is provided in Supplementary Material15, Table SI.
Additionally, our application to graphene is distributed
throughout the manuscript, which should aid in under-
standing all definitions.

If the crystal is d-dimensional, the translation group
is defined via d linearly independent vectors ai in Rd,
and stored as row-stacked vectors in the rank-d matrix â

(matrices are always denoted with a hat). An arbitrary
lattice point may be expressed as tâ, where t is a d-
dimensional row vector of integers: t ∈ Z

d. Basis atoms
are specified as na distinct Cartesian vectors Ai. A cor-
responding set of reciprocal lattice vectors are defined as

b̂ = 2π(â−1)⊺, where b̂ gives the row stacked vectors bi.
An arbitrary point in reciprocal space may be expressed
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as qb̂, where q is a d-dimensional row vector of real
numbers: q ∈ Rd. The continuum of q-points within the
first Brillouin zone can be used to form basis functions
{u(b,β)q } that transform like irreducible representations
of the translation group. For the case of graphene (see
schematic in Figure 1a), we have:

â =
a0
2

[√
3 1

√
3 −1

]

b̂ =
2π

a0
√
3

[

1
√
3

1 −
√
3

]

(1)

A1 = a0

√
3

3
i A2 = a0

2
√
3

3
i (2)

where a0 = 2.44994Å, as computed within DFT (see Sec-
tion IA for computational details), and i is the unit vec-
tor for the horizontal axis.
An N -th order derivative of V is denoted as V j1...jN

i1...iN
,

where i labels either some linear combination of recip-
rocal lattice vectors or real lattice vectors, and j labels
some linear combination of the nanp degrees of freedom
within the unit cell. For the specific case of derivatives
taken with respect to the displacements in the real lattice
basis, we define the force tensor

Φ
(b1,β1)(b2,β2)...(bN ,βN )
0 t2−t1 ...tN−t1

=
∂NV

∏N
i ∂u

(bi,β)
ti−t1

(3)

where we explicitly retain the identity translation 0 as the

first index (i.e. t1−t1 = 0), and u
(bi,βi)
ti

follows the same
convention as previously defined. For the specific case
of derivatives taken with respect to displacements that
transform as irreducible representations of the transla-
tion group, we define the dynamical tensor:

D(b1,β1)...(bN ,βN )
q1 ...q

N
=

∂NV
∏N

i ∂u
(bi,βi)
qi

(4)

where
∑N

i=1 qi ∈ Zd and bi, βi follows the same conven-
tion as previously defined.

B. Finite Translation Group

Here we define the familiar notion of the finite trans-
lation group (FTG), which is a homomorphic mapping
with the infinite translation group via periodic bound-
ary conditions23,27; though we consider the most general
case. The FTG is equivalently defined using a supercell
of the real space lattice or a subcell of the reciprocal lat-
tice; which we refer to as the Born-von Karman (BvK)
supercell and Brillouin Zone (BZ) subcell, respectively.
We note that non-diagonal BvK supercells are consid-
ered in this work. Mathematically, we define the BvK
supercell lattice vectors of the real space lattice and the
corresponding BZ subcell vectors of the reciprocal lattice
using the matrix ŜBZ :

âBZ = ŜBZ â b̂BZ =
(

Ŝ−1
BZ

)⊺

b̂ (5)

where

ŜBZ ∈ {n̂ ∈ Z
(d,d) : det(n̂) 6= 0,

n̂âR̂⊺(n̂â)−1 ∈ Z
(d,d)∀R̂ ∈ G̃} (6)

where d is the dimension of the crystal and G̃ is the point
group of the space group (sets are always denoted with

a tilde). In words, ŜBZ is an invertible d × d matrix
of integers, with a real (reciprocal) space Wigner-Seitz

super (sub) cell that is invariant to G̃.
The translation vectors of the FTG are all integer com-

binations of rows of â that fit within the d-dimensional
parallelotope formed from the rows of âBZ , while the
corresponding reciprocal lattice points are given by all

integer combinations of rows of b̂BZ that fit within the

d-dimensional parallelotope formed from the rows of b̂.
Mathematically, a translation vector of the FTG is rep-
resented as tâ, where t is a row vector of integers t ∈ Z

d

constrained to

0 ≤ tŜ−1
BZ · ej < 1 for j = 1, . . . , d (7)

where ej is a unit vector in Zd. We refer to t as a “t-
point”, and the set of all t satisfying Eq. 7 is defined as
t̃BZ . Similarly, a reciprocal lattice point is represented

as pb̂BZ , where p is a row vector of integers p ∈ Zd

constrained to

0 ≤ p(Ŝ−1
BZ)

⊺ · ej < 1 for j = 1, . . . , d (8)

When a reciprocal lattice point pb̂BZ is denoted in lattice

coordinates of b̂, it will be a vector of fractions less than
one: q = p(Ŝ−1

BZ)
⊺. We naturally refer to q as a “q-

point”. The set of all q obtained from all p satisfying
Eq. 8 is denoted as q̃BZ , which is a discretization of the
first Brillouin Zone. The characters of the irreducible
representations of the FTG are then ei2πt·q . It should be
appreciated that all q-points are identity representations
of the supercell translation group given that qŜ

⊺

BZ ∈
Zd, and therefore all waves corresponding to q-points are
commensurate with ŜBZ .
Given the importance of the total number of t-points

(or q-points) we define the variable nq = |t̃BZ | = |q̃BZ | =
| det(ŜBZ)|, and this number also characterizes the su-

percell multiplicity, which is the number of primitive cells
contained within the supercell. An efficient algorithm for
determining t̃BZ and q̃BZ , which requires solving Eqs. 7
and 8, is given in Appendix D. If the column and row
Hermite Normal Form86 of ŜBZ are identical under trans-
pose, the set of allowed t is identical to the set of allowed
p; which is a typical scenario. Another key property of
the FTG is the least common denominator of all compo-
nents of all q ∈ q̃BZ , denoted Lm. In the common case

of ŜBZ = n1̂, where n ∈ Z+ and 1̂ is the rank-d identity
matrix, we simply have Lm = n; and we refer to this as
a uniform supercell.
The symmetrized displacement amplitudes are ob-

tained with the projection operator, recovering the usual
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discrete Fourier transform, though we use a normaliza-
tion such that the q-space amplitudes are intensive quan-
tities:

u(b,β)q =
1

nq

∑

t∈t̃BZ

u
(b,β)
t e−2πit·q (9)

u
(b,β)
t =

∑

q∈q̃BZ

u(b,β)q e2πit·q (10)

where these modes are imparted on some supercell ŜBZ .
In the case of graphene, it is straightforward to find

that all FTG can be obtained as integer multiples of the
rank 2 identity matrix 1̂ or the supercell ŜK = 21̂− σ̂x
where σ̂x is a Pauli matrix; and this results in grid densi-
ties of nq = {n2|n ∈ Z+} and nq = {3n2|n ∈ Z+} points
per Brillouin zone, respectively (See schematic in Figures

1a-c for FTG corresponding to ŜBZ = 1̂, ŜK , 21̂, 31̂, and
2ŜK). While the FTG 1̂ is already nontrivial given that

ŜK

1̂ 21̂
31̂

2ŜK

Γ

K

K̄

Mx

Ma

Mb

∆1

∆0

∆5∆4

∆3

∆2

Σ0

Σ3

Σ5

Σ2

Σ1

Σ4

(a)

(b) (c)

FIG. 1. (a) A schematic of the structure of graphene. Yel-
low hexagons are lattice points, while circles represent carbon
atoms. The first five smallest BvK supercells are pictured,
and the lattice points of a corresponding FTG is given by Eq.
7. (b) The corresponding (color coded) five reciprocal lattice
subcells which are repeated to tile the First Brillouin Zone
(FBZ); irreducible Brillouin zone is shaded grey. (c) Same as
(b), but with the FBZ in the Wigner-Seitz cell convention.
All q-points are labeled according to their star.

na > 1 in graphene, it is pedagogically instructive to
consider the next largest FTG with ŜBZ = ŜK ; which
corresponds to the order 3 cyclic group. For this FTG,
nq = 3 and we have

t̃BZ = {(0, 0), (1, 0), (0, 1)} = {0, ta, tb} (11)

q̃BZ =

{

(0, 0) ,

(

2

3
,
1

3

)

,

(

1

3
,
2

3

)}

= {Γ,K, K̄} (12)

which can be deduced from the diagrams in Figure 1.

C. Point Symmetry of Finite Translation Group

The point symmetry of the FTG must also be consid-
ered, and several additional definitions are needed. First,
t̃IBZ and q̃IBZ are irreducible sets which can generate
all elements of t̃BZ and q̃BZ , respectively, in conjunc-
tion with some point operation R̂ ∈ G̃. Furthermore,
it is important to identify the so-called “little group”
G̃q for each q ∈ q̃IBZ , which is the subgroup of G̃ that

leaves q invariant to within a shift in Zd. Finally, we
must introduce the “star” of the q-point, which is the set

of points generated by G̃: s̃q = {qb̂R̂⊺b̂−1|∀R̂ ∈ G̃},
where |s̃q | ≤ h, and h is the order of the group G̃; and
there will be one star for each q ∈ q̃IBZ . The set of all
stars is then denoted as s̃BZ = {s̃q |∀q ∈ q̃IBZ}. A given

star may be used to create a |s̃q |-dimensional represen-
tation of star vectors.
In the case of graphene, we have G̃ = D6h, using

Schoenflies notation. For ŜBZ = ŜK , q̃IBZ = {Γ,K};
the little groups are G̃Γ = D6h and G̃K = D3h; the two
stars are s̃Γ = {Γ} and s̃K = {K, K̄}, and the corre-
sponding representations of the star vectors decompose
to A1g and A1g ⊕B2u, respectively.

D. Order N identity representations of FTG and

permutation symmetry

Having defined the FTG, the resolution of the prob-
lem has been set. We proceed by creating all of the
order N direct product representations of q̃BZ which
transform like the identity under the translation group.
Each identity representation is given by an N -tuple de-
noted as Q = (q1, . . . ,qN ), and this quantity will also

be needed as a row stacked matrix, denoted Q̂. The
translation group demands that the identity representa-
tion satisfy (

∑

q∈Q q) ∈ Zd. Clearly, one of the q ∈ Q
is not independent, and there must be n

(N−1)
q distinct

identity representations. Therefore, we can identify each
order N identity irreducible representation with a cor-
responding element of the N − 1 direct product group
formed from t̃BZ , denoted as the N -tuple of vectors
T = (0, t1, . . . , tN−1); this quantity will also be needed

as a row stacked matrix, denoted T̂ . Within the BvK
supercell, the set of all T is denoted T̃

ŜBZ
, and the set
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of all identity representations Q is denoted as Q̃
ŜBZ

(ab-

breviated as T̃BZ and Q̃BZ , respectively). For the case

of graphene with N = 3 and ŜBZ = ŜK , we have:

Q̃BZ = {(Γ,Γ,Γ), (Γ, K̄,K), (Γ,K, K̄), (K,Γ, K̄)

(K̄,Γ,K), (K, K̄,Γ), (K̄,K,Γ), (K,K,K),

(K̄, K̄, K̄)}
= {Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9} (13)

Q̃IBZ = {(Γ,Γ,Γ), (Γ, K̄,K), (K,Γ, K̄), (K, K̄,Γ),

(K,K,K)}
= {Q1,Q2,Q4,Q6,Q8} (14)

T̃BZ = {(0,0,0), (0,0, ta), (0,0, tb), (0, ta,0), (0, ta, ta),
(0, ta, tb), (0, tb,0), (0, tb, ta), (0, tb, tb)}

(15)

Given that any derivative is invariant to permutation
symmetry, it is necessary to define a multiset Q = [q ∈
Q] (multisets augment sets to allow for repeated ele-
ments; no special demarcation is given to the variable),
where multisets are denoted with square brackets. We
can immediately reduce Q̃BZ to the identity representa-
tions of the symmetric product group by retaining only
the unique Q generated from Q̃BZ ; and this is denoted

Q̃BZ . Finally, we can create the point irreducible set of

Q̃BZ , denoted as Q̃IBZ . For the case of graphene with

N = 3 and ŜBZ = ŜK , we have:

Q̃BZ = {[Γ,Γ,Γ], [Γ, K̄,K], [K,K,K], [K̄, K̄, K̄]}
= {Q1, Q2, Q3, Q4} (16)

Q̃IBZ = {[Γ,Γ,Γ], [Γ, K̄,K], [K,K,K]}
= {Q1, Q2, Q3} (17)

For each Q ∈ Q̃IBZ , all distinct Qi that are generated

from point operations form a star, denoted as S̃Q (where

1 ≤ |S̃ | ≤ h).

S̃Q1
= {Q1} S̃Q2

= {Q2} S̃Q3
= {Q3, Q4} (18)

The set composed of all such stars is denoted S̃BZ (where

|S̃BZ | = |Q̃IBZ |).
Finally, it will be useful to define a sorting operator S,

based on a chosen convention, to generate a particular
Q from a given Q (e.g. S([Γ, K̄,K]) = (Γ, K̄,K)). The
illustrated convention corresponds to sorting the vectors
according to their lattice coordinates within the conven-
tional FBZ (i.e. coordinates from Fig. 1b).

E. Point symmetry including the basis

Having accounted for translation, permutation, and
point symmetry of the order N identity representations
of the pure lattice, point symmetry of the atoms and
their corresponding displacements vectors must now be

incorporated. First, one must symmetrize the nanp dis-

placements {u(b,β)q } for all q ∈ q̃IBZ according the little
group of each respective q , resulting in a set of sym-

metrized displacements {u(α,a)q }, where α labels a given
irreducible representation and a labels a corresponding
row of α. The resulting irreducible representation labels
of the displacements at a given q are stored in the mul-

tiset Uq , and Ûq will denote the direct sum of the irre-
ducible representation matrices. For the case of q =Mx

(see Figure 1c), for example, we have displacements that
transform as the following six irreducible representations:

UMx
= {A1g, B2g, B3g, B1u, B2u, B3u} (19)

We tabulate the explicit form of all symmetrized displace-
ments of graphene, for all q ∈ q̃BZ , in Supplementary
Material15, Table SII. All point group conventions in
this study follow Cornwell23.
Given some Q ∈ Q̃IBZ at order N , where Q =

[q1 . . .qN ], the task at hand is to determine if a given

derivative with respect to u
(α1,a1)
q1

. . . u
(αN ,aN )
q

N
, where ai

denotes a row of an irreducible representation αi of the
little group of qi, is symmetry allowed; and if so, to de-
termine how many irreducible derivatives it yields (in the
case where multidimensional irreducible representations

are present). Each displacement u
(αi,ai)
qi

will be associ-

ated with a set of star displacement vectors {u(α
′,a′)

s̃q
i

}
of length |s̃qi

|, which form full space group irreducible

representations29. Therefore, the existence of derivatives

with respect to u
(α1,a1)
q1

. . . u
(αN ,aN )
q

N
can be determined

from evaluating the corresponding derivatives with re-
spect to the stars. Group theoretically, one is left with
the problem of forming symmetric direct products87,88 of
a set of stars28,36. As discussed in Section IB, this is a
solved problem, though it is still nontrivial to execute at
arbitrary order N , as we have. Explicit results are illus-
trated for graphene (see Table I and SIII) and rock salt
(see Appendix A).
For a given allowed derivative with respect to

u
(α1,a1)
q1

. . . u
(αN ,aN )
q

N
, the αi associated with each qi must

be stored. We introduce the set ÃQ which contains the

allowed tuples of irreducible representations αi associated
with qi, where the ordering of the tuple corresponds to
S(Q). For the example of graphene with Q = [Γ, K̄,K],
we have

Ã[Γ,K̄,K] = {(E,E,E), (E,E,A1), (E,E,A2)} (20)

We now define relevant variables to count the total
number of identity representations. While ÃQ contains

all allowed symmetric products α, each will result in one
or more identity representations; which is counted with

the variable n
Q
α . The number of identity representations

for a given Q is then n
Q

ir =
∑

α∈Ã
Q
n
Q
α , and n

Q

ir = n
S̃Q

ir

for all Q ∈ S̃ . The total number of irreducible derivatives
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can then be found as:

nŜBZ

ir =
∑

Q∈Q̃
IBZ

n
Q

ir =
∑

S̃∈S̃
BZ

n
S̃
ir (21)

A final point is that time reversal symmetry can be
employed in conjunction with space group symmetry to
determine if space group irreducible derivatives can have
a phase convention which ensures that they are purely
real numbers (or purely imaginary), and this will influ-
ence the counting in Eq. 21. All applications in this
paper have purely real (or imaginary) irreducible deriva-
tives.

F. Homogeneity and isotropy of space

In addition to space group symmetry and permutation
of derivative indices, the potential will also conserve total
linear and angular momentum. The former implies that
an arbitrary shift of the system will leave all derivatives
of the Born-Oppenheimer surface invariant38,39; and this
is referred to as the acoustic sum rule in the context
of a Taylor series in the real space basis. The acoustic
sum rules can be quite challenging for real space Tay-
lor series approaches to enforce69,84,85. To the contrary,
when working with space group irreducible derivatives,
and even simply translation group irreducible derivatives,
the acoustic sum rules are automatically satisfied to all
order by construction. Moreover, each irreducible deriva-
tive will individually satisfy the acoustic sum rule, and
therefore the acoustic sum rule does not redistribute error
among different irreducible derivatives. This is true for
any translation group (see Eq. 6), irrespective of its size.
The only care that is needed occurs when the acoustic
modes, at the Γ point, are a repeating irreducible repre-
sentation, and then one should ensure that they are or-
thogonalized to the modes of the same symmetry; which
is trivial to enforce by construction. Given that space
group irreducible derivatives are invariant to supercell
size, and that the acoustic sum rules are automatically
satisfied, there are major incentives to work purely with
space group irreducible derivatives.

In the case of conservation of total angular momentum,
an arbitrary global rotation will leave the potential un-
changed; and enforcing this in the limit of small rotations
will link a given order of real space derivatives to infinite
range, in addition to linking them to the next highest
order39. However, this does not impart any constraints
on the space group irreducible derivatives within a FTG,
given that the basis of the FTG does not describe pure ro-
tation. However, the constraint may be placed within the
method of Fourier interpolation (see Section IIH), which

interpolates the irreducible derivatives to the infinite lat-
tice; here, free infinitesimal rotation can be enforced. In
summary, isotropy of free space is not a consideration
when extracting space group irreducible derivatives.

G. Taylor series of V in symmetrized variables

Having accounted for all symmetries, we are now in
a position to write the Taylor series purely in terms of
space group irreducible derivatives. We will label a given
irreducible derivative at order N as jdα1···αN

q1···qN
, where qi

is the i-th element of S(Q), αi is the i-th element of α

(where α ∈ ÃQ), and j ∈ [1, n
Q
α ] labels repeating in-

stances of an identity representation within a given sym-
metric product. We will also use a compressed notation
jdαQ . A given derivative of the Born-Oppenheimer surface

can be written in terms of the irreducible derivatives as:

∂NV
∏N

i ∂u
(αi,ai)
qi

=
∑

j

jθα1...αN

a1...aN
(Q) jdα1...αN

q1...qN

= D
(α1,a1)...(αN ,aN )
Q (22)

where qi ∈ Q, ai is a given row of the αi irreducible rep-
resentation, θα1...αN

a1...aN
(Q) are the Clebsch-Gordon (CG)

coefficients of the direct product (DP) representation,
the left superscript j is a label for repeating instances
of a given identity representation, and the symbol D is
used for the derivative of the potential with respect to ir-
reducible representations of the displacements. The dis-
tinction between D and d should be appreciated, as the
latter only depends on irreducible representations αi and
not the rows of the irreducible representations ai. Our
convention for the DP CG coefficients is to start with the
normalized CG coefficients of the symmetric direct prod-
uct (SDP) representation, rescale the SDP CG by

√
n,

where n is the smallest positive integer that produces
the smallest number of radical SDP CG coefficients, and
convert to the DP CG coefficients.
The Taylor series of the potential energy, per unit cell,

is then written for a given FTG and order as:

V
(N )

ŜBZ
=

1

N !

∑

Q∈Q̃BZ

∑

α1...αN

a1...aN

D
(α1,a1)...(αN ,aN )
Q

N
∏

i=1

u(αi,ai)
qi

=
1

N !

∑

Q∈Q̃IBZ

α∈ÃQ ,j

jdαQPα

Q

∑

Q′∈S̃Q

∑

a1...aN

jθα1...αN

a1...aN
(Q′)

N
∏

i=1

u
(αi,ai)
q′

i

(23)

where Pα

Q is the number of permutations of [(αi,qi)|i ∈
[1,N ]] with i denoting the i-th element of α and S(Q),
and jθα1...αN

a1...aN
(Q′) = jθα1...αN

a1...aN
(S(Q′)). For the specific

case of in-plane displacements in graphene at N = 3
with ŜBZ = ŜK , we have:
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V
(3)

ŜK
=

1

6
dE2E2E2

Γ Γ Γ

(

3u
E0

2

Γ u
E0

2

Γ u
E1

2

Γ − u
E1

2

Γ u
E1

2

Γ u
E1

2

Γ

)

+ dEEE
Γ K̄K

(

uE
0

Γ uE
0

K̄
uE

1

K + uE
0

Γ uE
1

K̄
uE

0

K + uE
1

Γ uE
0

K̄
uE

0

K − uE
1

Γ uE
1

K̄
uE

1

K

)

+

dEEA1

Γ K̄K

(

uA1

K (uE
0

Γ uE
0

K̄
+ uE

1

Γ uE
1

K̄
) + cc

)

+ dEEA2

Γ K̄K

(

uA2

K (uE
0

Γ uE
1

K̄
− uE

1

Γ uE
0

K̄
) + cc

)

+
1

6
dA1A1A1

K K K

(

uA1

K uA1

K uA1

K + cc
)

+

1

2
dA1A2A2

K K K

(

uA1

K uA2

K uA2

K + cc
)

+
1

2
dEEA1

KKK

(

uA1

K (uE
0

K uE
0

K + uE
1

K uE
1

K ) + cc
)

+

1

6
dEEE
KKK

(

(3uE
0

K uE
0

K uE
1

K − uE
1

K uE
1

K uE
1

K ) + cc
)

(24)

where cc indicates the complex conjugate of the preceding
term, superscripts of irreducible representations indicate
a given row of a multidimensional irreducible representa-
tion, and we have used C3v labels for the little group of
K for convenience; as opposed to D3h, which is needed
when including out-of-plane displacements. The values
of the above derivatives can be found in Table I, and
the approaches to computing them are discussed in Sec-
tion III. We emphasize that to third order, any possible

in-plane displacement within ŜK is purely characterized
by the eight real irreducible derivatives shown in Eq. 24
in addition to the four in-plane irreducible derivatives at
second order (see Table I).

H. Fourier Interpolation

Given a set of irreducible derivatives defined over some
FTG, one may interpolate to a different FTG or the in-
finite lattice; and this can be achieved using Fourier In-
terpolation (FI)10,11. Such trigonometric interpolations
have a long history in physics, dating back to the begin-
ning of classical mechanics89. We emphasize that FI is
not unique, and one could supply additional information,
such as the elastic constants, to improve the FI. Beyond
second order, the only description of FI we are aware of
is the treatment of third order in Ref. 62. In the present
work, we need a FI scheme for arbitrary order, and there-
fore we implement the most straightforward generaliza-
tion of the usual FI at second order11,62; which amounts
repacking the force tensor into the Wigner-Seitz cell.
Here we outline the various steps in our FI approach.

First, the dynamical tensor needs to be rotated to a com-
mon basis at each Q ∈ Q̃BZ , which is chosen as the naive
basis labeled by each atom and Cartesian displacement:

D
′i1,...,iN
Q =

∑

ℓ1,...,ℓN

N
∏

j=1

U
ijℓj
qj

Dℓ1,...,ℓN
Q (25)

where Ûq are the matrices that transform from the sym-
metrized basis under the little group of q to the naive ba-
sis (provided for graphene in Supplementary Material15,
Table SII), and the index ij is a two tuple containing both
an atom and displacement label, while ℓj is a two tuple

labeling a row of an irreducible representation of the lit-
tle group of qj . Subsequently, the dynamical tensor can
be Fourier transformed to obtain the force tensor:

ΦT =
1

nN−1
q

∑

Q∈Q̃
BZ

D
′
Qe

i2πTr(Q̂T̂
⊺) (26)

where t ∈ T and T ∈ T̃BZ . At this point, {ΦT |T ∈ T̃BZ}
can then be used to predict DQ at an arbitrary Q
point. However, such an interpolation does not guar-
antee point symmetry for Q /∈ Q̃BZ , and therefore an
additional transformation is needed. The basic approach
is to repack ΦT , defined over T̃BZ , into the correspond-
ing Wigner-Seitz cell. To do so, a map W

a1···aN

T , where
ai label one of the na basis atoms in the primitive unit
cell, must be created from the translation points T̃ WS

BZ

defined over the WS BvK supercell to the conventional
BvK supercell T̃BZ .
In order to build W

a1···aN

T , we begin by building wij
t ,

which is the corresponding map from t̃BZ to t̃WS
BZ . The

process of deducing this map is related to finding the
Wigner-Seitz cell associated with ŜBZ , and this is illus-
trated in the case of ŜBZ = ŜK in graphene (see Fig-
ure 2). Figure 2a contains a schematic of the graphene
lattice, with each basis atom labeled by the translation,
in lattice coordinates, of the infinite lattice. The FTG
ŜK is illustrated in red, while the corresponding WS
cell is illustrated in blue and green for centerings on the
first and second carbon atom, respectively. Figure 2b
retains only the six carbon atoms associated with ŜK ,
and the task is to shift all of these atoms by any trans-
lation {tŜK |t ∈ Zd} that maps the atom into or onto
the boundary of the WS cell; and each atom may be
shifted by more than one translation. Figures 2c-d show
the result of this for the two different WS cells, and the
resulting map can be deduced by comparing to Figure
2a:

wi,i
0 = {0} wi,j

0 = {0}
wi,i

ta
= {ta, (0, 1̄), (1̄, 1)} w0,1

ta
= {(0, 1̄)}

wi,i
tb

= {tb, (1̄, 0), (1, 1̄)} w0,1
tb

= {(1̄, 0)}
w1,0

tb
= {tb} w1,0

ta
= {ta} (27)
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Clearly, wi,i
t is purely a property of the lattice, with

t̃WS
BZ =

⋃

t∈t̃bz
wi,i

t , while wi,j
t (i 6= j) will depend on the

relative positions of the basis atoms. Having deduced
{wi,j

t |t ∈ t̃BZ}, any element W
a1···aN

T can now straight-

forwardly be constructed at an arbitrary N within ŜK .
For example, at N = 3 one case is:

W
0,0,1
(0,ta,tb)

= {(0, ta, (1̄, 0)),
(0, (0, 1̄), (1̄, 0)), (0, (1̄, 1), (1̄, 0))} (28)

Once the map is obtained, ΦWS
T can be constructed:

Φ
WS,(a1,α1)···(aN ,αN )
T ′ = |Wa1···aN

T |−1Φ
(a1,α1)···(aN ,αN )
T

(29)

where T ′ ∈ W
a1···aN

T . Finally, an arbitrary Q can be
constructed as

DQ =
∑

T∈T̃ WS
BZ

ΦWS
T e−i2πTr(Q̂T̂

⊺) (30)

This procedure has been straightforwardly executed on
graphene up to N = 5 (see Section IV).
As an illustration, we provide the Fourier Interpolation

of graphene at second order for ŜBZ = 1̂, ŜBZ = ŜK ,
and ŜBZ = 121̂ (see Figure 3). The data points denote
frequencies at specific q which result from direct mea-
surement, while the lines are the result of the Fourier
interpolation, and it is clear that all symmetries are sat-
isfied. We emphasize that only the data points are ro-
bust, and the lines are only reliable for a sufficiently large
FTG. Given that there are no repeating irreducible rep-
resentation for ŜBZ = 1̂ and ŜBZ = ŜK , the phonon
frequencies at the irreducible representations of the FTG
can be obtained without any matrix diagonalization (see
caption of Figure 3).

III. FINITE DISPLACEMENT METHODOLOGY

A. Statement of problem

Having developed a Taylor series purely in terms of
space group irreducible derivatives at order N , we now
turn to the problem of how to compute these derivatives
using finite displacements; while exploiting perturbative
derivatives (e.g. Hellman-Feynman forces) up to order
η, with η < N , that the first-principles approach may
provide. We refer to the order η perturbative derivatives
as PDη.
Generically speaking, we define a finite displacement

method as any method which explicitly moves the nuclei
and fully computes the electronic structure. There are
now many techniques which use a first-principles molec-
ular dynamics trajectory as a source of data from which
to fit46,47,90, and this would fall under the category of
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FIG. 2. (a) Schematic of the graphene crystal structure,
where yellow hexagons represent lattice points and circles rep-
resent carbon atoms; and each carbon atom is labeled by two
integers which correspond to a translation in lattice coordi-
nates. The ŜK supercell is shown in red, and the correspond-
ing WS cell is shown in blue and green for a centering on
the first and second carbon atom, respectively. (b) Schematic

showing t ∈ t̃BZ for ŜBZ = ŜK along with the correspond-
ing basis atoms. (c) Schematic showing how the basis atoms

are translated back into the WS cell using some vector tŜK â,
with t ∈ Z

d, where the centering of the WS cell is on the first
carbon atom. (d) Same as (c) but with the WS cell centered
on the second carbon atom.

a finite displacement approach. Furthermore, those ap-
proaches extracting third order derivatives from a molec-
ular dynamics trajectory could obviously exploit our hi-
erarchical supercell approach outlined in Section III B,
though we do not pursue such a program in this work
because we believe fitting tens to thousands of param-
eters simultaneously should always be a method of last
resort. Instead, we seek to use central finite difference,
where the only simultaneous fitting involved is that of a
quadratic function which has two parameters, and order
N derivatives are isolated from all other orders.

We define two finite difference based approaches at
competing extremes: the lone irreducible derivative
(LID) and the bundled irreducible derivative (BID) ap-
proach. The LID approach measures the smallest possi-
ble number of irreducible derivatives simultaneously, sac-
rificing efficiency for accuracy, while BID simultaneously
measures the maximum number of irreducible derivatives
that the perturbative derivatives will allow, prioritizing
efficiency over accuracy. A spectrum possibilities exists
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FIG. 3. Phonons of graphene within DFT for ŜBZ = 1̂,
ŜK , and 121̂, where data points are direct computational
measurements and lines are Fourier interpolation. The ir-
reducible derivatives for 1̂ and ŜK are shown in Table I; and
the corresponding frequencies are obtained, in units of s−1, as

ωα
q =

√

dαα
q̄q /m, where m = 12.011 · 1.0364× 10−28eV · s2/Å2

for carbon. The y-axis plots ωα
q /(2πc), where c is the speed

of light in units of cm/s.

between these two approaches, though we focus on these
two extremes. Both LID and BID can be executed in
a single-supercell approach, performing all calculations
within the BvK supercell ŜBZ , or a hierarchical supercell
approach, where each irreducible derivatives is measured
in the smallest corresponding supercell allowed by group
theory. We proceed by first outlining how to derive the
smallest supercell that will accommodate an arbitrary set
of N waves q ∈ Q. We emphasize that this question is
generic to any sort of waves within the lattice.

B. Minimum supercell problem

The following unresolved problem is of utmost impor-
tance in any finite displacement approach: given Q, find

the smallest possible supercell, denoted ŜQ , that accom-
modates all N vectors q ∈ Q. Mathematically, we de-
mand that all q ∈ Q are identity representations of

the supercell, Q̂Ŝ
⊺

Q ∈ Z
(N ,d), with the constraint that

| det(ŜQ)| is a minimum. Recall that
∑

q∈Q q ∈ Zd,

which demands that a supercell which accommodates any
N − 1 of the q ∈ Q will automatically accommodate the
remaining q . Therefore, we are free to remove any one

row from Q̂. Furthermore, it is useful to work with a

purely integer equation, so we define a new matrix Q̂
′
,

which is obtained by removing any row from Q̂ and mul-
tiply by L; where L is the least common denominator for

all components of q ∈ Q. The matrix Q̂
′
is a (N −1)×d

matrix of integers, and the commensuration requirement

becomes Q̂
′
Ŝ
⊺

Q(mod L) = 0̂, where 0̂ is a (N − 1) × d

dimensional zero matrix. Finally, the mathematical re-
quirement for a valid ŜQ is

ŜQ ∈ argmin
n̂∈Z(d,d)

{|n̂| : Q̂′
n̂⊺(mod L) = 0̂, |n̂| ≥ 1} (31)

Performing this minimization is achieved by construct-

ing the modulo L kernel of Q̂
′
, which is obtained by

bringing Q̂
′
into Smith Normal Form (SNF)91, denoted

N̂; and this is achieved via elementary row and column
operations:

N̂ = R̂Q̂
′
Ĉ (32)

where N̂ is a (N−1)×d diagonal matrix of integers, R̂ is a
(N −1)×(N −1) unimodular matrix of integers obtained
from a sequence of elementary row transformations, and
Ĉ is a d×d unimodular matrix of integers obtained from
a sequence of elementary column transformations.
The modulo L kernel of N̂ can be formed as

ker(N̂)i =
L

gcd(L,Gii)
ei

Gii = Nii if i ≤ N − 1

Gii = L if i > N − 1
(33)

where ei is a unit vector in Zd and the matrix ker(N̂)

consists of d column vectors ker(N̂)i ∈ Z
d. Therefore,

we have

R̂Q̂
′
Ĉ ker(N̂)(mod L) = 0̂ (34)

Finally, we can then define a given basis vector of the

kernel of Q̂
′
and the resulting supercell

ker(Q̂
′
) = Ĉ ker(N̂) ŜQ = ker(Q̂

′
)⊺ (35)

though it should be emphasized that this supercell is not
unique and may be reshaped. Most importantly, the mul-
tiplicity of the supercell is

det(ŜQ) =
Ld

∏d
i=1 gcd(L,Gii)

(36)

We refer to Eq. 36 as the Minimum Supercell Multiplic-
ity (MSM) equation. Given that calculating the Smith
Normal Form is computationally inexpensive for d ≤ 3
at any realistic N , the MSM equation can be efficiently
evaluated. In order to clearly illustrate this approach, a
worked example is provided in Appendix C.
Under certain restrictions, the largest necessary su-

percell multiplicity of a given FTG can be determined
from Eq. 36 a priori. For any FTG of an arbitrary d-
dimensional crystal at N = 2 (i.e. phonons), in addition

to FTG’s corresponding to ŜBZ = n1̂, where n ∈ Z
+, at

arbitrary order N , the largest necessary supercell multi-

plicity is L
min(N−1,d)
m (see Section II B for Lm). Restated

in equations, we have

N = 2 ∨ Ŝbz = n1̂ ⇒ max
Q∈Q̃

BZ

|ŜQ | = Lmin(N−1,d)
m (37)
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The above can be proven in two parts. For N = 2, an
arbitrary q = (q1/Lm, q2/Lm, . . . , qd/Lm), where 0 ≤
qi < Lm and qi ∈ Z, and we have N11 = gcd(q1, . . . , qd).

Since Q̂
′
is a single row, the multiplicity is

det(ŜQ) =
Lm

gcd(Lm, N11)
=

Lm

gcd(Lm, q1, . . . , qd)
(38)

Given that the minimum of the denominator is 1, the
maximum multiplicity is Lm. For the case of ŜBZ = n1̂
at arbitrary N , we have Lm = n and therefore qi =
(qi,1/n, . . . , qi,d/n); where qi,j ∈ [0, n − 1] and qi,j ∈ Z.
Then, we have

det(ŜQ) =
nmin(N−1,d)

∏min(N−1,d)
i=1 gcd(n,Gii)

(39)

The worst case is gcd(n,Gii) = 1, yielding a maximum
multiplicity nmin(N−1,d).
Eq. 37 has far reaching implications which should be

appreciated. For typical materials systems (i.e. d =
1, 2, 3), Eq. 37 dictates that phonons can always be ob-
tained from a collection of supercells of multiplicity Lm,
as was only recently realized76. Moreover, for three di-
mensional materials with a FTG of ŜBZ = n1̂, cubic
terms can always be obtained from a collection of super-
cells of maximum multiplicity n2, proving that the BvK
supercell can always be avoided for cubic terms in this
common scenario.
Given that our approach produces the required super-

cells, there is no need to use a dedicated algorithm, such
as Ref. 92, to generate all distinct supercells of a given
multiplicity (i.e. all distinct Hermite Normal forms) and
determine if Q is commensurate, as executed in the spe-
cial case of N = 2 in Ref. 76.

C. Central finite difference

Central finite difference (CFD) is the method of choice
in this study for computing an arbitrary derivative using
finite displacements. The main virtue of CFD is that the
error is a quadratic function of the discretization param-
eter ∆. Given perturbative derivatives of order η (where
η < N ), denoted PDη, the order N ′ = N − η derivatives
of the PDη from CFD is obtained as the intercept of the

following even function (the indices of u
(b,β)
t , u

(α,a)
q are

compressed to ui for brevity):

V
u′
1...u

′
η

u1...uN′
(∆) =

∑

n1,··· ,nN′=(−1,1)

(

∏N ′

i=1 ni

)

V u′
1...u

′
η ({ni∆})

2N ′∆N ′

=
∂N

′

V u′
1...u

′
η

∏N ′

i=1 ∂ui
+O(∆2) + · · · (40)

where V u′
1...u

′
η is a given perturbative derivative (η = 0

implies V , etc.), the variables u1 . . . uN ′ are the argu-
ments of the order N ′ CFD derivatives, and ∆ is a posi-
tive real number. Higher order CFD derivatives of a given

variable are obtained by repeating the same variable. A
given ∆ for an order N ′ derivative will require up to

2N
′

evaluations of V u′
1...u

′
η . The intercept of the Eq. 40

gives the value of the order N derivative of V , and CFD
guarantees that the leading order correction of an order
N ′ derivative is comprised of the order N ′ + 2 deriva-
tives; which dictate the strength of the quadratic error
tail (see Ref. 52 for additional details). Every evaluation

of V u′
1...u

′
η at a given ∆ requires the numerical solution

of some first-principles method (e.g. Kohn-Sham equa-
tion of DFT) which is subject to it’s own discretization
errors (e.g. plane-wave cutoff, etc). Therefore, for suf-
ficiently small ∆, the finite difference will be dominated
by errors; while if ∆ is too large, then the results will
be beyond the quadratic regime. One needs to ensure
that the quadratic regime is obtained such that a valid
extrapolation ∆ → 0 can be obtained: a practical but
essential point. We will demonstrate that this quadratic
extrapolation can typically be achieved even for N ′ = 4
within DFT (i.e. fifth derivatives of the energy if the
forces are being used).

Choosing the discretization grid is an interesting opti-
mization problem in its own right, and we aim for sim-
plicity in this work; given that the current status quo at
N ′ = 1 and even sometimes N ′ = 2 is simply choosing a
single delta based on experience. At least three ∆ would
be needed to compute an error associated with fitting a
quadratic. In this work, we typically compute up to fif-
teen ∆ for a given derivative, which is normally excessive,
but it allowed for the testing of various schemes for op-
timizing the quadratic fit. Typical ranges of ∆ for force
derivatives (η = 1) were ∆ = 0.005− 0.05Å for N ′ = 1;
∆ = 0.01 − 0.1Å for N ′ = 2; and ∆ = 0.01 − 0.15Å for

N ′ = 3, 4. Given V
u′
1...u

′
η

u1...uN′
(∆) evaluated over some set of

N different ∆, we need to choose which points to use in
the least squares fit of the quadratic error tail. To do so,
we construct the least squares fit for all sets of ∆ obtained
from choosing n from N , where n ∈ [4, N ]. Clearly, the
smallest number of points will always deliver the smallest
error, so we choose our metric to be the standard error
of the fit divided by the number of points used in the
fit. We reiterate that there are many different schemes
one can choose, and in some situations it will suffice to
choose a single ∆, such as someN ′ = 1 derivatives, but it
is difficult to know a priori. An illustration of the result
of choosing the quadratic error tail can be seen in Figure
4, which will be discussed in Section IIID.

Hereafter, we refer to the determination of all deriva-
tives associated with a given choice u1 . . . uN ′ as a single
“measurement” (i.e. evaluating Eq. 40 for some num-
ber of ∆ with a fixed choice u1 . . . uN ′ and extrapolating
∆ → 0), and this should not be confused with a single
calculation; as the number of calculations is determined
by the number of ∆ and the specific basis vectors one
chooses. Given that different practitioners will choose
different numbers of ∆, the number of measurements
is what should be compared when contrasting different
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methods of extracting all derivatives. Finally, it should
be noted that the cost of obtaining n distinct ∆ may be
considered to be far less than performing n independent
calculations, given that the wave function of the (n− 1)-
th ∆ can be used to seed the n-th ∆ at a great reduction
in computational cost; and we exploit this.

D. Individually resolving irreducible derivatives:

lone irreducible derivative approach

The first procedure we outline involves measuring a
single irreducible derivative at a time, or as few as group
theoretically possible, which we call the lone irreducible
derivative (LID) approach. This approach encompasses
the original frozen phonon approach70, but we apply it
under the most general conditions. We emphasize that
LID specifically refers to irreducible derivatives of the
space group, and not simply irreducible derivatives of
the translation group. While the LID approach can be
executed in either a single or hierarchical supercell ap-
proach, there would never be a reason to use the former,
and therefore LID will always imply the use of a hierar-
chical supercell approach.
If the first-principles method to evaluate V does not

provide any perturbative derivatives, then LID is a natu-
ral choice. While any complete basis can be employed at
the same cost, directly probing a given irreducible deriva-
tive could help circumvent potential numerical problems.
If perturbative derivatives PDη are available, where η <
N , LID becomes an inefficient choice, as the most ef-
ficient possibility is to simultaneously measure a maxi-
mum number of irreducible derivatives at once (see Sec-
tion III E and III F for the bundled irreducible derivative
approaches). However, LID is still essential in that it
should be the method of choice for the most accurate
measurement of a given irreducible derivative. For ex-
ample, when constructing a Taylor series of a particular
mode associated with a structural phase transition, LID
is the method of choice to ensure that each irreducible
derivative is resolved as precisely as possible.
Given that the irreducible representations of the trans-

lation group are inherently complex numbers, uq are in
general complex. Therefore, a unitary transformation to
a real representation is needed:

uqc =
1√
2
(uq + uq̄ ) uqs =

i√
2
(uq̄ − uq ) (41)

We refer to this basis as the “real-q” representation,
and it should be emphasized that these functions do not
transform like irreducible representations of the transla-
tion group, though this is easily accounted for.
Given some irreducible derivative dα1...αN

q1...qN
, one needs

to determine which corresponding real-q derivatives need
to be measured. The first point to appreciate is that an
irreducible derivative will in general be a complex num-
ber; though specific cases may be purely real due to the
combination of time reversal and inversion symmetry, or

if all {uq |q ∈ Q} are purely real (e.g. Γ-point). We
begin by considering the simplest case of PD0. A com-
plex derivative will require at least two measurements, in
order to recover both the real and imaginary parts. For
example, in order to determine the second order com-
plex derivative dα1α2

q̄ q , where α1 and α2 are different in-
stances of the same irreducible representation, then the
chain rule in conjunction with Eq. 41 indicates that two
derivatives must be measured, such as V α1α2

qcqc and V α1α2
qcqs ;

where we use notation from Section IIA and abbrevi-
ate (αi, ai) → αi, where ai is a row of the irreducible
representation determined from the symmetric product.
If inversion symmetry is present, then a pre-determined
phase convention exists such that dα1α2

q̄q can be chosen to

be real, and only V α1α2
qcqc would need to be measured, as

V α1α2
qcqs would be zero by symmetry.
The same logic applies at higher order, though there

are differences to consider. When using the real-q rep-
resentation at higher order, it is possible that multi-
ple irreducible derivatives will inherently be probed si-
multaneously. For example, consider the fourth order
derivative dα1α2α3α4

q̄ q̄ q q , where αi are all distinct irreducible
representations. In this case, any possible derivative
V α1 α2 α3 α4
qr1qr2qr3qr4 , where ri ∈ {c, s}, will inherently probe

six complex irreducible derivatives:

dα1α2α3α4
q̄ q̄ q q dα1α3α2α4

q̄ q̄ q q dα1α4α2α3
q̄ q̄ q q

dα3α4α1α2
q̄ q̄ q q dα2α4α1α3

q̄ q̄ q q dα2α3α1α4
q̄ q̄ q q (42)

Consequently, the chain rule dictates that six real-q
derivatives must be measured, such as:

V α1α2α3α4
qcqcqcqc V α1α2α3α4

qcqcqcqs V α1α2α3α4
qcqcqsqc

V α1α2α3α4
qcqsqcqc V α1α2α3α4

qsqcqcqc V α1α2α3α4
qcqcqsqs (43)

Therefore, in the most general case, multiple irreducible
derivatives must be simultaneously considered even in the
LID approach, though in many cases a single irreducible
derivative can be probed.
Now we consider LID in the case where there are per-

turbative derivatives, and we focus on the common sce-
nario of PD1 (i.e. Hellman-Feynman forces). We can
now reexamine the previous two examples. In the case
of the complex derivative dα1α2

q̄q , both the real and imag-
inary parts can be simultaneously measured, given that
a derivative along uα2

qc will generate V α1α2
qcqc and V α1α2

qsqc , in

addition to V α2α2
qcqc and V α2α2

qsqc . Therefore, even though
our intent was to measure a single irreducible derivative,
we immediately obtain a second one given that we have
repeating irreducible representations in this example. In
the simpler case of dααq̄q , PD1 has precisely the same cost
as PD0 given that both cases require one measurement
(assuming the undistorted energy is known); though PD1

has the possibility of performing forward finite difference
which would save a factor of two.
For the case of dα1α2α3α4

q̄ q̄ q q using PD1, all six real-q
derivatives can be obtained from three measurements of
the N ′ = 3 derivatives of the forces: {uα2

qc , uα3
qc , uα4

qc},
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{uα2
qc , uα3

qc , uα4
qs}, and {uα2

qc , uα3
qs , uα4

qc}. Therefore, PD1 will
save a factor of two in this case.
We executed the LID approach using PD1 for graphene

atN=2, 3, 4, and 5, with FTG up to ŜBZ=121̂, 2ŜK , 21̂,
and 21̂, respectively. In Figure 4, we provide an example
for N=3, 4, and 5, where each data point corresponds to

a single evaluation of V
u′
1

u1...uN′
(∆) (i.e. up to 2N

′

DFT

calculations for a given ∆). The red line is a quadratic
fit to a subset of the points, as described in Section III C,
and the intercept of this curve is the value of the indicated
derivative. The values of all irreducible derivatives for
ŜBZ = ŜK at N = 2 and N = 3 are given in Table I,
while the values for 31̂ and Ŝ2K at N = 3 are given in
Supplementary Material15 in Table SIII.
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FIG. 4. All panels display central finite difference calcula-
tions as a function of ∆; points are calculated values while
the red line is a quadratic fit to a subset of points chosen by
the algorithm defined in Section IIIC. Panels (a), (b), and (c)
display a particular third, fourth, and fifth order space group
irreducible derivative, respectively, as obtained using the LID
method with PD1. The horizontal dashed lines show the re-
sult of the SS-BID method, where many irreducible derivative
are simultaneously extracted.

TABLE I. A table of the irreducible derivatives for graphene
at N = 2 and N = 3 with ŜBZ = ŜK . Units are eV/ÅN .

Derivative Value Derivative Value

d
B2gB2g

Γ Γ 35.417 d
E2gE2g

Γ Γ 113.986

d
A

′
1A

′
1

K̄ K
80.806 d

A
′
2A

′
2

K̄ K
43.951

d
E

′
E

′

K̄ K
69.174 d

E
′′
E

′′

K̄ K
12.708

d
E2gE2gE2g

Γ Γ Γ 425.751 d
A

′
1A

′
1A

′
1

K K K
440.064

d
A

′
1A

′
2A

′
2

K K K
11.138 d

A
′
1E

′
E

′

K K K
289.379

d
A

′
1E

′′
E

′′

K K K
−53.543 d

E
′
E

′
E

′

K K K
−239.640

d
E

′′
E

′′
E

′

K K K
24.732 d

B2gE
′
E

′′

Γ K̄ K
−41.699

d
E2gA

′
1E

′

Γ K̄ K
−455.829 d

E2gA
′
2E

′

Γ K̄ K
−50.356

d
E2gE

′
E

′

Γ K̄ K
204.211 d

E2gE
′′
E

′′

Γ K̄ K
−32.416

E. Maximally exploiting perturbative derivatives:

bundled irreducible derivative approach

Here we consider the most efficient approach for ex-
tracting order N derivatives given PDη, where η < N ,
while restricting all calculations to the BvK supercell
ŜBZ ; and this latter constraint will be removed in the
next section. The intent is to determine as many irre-
ducible derivatives as possible in a given measurement,
and therefore we refer to this approach as bundled irre-
ducible derivative (BID) approach; and given the use of
the BvK supercell, we refer to this as the single-supercell
bundled irreducible derivative (SS-BID) approach. In
any BID approach, a basis is explicitly chosen to maxi-
mally avoid the block diagonal structure of the dynamical
tensor. For simplicity, we focus on the most common case
where only forces are a priori known, PD1, though gen-
eralizing to other cases is straightforward. We have al-
ready defined the total number of unknowns which must

be computed in the BvK supercell ŜBZ as nŜBZ

ir . We
now must determine the total number of measurements,

denoted nŜBZ
m , in some specifically chosen basis which is

yet to be determined. It is straightforward to a priori

determine the upper bound of nŜBZ
m using group theory

alone for N = 2.

nŜBZ
m ≤ max

q∈q̃BZ ,α∈Uq

⌈

aαq

|s̃q|

⌉

(44)

where aαq is the number of times the α irreducible rep-
resentation repeats at q , and the outer bracket denotes
the ceiling function. For a detailed example illustrating
this procedure at second order in ZrO2, see Appendix B.

Beyond second order, it is not straightforward to find
the upper bound, but it is straightforward to determine
the lower bound at arbitrary N using a counting argu-
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ment:

nŜBZ
m ≥

⌈

nŜBZ

ir

(nqnanp − d)

⌉

(45)

where the numerator is the number of irreducible deriva-
tives and the denominator is the number of nonzero force
equations nŜBZ

F = nqnanp − d. The exact nŜBZ
m can

straightforwardly be determined by explicit calculation.

Having determined the bound of nŜBZ
m , the specific

choice of basis, which we call the “bundled basis”, must
be constructed for all measurements; being a set of
real displacement vectors {bi1, . . . , biN−1}, where i =

1, . . . , nŜBZ
m . It is useful to store the (nqnanp − d)nŜBZ

m

measured derivatives stacked into a vector VŜBZ

b , and all

nŜBZ

ir irreducible derivatives which are contained within

ŜBZ are stored in the vector dŜBZ

ir . The order (N − 1)
chain rule generates a linear system of equations which

relates the derivatives in the bundled basis VŜBZ

b to the

irreducible basis dŜBZ

ir : VŜBZ

b = ĈŜBZdŜBZ

ir ; where ĈŜBZ

is the (nqnanp − d)nŜBZ
m × nŜBZ

ir complex chain rule ma-
trix. A necessary condition for the bundled basis is that

rank(ĈŜBZ ) = nŜBZ

ir . The choice of bundled basis is not
unique, but an obvious criterion is to minimize the condi-

tion number of ĈŜBZ , which will ensure a minimal prop-

agation of error upon solving for dŜBZ

ir . We explored this
possibility by generating thousands of random bundled
basis sets and choosing the one with the smallest condi-
tion number. We refer to this as the condition number
optimized (CNO) bundled basis. The only downside to
this is that it is inconvenient to disseminate the choices
that we made.
A simple option is to create a sequence of rational num-

bers using the FTG’s of a one dimensional lattice:

j =

∞
⋃

n=1

q̃n = {0, 1
2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
, . . . } (46)

where q̃n corresponds to q-points in one dimensional su-
percell n. The first bundled vector is obtained by iter-
ating over every displacement within ŜBZ and imparting
an amplitude of cos(2πjnn), where jn is the nth element
of the set j and n has an inner loop running over the np

displacements and an outer loop running over all nanq

atoms in ŜBZ . The remaining bundled basis vectors are
generated by continuing along the sequence j. We refer
to this as the simple bundled basis (SBB), and in all cases
we tested the vectors generated in this manner did ful-

fill rank(ĈŜBZ ) = nŜBZ

ir . While the condition number of

the resulting ĈŜBZ for SBB will generally be larger than
the CNO basis, the differences in the resulting irreducible
derivatives were typically very small (direct comparisons
are made in Supplementary Material15, Figure S3). All
BID results in this paper were generated using the SBB
basis unless otherwise noted.

We illustrate some specific results using BID in Figure
4, indicated by a dashed line. As shown, the results agree
with the LID approach to within fractions of a percent.
This excellent agreement signifies that we successfully re-
solved the quadratic error tails within the SBB bundled
basis, indicating that the Hellman-Feynman forces were
maximally harnessed without any appreciable loss in pre-
cision.

Given that our method works purely in terms of irre-
ducible derivatives, we are guaranteed to satisfy all possi-
ble symmetries of the order N Taylor series by construc-
tion; and our BID approach allows them to be extracted
in the smallest number of measurements. Therefore, it is
useful to compare with competing approaches which im-
plement symmetry using extrinsic real space symmetry
approaches, and we focus on the example of the rock salt
structure at N = 3.

A recent paper compared the efficiency of three pop-
ular approaches to compute cubic terms using finite
displacements85, which we shall label by the codes
which implement them: AAPL85, Phono3py93, and
ShengBTE84. Figure 5a replots the results that were
presented in Ref. 85, which determines the number of
DFT calculations required to determine all cubic deriva-
tives within some real space cutoff shell within a given
supercell, and serves as a measure of the extent to which
symmetry has been accounted for. We have reproduced
the results for the case of Phono3py, which ensures we
have properly understood the conventions and assump-
tions when using Phono3py in Ref. 85; and we assume
that the analogous procedures were applied for AAPL
and ShengBTE, as we did not attempt to interpret the
choices made in executing these latter codes.

It is important to first clarify the x-axis of Figure 5a,
which we labeled as being both the “Neighbor Shell” and
ŜBZ = x1̂. For the competing approaches (i.e. AAPL,

Phono3py, and ShengBTE), this means that a ŜBZ = x1̂
supercell is constructed and only derivatives within a
x-neighbor shell are retained. Alternatively, when we
used our SS-BID method for comparison, we compute
all possible derivatives which exist within ŜBZ = x1̂.
Therefore, this is not a fair comparison with respect to
our space group irreducible approach. It is worth not-
ing that if one does not include a real space trunca-
tion in the Phono3py code, allowing it to compute all
derivatives within the supercell, the numbers are sub-
stantially larger. For example, if one execute ŜBZ = 31̂
in Phono3py without any truncation, the number of DFT
runs increases to 194; nearly doubling as compared to the
truncated case (i.e. x = 3 in Figure 5a).

Figure 5a shows that AAPL, Phono3py, and Sheng-
BTE all overestimate the actual number of calculations
which are required to extract all irreducible derivatives
within the supercell. To give an idea of the compu-
tational speedup, we assume that the first-principles
method will scale as the square of the number of
atoms21,22, and plot the total time in Figure 5b, demon-
strating a substantial gain over all competing approaches.
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In order to clearly demonstrate the group theoretical
nature of our results, we explicitly list all irreducible
derivatives for the case of ŜBZ = 21̂ in Appendix A.
As shown, there are 33 real irreducible derivatives and
these can all be obtained within a single measurement
according explicit calculation. We emphasize that the
result of our group theoretical analysis is not original in
this case, as Birman et al. first derived all possible re-
sults for a third order product, symmetric or otherwise,
in Fm3̄m94.
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FIG. 5. Complexity analysis for rocksalt structure at
N = 3, comparing existing published methods (ShengBTE,
Phono3py, and AAPL, taken from Ref. 85) with our ap-
proaches (SS-BID and HS-BID); including (a) number of re-
quired DFT calculations and (b) time complexity assuming
that the DFT calculations scale quadratically with system
size21,22. Existing methods only calculate the derivatives out
to the x neighbor shell (where x is the horizontal axis) within

supercell ŜBZ = x1̂, while our methods computes all deriva-
tives within the corresponding supercell.

F. Bundled irreducible derivatives with

hierarchical supercells

Here we consider an alternative BID approach which
demands that each irreducible derivative is computed
within the smallest possible supercell in which it fits; and
we refer to this as the hierarchical supercell bundled ir-
reducible derivative (HS-BID) approach. Our Minimum
Supercell Multiplicity equation dictates that for three di-
mensional materials having uniform supercells, the BvK

supercell can be completely avoided forN ≤ 3, and there-
fore HS-BID will yield a substantial increase in compu-
tational efficiency for first-principles approaches which
scale in a super-linear fashion, as most do, despite the
fact that more total calculations are required.
The first step is to categorize the smallest supercell

into which each irreducible derivatives fits. Therefore,
for all S̃ ∈ S̃BZ , we must determine the smallest super-

cell ŜS̃ which contains at least one Q ∈ S̃ ; and the set of

all supercells is denoted as S̃BZ , where |S̃BZ | ≤ |Q̃IBZ |.
Additionally, we construct a set S̃

Ŝ
which contains the

set of all S̃Q commensurate with Ŝ. Furthermore, for ev-

ery S̃
Ŝ
, we create a subset denoted S̃∨

Ŝ
, which consists of

all orbits S̃Q that are contained by Ŝ and not contained

by any Ŝj where | det(Ŝj)| < | det(Ŝ)|. Now, the number
of irreducible derivatives which must be computed in a

given supercell is n∨Ŝ
ir =

∑

S̃∈S̃∨

Ŝ

n
S̃
ir. We will also de-

fine corresponding quantities S̃∧
Ŝ
and n∧Ŝ

ir to characterize

the irreducible derivatives in Ŝ which are contained in a

smaller supercell; where nŜ
ir = n∨Ŝ

ir + n∧Ŝ
ir .

In order to illustrate the definitions in the preceding
paragraph, we consider graphene at N = 3 and ŜBZ =
31̂, where

Q̃IBZ = { [Γ,Γ,Γ] ,
[

Γ, K̄,K
]

, [K,K,K] , [Γ,∆0,∆3] ,

[∆0,∆0,∆0] , [K,∆0,∆5] , [∆0,∆2,∆4]} (47)

with the notation taken from Figure 1b. The set of su-
percells S̃BZ is:

S̃BZ =
{

1̂, ŜK , 21̂+ σ̂x, 31̂
}

(48)

Finally, the S̃∨
Ŝ
for each Ŝ ∈ S̃BZ is:

S̃∨
1̂
= {[Γ,Γ,Γ]} S̃∨

ŜK
= {[K,K,K] ,

[

Γ, K̄,K
]

}
S̃∨
21̂+σ̂x

= {[∆0,∆0,∆0] , [Γ,∆0,∆3]}
S̃∨
31̂

= {[K,∆0,∆5] , [∆0,∆2,∆4]} (49)

Here we see that only two out of the seven total Q need
to be computed in the BvK supercell; though it should
be noted that those two have the lowest symmetry.
The next step is to determine the bundled basis for

each Ŝ ∈ S̃BZ . Therefore, we split dŜ
ir into two separate

vectors dŜ
∨ and dŜ

∧ containing the irreducible derivatives
which do not (∨) and do (∧) fit into a smaller super-
cell, respectively. Similarly, the previously defined chain

rule matrix ĈŜ can be split into two respective pieces

ĈŜ
∨ and ĈŜ

∧. Finally, we can obtain the unknown deriva-

tives which only fit in Ŝ: dŜ
∨ = (ĈŜ

∨)
+(VŜ

b − ĈŜ
∧d

Ŝ
∧),

where (ĈŜ
∨)

+ refers to the pseudoinverse. A necessary

condition for the bundled basis is that rank(ĈŜ
∨) = n∨Ŝ

ir ,
and the basis can be chosen using the same schemes as
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described for SS-BID. Once the bundled basis has been
chosen for each Ŝ ∈ S̃BZ , the CFD measurements can
be performed, and then the irreducible derivatives can
be extracted from the smallest to largest supercell. It
should be noted that all calculations can be performed
simultaneously, given that the bundled basis can be de-
termined a priori.
The only remaining idea to be introduced is the no-

tion of “overbundling” irreducible derivatives. Given

that n∨Ŝ
ir /n

Ŝ
F is typically not a round number, it may be

possible to obtain irreducible derivatives which fit in a
smaller supercell for free. Specifically, derivatives tallied

in n∧Ŝ
ir may possibly be added without any increase in

nŜ
m; though in general the bundled basis will need to be

modified to properly sample the additional derivatives.
It is useful to compare the performance of HS-BID

with SS-BID, in addition to the competing approaches
(see Figure 5b). Assuming the first-principles method
scales quadratically with system size, HS-BID is more
than an order of magnitude faster than all competing ap-
proaches that we examined. The speedup would be far
more dramatic for first-principles methods with poorer
scaling, such as hybrid functionals. It should be empha-
sized that the speedup of HS-BID compared to SS-BID
will be far more dramatic for N = 2 as compared to
N = 3, treated in this example. Given the efficiency
of our new methods, crystals with increasingly complex
unit cells may be treated using DFT, and methods which
scale poorly (e.g. hybrid functionals) may now be used to
compute phonons and their interactions more regularly.
Finally, we discuss factors related to the quality of the

measurements. Given that some measurements may be
deficient (i.e. poor quadratic error tails), it may be eas-
ier to simply dispense with them as opposed to fixing
them. For example, if one is not overbundling, there
may be room to simply remove a derivative while keep-
ing the chain rule matrix full rank; and we refer to this
as “pruning”. If not, one can simply add additional mea-
surements, which we refer to as “overmeasuring”, and
then one can prune away the problem derivatives.

IV. ASSESSING THE RESULTS

A. General Considerations

No matter what formalism is used to compute the Tay-
lor series of the Born-Oppenheimer surface, one needs
some clear criteria to assess the quality of the results.
Many studies predict some observable and then compare
to experiment. This is not an ideal test on its own,
even if successful, because it easily allows for a cancel-
lation of errors and human bias to interact in a dan-
gerous manner; especially so when an approach simul-
taneously fits many derivatives. Ideally, the test should
be purely self-consistent, only answering how well the
Born-Oppenheimer surface of the first-principles method

at hand is captured. In this vein, some studies com-
pare their results to first-principles molecular dynamics
on small supercells. We note that first-principles molecu-
lar dynamics contains the Taylor series to infinite order,
so failure will not differentiate between a poor expan-
sion and activation of higher order terms not included in
the expansion being tested. Furthermore, one can only
probe relatively small FTG’s in this manner, due to the
computational expense of first-principles approaches.
Here we consider several different validations for Taylor

series, the first being completely generic to any method,
and the others being specific to finite displacements. The
first is the strain derivatives of the phonons, where the N -
th order strain derivative will result in an infinite range
coupling of the (N + 2)-th order force tensor. This is
an ideal test in that strain derivatives can efficiently be
calculated by simply perturbing the lattice vectors in the
context of a phonon calculation; which will not alter the
number of atoms within the unit cell in any given calcula-
tion. A usual scenario is the first volume derivative of the
phonons, which, in conjunction with the phonons, gives
rise to the well-known Grüneisen parameters1. Further-
more, the Grüneisen parameters are directly connected
to thermodynamic observables, and therefore properly
resolving them is physically well justified; which is why
Grüneisen parameters have often served as a test of cubic
phonon interactions82. The other two tests we perform
are more specific to finite displacement calculations: as-
sessing the quality of the quadratic error tails and com-
paring results of BID and LID approaches. Below we
illustrate all three tests.

B. Strain derivatives of the phonons

We begin by assessing the order N strain derivatives,
and we restrict our attention identity strains (i.e. uni-
form in all directions) for simplicity. Taylor series ex-
panding the dynamical tensor to first order for N selected
qi, contracting with the corresponding acoustic displace-
ment vectors to leading order in q , taking the small q
limit of the corresponding displacements, and taking the
identity strain derivatives, we arrive at an analytic ex-
pression for the N -th order identity strain derivative of
the dynamical matrix. We have restricted ourselves to
crystals which have no internal degrees of freedom, re-
sulting in the following equation:

∂NDmn
q̄ q

∂ǫNA
=

√

nN
a

dN

∑

t

e−i2πq·t
∑

t1...tN
b1...bN
β1...βN

Φ
m,n,(b1,β1),...,(bN ,βN )
0, t, t1, ...,tN

∑

α1...αN

N
∏

k=1

(tkâ +Abk) · eαk
〈u(bk,βk)

Γ |ψαk

Γ 〉

(50)
where ǫA is the unnormalized identity strain, ei is a d-
dimensional unit vector, and |ψα

Γ〉 is an acoustic vector
at the zone center. For crystals with internal degrees of
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FIG. 6. (a) Grüneisen parameters of graphene directly mea-
sured using identity strain derivatives of the phonons and
Fourier interpolation (blue points and lines; diamonds and
circles correspond to out-of-plane and in-plane modes, respec-
tively) and via Eq. 50, which uses the cubic irreducible deriva-
tives at various mesh densities. Panels (b) and (c) follow the
same conventions, but for the second and third strain deriva-
tives, respectively; and both panels display the LID results for
21̂ in gray, showing near perfect agreement with BID results.

freedom, or for arbitrary strain states, one must explicitly
compute the first order corrections to the q dependence
of the acoustic modes; and this requires the phonons (for
N = 1, see Refs. 95 and 96 for further details). The key
point is that it is straightforward to directly measure the
left hand side of Eq. 50 by computing the phonons at
a series of different uniform strains, resulting in a set of
strain derivative of the phonons defined over some FTG
which can then be Fourier interpolated. Additionally, the
corresponding quantity can be predicted purely using the
N = N+2 irreducible derivatives on the right side of Eq.
50; and the factors tkâ means that long range terms in

the force tensor will be amplified, creating a test that is
sensitive to noise in long range terms.
For the case of N = 1, the Grüneisen parameters may

be constructed as:

γiq = −1

2

(

Û†
q D̂

−1
q̄q

∂D̂q̄q

∂ǫA
Ûq

)

ii

(51)

where Ûq is the unitary transformation that diagonalizes
the dynamical matrix. Eq. 50 for N = 1 in conjunction
with Eq. 51 is consistent with the equation presented in
Ref. 96.
We begin by comparing our measured and predicted

Grüneisen parameters in Figure 6a. The direct measure-
ment of the Grüneisen parameters via strain central finite
difference are denoted with circles (diamonds) for the in-
plane (out-of-plane) modes, while the blue lines are ob-
tained via Fourier interpolation; and these results are re-
ferred to as “Measured”, given that they are numerically
exact for the actual points. The results obtained from us-
ing the cubic dynamical tensor in conjunction with Eq.
50 are presented for several different FTG’s. It should
be noted that there are no data points on these curves,
as no part of these curves are numerically exact. The
FTG ŜBZ = 21̂ displays relatively poor agreement over-
all, though the uppermost branch is in good agreement,
and several other branches have a proper shape but are
simply shifted (ŜBZ = ŜK displayed very similar results,
and is not shown for clarity). This is consistent with the
interpretation that the dynamical tensor is robust, but
the FTG is simply too small. Moving to the next larger
FTG, ŜBZ = 31̂, the results markedly improve, with only
relatively small disagreement; here the discrepancies are
likely too large for sensitive quantities like thermal con-
ductivity. The next larger FTG, ŜBZ = 2ŜK , shows
relatively good agreement, with only minor deviations.
The N = 3 irreducible derivatives for all cases are pro-
vided in the Supplementary Material15 Table SIII; with
ŜBZ = 2ŜK having 215 purely real or imaginary terms.
All the preceding results were obtained using SS-BID, but
the results using HS-BID and LID are extremely similar
(see Supplementary Material15, Figure S1).
The quartic elements of the dynamical tensor can be

probed via the second strain derivatives of the phonons,
which is shown Figure 6b; where the second strain deriva-
tive alone is plotted. For the coarsest FTG, ŜBZ = 21̂,
the general shape is smooth and resembles the numeri-
cally exact measurements, though the deviations are rel-
atively large. However, the near perfect agreement of
LID and BID suggests that the derivatives are robust,
but a larger FTG is needed. Moving to the next larger
FTG, ŜBZ = 31̂, the results improve for the out-of-plane
modes, while the in-plane mode results have shifted in
the proper direction, but not substantially enough. Even
larger FTG’s would be needed for a higher resolution of
the results, but we do not proceed further due to com-
putational expense.
The quintic elements of the dynamical tensor can be

probed via the third strain derivatives of the phonons,
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which is shown Figure 6c. In this case, only ŜBZ = 21̂
was attempted. Once again, LID and BID agree ex-
tremely well in this case, suggesting that the derivatives
are robust. While the overall shape of the curves are rea-
sonable, it is clear that a larger FTG would be required
to resolve these third strain derivatives.

In summary, strain derivatives can be used as a critical
test of the dynamical tensor, no matter what method is
used to compute it. A more general equation can be de-
rived for an arbitrary strain derivative, beyond the simple
identity strain considered in Eq. 50, which would allow
for a much more detailed test; as a larger fraction of the
dynamical tensor would be probed. We leave this to fu-
ture work. It also should be noted that the logic of using
strain derivatives of phonons as a test could be inverted
to instead use them as a rich source of information which
could be used to assist in extracting the dynamical ten-
sor, and there are several studies which have begun to
pursue this52,97.

C. Assessing quadratic error tails

If central finite difference is being used to measure
derivatives, then it is critical to assess the quality of the
quadratic error tails. Our algorithm for choosing the set
of ∆ used to construct the quadratic error tail is detailed
in Section III C. Once the ∆ are selected and a least
squares fit is performed, there will be a mean square er-
ror associated with each quadratic error tail, and a his-
togram can be constructed (see Figure 7). The results
are as expected, with the error increasing as N increases
from two to five. Furthermore, this should be performed
as a diagnostic analysis, and the first evaluation of this
data did indeed reveal numerous problematic derivatives.
The offending derivatives can be inspected to resolve any
issues, which usually involves adding additional ∆, in-
creasing the convergence parameters of the DFT calcu-
lations, or simply pruning the offending derivative (see
Section III F).

Given the common practice of using a single ∆ to es-
timate the value of a derivative, as opposed to properly
extrapolating to ∆ → 0, it is interesting to test the ef-
ficacy of this on the predicted Grüneisen parameters for
graphene with ŜBZ = 2ŜK (see Figure 8). As shown,
substantial errors occur if ∆ is too large or too small,
though reasonable results can be obtained with a prop-
erly chosen single ∆ in this case; but it can be difficult
to choose a priori. We have observed that the results be-
come more sensitive to a single ∆ as ŜBZ increases (not
shown), most likely because more irreducible derivatives
are being simultaneously measured. For a sufficiently
large FTG, it is possible that no single ∆ will be effec-
tive.
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FIG. 7. A histogram of mean square error, associated with the
quadratic fits to the central finite difference calculations as a
function of ∆ within the SBB in the SS-BID approach, divided
by the average magnitude of the SS-BID SBB derivatives.
Note that values for N = 2 are multiplied by ten while the
N = 5 values are divided by three for ease of viewing. FTG’s
of 61̂, 2ŜK , 21̂, and 21̂, are used for N = 2− 5, respectively.
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FIG. 8. Comparison of the Grüneisen parameters in graphene
obtained from cubic irreducible derivatives within ŜBZ =
2ŜK using SS-BID. The blue curve uses our algorithm out-
lined in Section III C to properly extrapolate ∆ to zero, while
the other curves simply use a single value of ∆.

D. Bundled versus Lone derivatives

Another obvious test is to compare BID to LID. Of
course, if extremely high reliability and precision is
needed, and one has the computing resources to execute
LID, then LID is the best route. However, this will not
always be possible, and BID will frequently be needed.
Bundled derivatives are challenging in the sense that the
many irreducible derivatives that are simultaneously be-
ing measured may have starkly different quadratic er-
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ror tails, which may result in a relatively small region
of ∆ which is resolvable as quadratic (see Supplemen-
tary Material15, Figure S2a, for a problematic exam-
ple). As a result, very stringent convergence parameters
within DFT may be required to successfully resolve this
quadratic region. Alternatively, LID measures as few ir-
reducible derivatives as possible, and the error tails tend
to be much better behaved in this method. Therefore,
when using BID, one can still compute some fraction of
irreducible derivatives using LID as a test; perhaps either
a subgroup of the given FTG, or maybe some random
selection. Figure 9 provides a comparison between the
irreducible derivatives as computed using LID and BID
for N = 3 − 5. As expected, the error is smallest for
N = 3, and increases for N = 4 and N = 5. The terms
that have relatively large errors tend to be sufficiently
small in magnitude relative to the average magnitude.
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FIG. 9. A plot comparing the irreducible derivatives com-
puted using LID and SS-BID. The x-axis denotes relative
magnitude (|dLID|/RMS({dLID})) and the y-axis denotes rel-
ative error (|dLID − dBID|/|dLID|). For N = 3 and N = 4,
all irreducible derivatives are sampled, while only a subset is
provided for N = 5.

V. SUMMARY AND CONCLUSIONS

We have presented a general framework for charac-
terizing and computing phonons and their interactions.
The first aspect of our work is to write the Taylor se-
ries expansion of the Born-Oppenheimer surface purely
in terms of space group irreducible derivatives. Space
group irreducible derivatives guarantee invariance to all
space group operations, homogeneity of free space, and
permutation symmetry with respect to the order of dif-
ferentiation; resulting in a Taylor series that satisfies all
the possible symmetries by construction.
We demonstrate that it should not be assumed that

numerical implementations of extrinsic symmetry ap-

proaches are capturing all symmetry (see Sections III E
and III F for examples), and such approaches may pro-
duce potentials with broken symmetry that are suscep-
tible to all sorts of uncontrolled errors. Space group ir-
reducible derivatives not only guarantee that all symme-
try is satisfied by construction, but they also provide a
convenient means for storing and disseminating results;
and this will be critical to data based approaches to the
physics of materials.

The second contribution of this work was to resolve an
apparently outstanding mathematical problem regarding
the translation group. In particular, we resolve the min-
imum supercell problem, which is to find the smallest
possible supercell that will accommodate N wavevectors
in a d dimensional crystal. We show that this problem is
equivalent to constructing the modulo L kernel space of

the integer matrix Q̂
′
under consideration (obtained by

multiplying Q̂ by L and removing any one row); which
we prove can be achieved using the Smith Normal Form,
resulting in the Minimum Supercell Multiplicity (MSM)
equation (Eq. 36). In practice, this approach can always
be executed with negligible computational cost. Further-
more, the MSM equation dictates that for any FTG of an
arbitrary d-dimensional crystal at N = 2 (i.e. phonons),

in addition to any FTG’s corresponding to ŜBZ = n1̂ at
arbitrary order N , the largest necessary supercell mul-

tiplicity is L
min(N−1,d)
m . The implication for N = 2 and

d ≤ 3 was only recently realized76, while the same can-
not be said for N = d = 3; which will have a major
impact for the computation of cubic interactions using
finite displacement approaches.

The third contribution of this work is the formula-
tion of two finite displacement approaches for comput-
ing phonons and their interactions. First, we formulate
the lone irreducible derivative (LID) approach, which
measures a single irreducible derivative, or as few as
possible, at a time in the smallest possible supercell.
The LID approach is the generalization of the original
frozen phonon approach to fully exploit intrinsic sym-
metrization and minimum supercells at an arbitrary or-
der. While LID does not efficiently exploit perturbative
derivatives, it should be the method of choice when the
most precise results are needed for a finite difference cal-
culation of a given irreducible derivative. The second
finite displacement approach we develop is the bundled
irreducible derivative (BID) approach; which maximally
exploits perturbative derivatives in order to obtain higher
derivatives via finite difference. BID guarantees that all
derivatives are extracted in the smallest possible number
of calculations. We demonstrate how to implement this
BID approach both using a single supercell approach, and
using a hierarchical supercell approach, which guarantees
that all derivatives are executed in the smallest supercell
possible.

We explicitly execute both LID and BID using the
Hellman-Feynman forces (i.e. first derivatives) for
graphene; computing irreducible derivatives at N =
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2 − 5. We explicitly tabulate all irreducible derivatives
for ŜBZ = 2ŜK at N = 3; which amounts to 215 purely
real or imaginary numbers. We note that ŜBZ = 2ŜK

will reproduce the numerically exact Grüneisen parame-
ters with a relatively high fidelity. For cubic interactions
in the rock salt structure, we have demonstrated that our
hierarchical supercell bundled irreducible derivative (HS-
BID) is more than an order of magnitude faster than ap-
proaches implemented in the ShengBTE, Phono3py, and
AAPL codes. Corresponding speedups at second order
will be even more dramatic.

While perturbation theory should be used to the high-
est order possible whenever possible, the many scenarios
where it is not yet available, which range from practical
issues in some particular DFT code or difficult technical
issues associated with beyond DFT methods, imply that
finite difference will play a critical role in the foreseeable
future. Our developments will allow finite displacement
based methods to be implemented as efficiently as possi-
ble. Finally, we emphasize that techniques which use a
first-principles molecular dynamics trajectory as data to
fit phonon interactions can also exploit our hierarchical
supercell approach.

Our final development relates to assessing the quality
of phonon interactions. We build upon the tradition of
using the Grüneisen parameters as a test of cubic phonon
interactions. We derive an analytic equation to com-
pute the N -th uniform strain derivative of the phonons,
which is a linear combination of the (N+2)-th irreducible
derivatives. The strain derivatives of the phonons are
straightforward to compute, and provide a stringent, in-
finite ranged test of the force tensor, which is constructed
from the irreducible derivatives.

The above developments should greatly assist in ad-
vancing the computation of phonons and their interac-
tions, which will impact a broad range of applications.
An important point that has not been addressed in this
paper is that object oriented, modular software has been
developed to implement all of the ideas in this paper at
arbitrary order N . This free, open source software will
be disseminated shortly, and described in the appropriate
forum.
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Appendix A: Applications to the rocksalt structure

In this appendix, we consider the rock salt structure
and present all space group irreducible derivatives for
N = 3 in the supercell ŜBZ = 21̂. The rocksalt structure
has space group Fm3̄m, and the structure can be defined
as

â =
a

2





0 1 1

1 0 1

1 1 0





A1 = (0, 0, 0)

A2 =
a

2
(1, 1, 1)

(A1)

where a is the lattice constant. Given the FTG ŜBZ =
21̂, we have

q̃BZ = {Γ, La, Lb, Lc, Ld, Xx, Xy, Xz} (A2)

q̃IBZ = {Γ, La, Xx} (A3)

where

Γ = (0, 0, 0) La =

(

1

2
, 0, 0

)

Lb =

(

0,
1

2
, 0

)

Lc =

(

0, 0,
1

2

)

Ld =

(

1

2
,
1

2
,
1

2

)

Xx =

(

0,
1

2
,
1

2

)

Xy =

(

1

2
, 0,

1

2

)

Xz =

(

1

2
,
1

2
, 0

)

(A4)

The next step is to symmetrize the displacements at
each q ∈ q̃IBZ , where G̃Γ = Oh, G̃L = D3d, and

G̃X = D4h. Decomposing each representation in terms
of irreducible representations (and removing the acoustic
modes), we have:

ÛΓ = T1u

ÛLi
= A1g ⊕ Eg ⊕A1u ⊕ Eu

ÛXi
= 2A2u ⊕ 2Eu (A5)

The induced representations of each uαq must be con-
structed:

uαL A1g Eg A2u Eu

uαk

s̃
L

A1g Eg A2u Eu

T2g T2g T1u T1u
T1g T2u

uαX A2u Eu

uαk

s̃
X

T1u T1u
T2u

(A6)

where the induced representations are listed directly be-
low each uαq , the index k enumerates them, and αk is
an irreducible representation of Oh. For the Γ point,
uαΓ = uαs̃Γ

. We now have all the information we need to

deduce if a star product can be nonzero.
For N = 3, the irreducible Q must be constructed:

Q̃IBZ = { [Γ,Γ,Γ] , [Γ, La, La] , [La, Lb, Xz] ,

[Γ, Xz, Xz] , [Xx, Xy, Xz]} (A7)

Next, each Q ∈ Q̃IBZ must be examined. For [Γ,Γ,Γ],
there are only T1u vectors, and the symmetric direct
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product can be constructed (brackets denote symmetric
product)

[T1u ⊗ T1u ⊗ T1u] = A2u ⊕ 2T1u ⊕ T2u (A8)

which does not contain the identity representation.
Therefore, there are no cubic terms contained within the
primitive cell.
For [Γ, La, La], we must execute the symmetric direct

product of all full space group irreducible representations
associated with each little group irreducible representa-
tion for each q ∈ Q, which results in

d
T1uA1gA2u

Γ La La
d
T1uA1gEu

Γ La La
d
T1uA2uEg

Γ La La

d0
T1uEgEu

Γ LaLa
d1
T1uEgEu

Γ LaLa
(A9)

where the left superscript indicates that multiple identity
representations are produced in that product.
For [La, Lb, Xz], we follow the same procedure, obtain-

ing

d
A1gA2uA2u

Lb La Xz
d
A1gA2u A1 2u

Lb La Xz
d
A1gA2uEu

Lb La Xz
d
A1gA2u E1 u

Lb La Xz

d
A1gEuA2u

Lb LaXz
d
A1gEu A1 2u

Lb LaXz
d0
A1gEuEu

Lb LaXz
d1
A1gEuEu

Lb LaXz

d0
A1gEu E1 u

Lb LaXz
d1
A1gEu E1 u

Lb LaXz
d0
EgA2uEu

LbLa Xz
d1
EgA2uEu

LbLa Xz

d0
EgA2u E1 u

LbLa Xz
d1
EgA2u E1 u

LbLa Xz
d0
EgEuA2u

LbLaXz
d1
EgEuA2u

LbLaXz

d0
EgEuEu

LbLaXz
d1
EgEuEu

LbLaXz
d2
EgEuEu

LbLaXz
d3
EgEuEu

LbLaXz

d0
EgEu E1 u

LbLaXz
d1
EgEu E1 u

LbLaXz
d2
EgEu E1 u

LbLaXz
d3
EgEu E1 u

LbLaXz

d0
EgEu A1 2u

LbLaXz
d1
EgEu A1 2u

LbLaXz
d
EgA2uA2u

LbLa Xz
d
EgA2u A1 2u

LbLa Xz

(A10)

where the left superscripts of the irreducible represen-
tations indicate multiple instances of irreducible repre-
sentations of displacements; the zeroth instance is not
labelled.
The same analysis for [Γ, Xz, Xz] and [Xx, Xy, Xz]

proves that there are no allowed derivatives in those two
Q. In conclusion, there are a total of 33 space group
irreducible derivatives. One can reach the same conclu-
sion by inspecting the product and symmetric product
tables, which were constructed to third order, for Fm3̄m
by Birman et. al94.

1. SS-BID and HS-BID approach with PD1 for

N = 3 and ŜBZ = 21̂

We begin by evaluating the SS-BID approach, where
the maximum number of irreducible derivatives are mea-
sured simultaneously in the BvK supercell. In this case,

we have n21̂
ir = 33 and n21̂

F = 23 ·6−3 = 45, and therefore

n21̂
m ≥ 1, and explicit calculation confirms n21̂

m = 1 can
be reached; meaning that all irreducible derivatives can
be obtained in a single measurement.

However, it is clearly more efficient to avoid the BvK
supercell altogether using the HS-BID approach. Using
the Smith Normal Form of the two allowed Q, we can
find the smallest supercells for each case:

Ŝ[Γ,La,La] =





2 0 0
0 1 0
0 0 1



 Ŝ[La,Lb,Xz] =





2 0 0
0 2 0
0 0 1



 (A11)

For Ŝ[Γ,La,La], there are n
∨Ŝ[Γ,La,La]

ir = 5 irreducible

derivatives and there are n
∨Ŝ[Γ,La,La]

F = 2 · 6 − 3 = 9

nonzero force equations, thus we have n
∨Ŝ[Γ,La,La]
m ≥ 1;

and explicit calculation confirms the equality can be re-

alized. For [La, Lb, Xz], there are n
∨Ŝ[La,Lb,Xz ]
ir = 28 irre-

ducible derivatives and there are n
∨Ŝ[La,Lb,Xz ]
F = 3·6 = 18

nonzero force equations, where we do not count the Γ-
point optical modes as there are no derivatives with re-
spect to the Γ being computed in this supercell; so we see

that n
∨Ŝ[La,Lb,Xz]
m ≥ 2, and explicit calculation confirms

the equality can be realized.

Finally, we note that we can exploit overbundling
in this situation, given that Ŝ[La,Lb,Xz] also accom-
modates [Γ, La, La]. In this scenario, we would have

n
Ŝ[La,Lb,Xz ]
ir = 33 and n

Ŝ[La,Lb,Xz ]
F = 4 · 6 − 3 = 21; so

n
Ŝ[La,Lb,Xz ]
m ≥ 2 and explicit calculations confirm that all

33 irreducible derivatives can be obtained in two mea-
surements. Therefore, we obtain all 5 irreducible deriva-
tives from [Γ, La, La] at no extra cost.

Appendix B: Phonons of ZrO2

In this section, we execute our method in the case of
phonons of ZrO2, comparing to the previously published
work11. ZrO2 has space group symmetry Fm3̄m, and we
study the FTG corresponding to the 2 × 2 × 2 supercell
of the conventional cubic unit cell. The primitive lattice
cell vectors have the same form as rock salt, Eq. A1,
while the conventional cubic cell is

ŜC =





1̄ 1 1
1 1̄ 1
1 1 1̄



 (B1)

Therefore, the BvK supercell is ŜBZ = 2ŜC , and we have
nq = det(ŜBZ) = 32. All of the conventions defined in
rock salt will follow throughout. The irreducible set of
q̃BZ is given by

q̃IBZ = {Γ, L,X,A,∆,W} (B2)
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where

Γ = (0, 0, 0) L =

(

1

2
, 0, 0

)

X =

(

1

2
,
1

2
, 0

)

A =

(

1

4
,
3

4
, 0

)

∆ =

(

1

4
,
1

4
, 0

)

W =

(

1

4
,
3

4
,
1

2

)

(B3)

The irreducible representations of the displacements
according to G̃q are:

ÛΓ =(T2g)⊕ T1u

ÛL =
(

A1g ⊕ 1A2u ⊕ Eg ⊕ 1Eu

)

⊕
(A2u ⊕ Eu)

ÛX =
(

A1g ⊕B1u ⊕ Eg ⊕ 1Eu

)

⊕
(A2u ⊕ Eu)

ÛA =
(

1A1 ⊕ 2A1 ⊕A2 ⊕ 1B1 ⊕ 2B1 ⊕ 1B2

)

⊕
(A1 ⊕B1 ⊕B2)

Û∆ =
(

1A1 ⊕B2 ⊕ 1E ⊕ 2E
)

⊕
(A1 ⊕ E)

ÛW =
(

A1 ⊕A2 ⊕ 1B1 ⊕B2 ⊕ 1E
)

⊕
(B1 ⊕ E) (B4)

where the first set of parenthesis enclose irreducible rep-
resentations purely associated with O atoms, while the
second set correspond purely to Zr. The T1u mode, which
is not enclosed in any parenthesis, is a mixture of Zr and
O atoms. The left superscripts of the irreducible repre-
sentations indicate multiple instances of irreducible rep-
resentations of displacements; the zeroth instance is not
labelled.
The number of irreducible derivatives can be deter-

mined by inspecting Eq. B4, counting once for each irre-
ducible representation and once for each pair of repeating
irreducible representations at a given q :

nŜBZ

ir =
∑

q∈q̃IBZ ,α∈Uq

1

2
aαq (a

α
q + 1) (B5)

The above equation is applicable for N = 2 where
q̄ ∈ s̃q∀q ∈ q̃IBZ , and in this case it yields 52 irreducible
derivatives. All 52 space group irreducible derivatives are
listed in Table III, and they may be chosen to be real
given the presence of inversion and time reversal sym-
metry. This proves that the analysis in Ref. 11 did not
properly account for all symmetry, as they arrived at 59
nonzero parameters.
We now turn to extracting these 52 irreducible deriva-

tives using SS-BID, and we can use the specific second
order equation for the number of measurements in Eq.

44. The result is that n2ŜC
m = 1, and all derivatives can

be extracted from a single measurement; as compared
to the two measurements (i.e. four calculations) in the
original study11. We demonstrate the result of this sin-
gle measurement, providing all space group irreducible

TABLE II. Required calculations for ZrO2 at N = 2 with
ŜBZ = 2ŜC in different methods. In the HS-BID method,
overbundling can be employed to reduce calculations, and
paranthesis indicate the overbundled quantities. The num-
ber of DFT calculations nDFT .

Method q Ŝ det(Ŝ) nŜ
m nDFT

SS-BID 2ŜC 32 1 2

HS-BID

L, (Γ) ŜL(ŜΓ) 2 2 (1) 4 (2)

A, (X) ŜA(ŜX) 4 2 (1) 4 (2)

∆ Ŝ∆ 4 1 2

W ŜW 4 1 2

HS-LID

Γ ŜΓ 1 2 4

L ŜL 2 6 12

X ŜX 2 6 12

A ŜA 4 9 18

∆ Ŝ∆ 4 6 12

W ŜW 4 7 14

derivatives in Table III, along with a plot of the phonons
in Figure 10.

The execution of the SS-BID is only a proof of princi-
ple, as in practice one would always perform HS-BID as
it is far more efficient. Indeed, HS-BID completely avoids
the BvK supercell ŜBZ = 2ŜC , extracting all irreducible
derivatives from smaller supercells. In this case, we have
S̃BZ = {ŜΓ, ŜL, ŜX , ŜA, Ŝ∆, ŜW }, where

ŜΓ = 1̂ ŜL =





2 0 0
0 1 0
0 0 1



 ŜX =





1 1 0
0 2 0
0 0 1





ŜA =





1 1 0
0 4 0
0 0 1



 Ŝ∆ =





2 2 0
1 3 0
0 0 1



 ŜW =





2 0 1
1 1 0
0 0 2





(B6)

The number of measurements required in each supercell
is 1, 2, 1, 2, 1, and 1, respectively. The gain in time
complexity as is described in Section III F is an order of
magnitude. Furthermore, overbundling can be exploited,
only requiring the supercells ŜL, ŜA, Ŝ∆, ŜW with 2, 2, 1,
and 1 measurements, respectively; eliminating the need
for ŜX and ŜΓ entirely (see Table II for detailed compar-
ison between different methods at N = 2, and Table SIV
for similar comparison at N = 3).

Density Functional Theory (DFT) calculations within
the local density approximation (LDA)16 were per-
formed using the Projector Augmented Wave (PAW)
method17,18, as implemented in the Vienna Ab-initio
Simulation Package (VASP)19–22. A plane wave basis
with a kinetic energy cutoff of 700 eV was employed. We
used a Γ-centered k-point mesh of 4×4×4. All k-point
integrations were done using tetrahedron method with
Blöchl corrections98. The crystal structure was relaxed,
yielding a lattice parameter of 5.0303Å.
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FIG. 10. Phonons of ZrO2 within DFT for ŜBZ = 2ŜC ,
where data points are direct computational measurements
and lines are Fourier interpolation of the measurements. The
irreducible derivatives for ŜBZ are shown in Table III. When
irreducible representations do not repeat at a given q , the

phonon frequency is given by ωα
q =

√

dαα
q̄q /m, where m =

mi · 1.0364 × 10−28eV · s2/Å2, with either mO = 15.9994 or
mZr = 91.224. The y-axis plots ωα

q · 10−12/(2π), giving units
of THz. LO-TO splitting has not been incorporated.

Appendix C: Example of minimum cell for given Q

Here we give an example illustrating how to find the
minimum supercell that accommodates a given Q (See
derivation and definitions in Section III B). There is no
need to specify a crystal structure given that this problem
is only specific to the translation group. Let us consider
an example for N = 3:

Q =

((

1

4
,
3

4
,
1

2

)

,

(

1

4
,
1

4
, 0

)

,

(

1

2
, 0,

1

2

))

(C1)

Here L = 4, and we can now drop the third row of Q̂,

for example, and multiply Q̂ by L to obtain Q̂
′
:

Q̂
′
=

[

1 3 2
1 1 0

]

(C2)

We can apply row and column operations R̂ and Ĉ in

order to achieve the Smith Normal Form N̂ = R̂Q̂
′
Ĉ:

N̂ =

[

1 0 0
0 2 0

]

R̂ =

[

0 1
1 −1

]

Ĉ =





1 −1 1
0 1 −1
0 0 1



 (C3)

It is straightforward to write the kernel of N̂, according
to Eq. 33:

ker(N̂) =





4 0 0
0 2 0
0 0 1



 (C4)

TABLE III. Irreducible derivatives of ZrO2 for N = 2 and
ŜBZ = 2ŜC in units of eV/Å2.

Derivative Value Derivative Value

d
T2gT2g

Γ Γ 20.105 d
T1uT1u
Γ Γ 9.189

d
A1gA1g

L L
20.828 d

EgEg

L L
15.766

d
A2uA2u
L L

33.220 d
A2u A

1
2u

L L
−9.242

d
A
1

2u A
1

2u
L L

14.278 d
EuEu
L L

5.937

d
Eu E

1
u

L L
−2.346 d

E
1

u E
1

u
L L

9.819

d
A1gA1g

X X
27.957 d

EgEg

X X
6.221

d
A2uA2u
X X

43.374 d
B1uB1u
X X

−2.139

d
EuEu
X X

6.614 d
Eu E

1
u

X X
−1.339

d
E
1

u E
1

u
X X

18.834

d
A1A1

Ā A
30.934 d

A1 A
1

1

Ā A
4.000

d
A1 A

2
1

Ā A
−10.720 d

A
1

1 A
1

1

Ā A
22.021

d
A
1

1 A
2

1

Ā A
−1.691 d

A
2

1 A
2

1

Ā A
21.250

d
B2B2

Ā A
6.135 d

B2 B
1

2

Ā A
−2.558

d
B1 B

2
1

Ā A
2.580 d

B
1

2 B
1

2

Ā A
12.342

d
B
1

1 B
2

1

Ā A
−1.515 d

B
2

1 B
2

1

Ā A
10.480

d
A2A2

Ā A
13.783 d

B1B1

Ā A
13.532

d
B1 B

1
1

Ā A
−2.990 d

B
1

1 B
1

1

Ā A
3.481

d
A1A1

∆̄ ∆
41.658 d

A1 A
1

1

∆̄ ∆
−18.449

d
A
1

1 A
1

1

∆̄ ∆
24.050 d

B2B2

∆̄ ∆
11.378

d
EE

∆̄∆
6.380 d

E E
1

∆̄∆
−2.896

d
E E

2

∆̄∆
0.918 d

E
1

E
1

∆̄ ∆
4.395

d
E
1

E
2

∆̄ ∆
2.673 d

E
2

E
2

∆̄ ∆
18.958

d
A1A1

W̄ W
26.263 d

B1B1

W̄ W
7.193

d
B1 B

1
1

W̄ W
0.973 d

B
1

1 B
1

1

W̄ W
21.398

d
A2A2

W̄ W
0.659 d

B2B2

W̄ W
3.936

d
E E

W̄W
23.596 d

E E
1

W̄W
1.211

d
E
1

E
1

W̄ W
12.905

Finally, the kernel of Q̂
′
can be easily constructed, in

addition to a minimal supercell which accommodates Q:

ker(Q̂
′
) = Ĉker(N̂) =





4 −2 1
0 2 −1
0 0 1



 = Ŝ
⊺

Q (C5)

We emphasize that this particular choice of supercell is
not unique, and may be reshaped.
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Appendix D: An efficient algorithm to construct t̃BZ

for a given ŜBZ

Here we present an efficient algorithm to solve Eq. 7
for the set t̃BZ given ŜBZ . The same algorithm can be
applied to Eq. 8, since the two equations have similar
form. Recall Eq. 7

0 ≤ tŜ−1
BZ · ej < 1 for j = 1, . . . , d (D1)

where ej is a unit vector in Zd.

Given that ŜBZ is an integer matrix, we can construct
the column-style Hermite Norm Form86, which is a lower
triangular matrix Ĥ, via integer column transformations
Û (here Û and Û−1 are both unimodular integer matri-

ces): Ĥ = ŜBZÛ; and this form can be used to re-write
Eq. D1:

0 ≤ tÛĤ−1 · ej < 1 for j = 1, . . . , d

0 ≤ t′Ĥ−1 · ej < 1 (D2)

where t′ = tÛ is an integer vector, given that t is an

integer vector, and Ĥ−1 is a lower triangular matrix:

Ĥ−1 =











Hi
11 0 · · · 0

Hi
21 Hi

22 · · · 0
...

...
. . .

...
Hi

d1 Hi
d2 · · · Hi

dd











(D3)

where Hi
ij are the matrix elements of Ĥ−1.

If we take an example of d = 3, then we have:

0 ≤ t′1H
i
11 + t′2H

i
21 + t′3H

i
31 < 1

0 ≤ t′2H
i
22 + t′3H

i
32 < 1

0 ≤ t′3H
i
33 < 1 (D4)

where t′i are the components of t′. The linear equations
can easily be solved from the bottom to the top for all
t′, and then t = t′Û−1.
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17 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
18 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
19 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
20 G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
21 G. Kresse and J. Fürthmuller, Computational Materials

Science 6, 15 (1996).
22 G. Kresse and J. Fürthmuller, Phys. Rev. B 54, 11169

(1996).
23 J. F. Cornwell, Group Theory In Physics (Academic Press,

1997).
24 A. Zee, Group Theory In A Nutshell For Physicists

(Princeton University Press, 2016).
25 J. J. Sakurai, Modern Quantum Mechanics (Addison Wes-

ley, 1993).
26 W. Greiner and J. Maruhn, Nuclear Models (Springer,

1996).
27 M. Tinkham, Group Theory And Quantum Mechanics

(Courier Corporation, 2012).
28 A. P. Cracknell and B. L. Davies, Kronecker Product Tables

(1980).
29 J. L. Birman, Phys. Rev. 127, 1093 (1962).
30 M. Lax, Phys. Rev. 138, A793 (1965).
31 J. L. Birman, Phys. Rev. 150, 771 (1966).
32 J. Zak, Phys. Rev. 151, 464 (1966).
33 D. H. Lewis, Journal of Physics A: Mathematical, Nuclear

and General 6, 125 (1973).
34 P. Gard, Journal of Physics A: Mathematical, Nuclear and

General 6, 1807 (1973).
35 P. Gard, Journal of Physics A: Mathematical, Nuclear and

General 6, 1829 (1973).
36 J. L. Birman, Theory of Crystal Space Groups and Lat-

tice Dynamics: Infra-Red and Raman Optical Processes of

Insulating Crystals (Springer, 1984).
37 J. C. Toldano and P. Toldano, Landau Theory Of Phase

Transitions, The: Application To Structural, Incommen-

surate, Magnetic And Liquid Crystal Systems (World Sci-
entific Publishing Company, 1987).



27

38 M. Born and K. Huang, Dynamical Theory Of Crystal Lat-

tices (Oxford University Press, 1998).
39 G. Leibfried and W. Ludwig, in Solid State Physics (Else-

vier, 1961) pp. 275–444.
40 G. K. Horton and A. A. Maradudin, Dynamical Properties

Of Solids: Crystalline Solids, Fundamentals (1974).
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