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ABSTRACT 

Electrical and optoelectronic properties of two-dimensional (2D) transition metal 

dichalcogenides (TMDCs) can be tuned by exploiting their structural phase transitions. Here, 

semiconducting (2H) to metallic (1T) phase transition is investigated in a strained MoWSe2 

monolayer using molecular dynamics (MD) simulations. Novel intermediate structures called � 

and β are found between the 2H and 1T phases. These intermediate structures are similar to those 

observed in a 2D MoS2 by scanning transmission electron microscopy. A deep generative model 

namely, the variational autoencoder (VAE) trained by MD data, is used to generate novel 

heterostructures with � and β interfaces. Quantum simulations based on density functional 

theory show that these heterostructures are stable and suitable for novel nanoelectronics 

applications.  

 

 

 

 

 

 

 

 

 

 

 



 3

 

 

 

Introduction 

A two-dimensional MoWSe2 system was recently synthesized with chemical vapor deposition 

(CVD) and structural changes owing to mechanical deformation were examined with an in-situ 

setup of Raman spectrophotometer combined with nano-indenter and scanning probe 

microscope.1 The experiment reveals that the heterostructure contains randomly distributed 

nanoscale patches of WSe2 in a matrix of MoSe2. Under ambient conditions, Raman spectra of 

the system indicate 2H structure in the entire sample of the MoSe2 matrix containing WSe2 

patches. The 2H monolayer has trigonal prismatic (D3h) symmetry with an ABA atomic stacking 

sequence, and it is a direct band-gap semiconductor.2 Under strain, cracks develop in the alloy 

and the Raman spectra show not only features corresponding to the 2H structure but also new 

features indicative of the 1T structure. The metallic 1T phase possesses octahedral (Oh) 

symmetry and an ABC atomic stacking sequence.  

In this paper, we examine atomistic mechanisms of polymorphism in a single, strained 

monolayer of MoWSe2 using molecular dynamics (MD) simulations.3  The system consists of 

randomly distributed WSe2 patches in an MoSe2 matrix. The system size is 0.5 µm ⨉ 0.5 µm. 

The MoWSe2 sample is pre-cracked and subjected to Mode-1 strain. With the onset of crack 

propagation under an applied strain, we observe a 2H →1T structural transformation around the 

crack front. The MD simulations reveal novel structures between 2H and 1T phases. These 

structures include a stable precursor structure called � which consists of three-to-four zigzag 

chains of Mo-Se or W-Se atoms. The nearest-neighbor (nn) Mo-Mo or W-W separation in these 

chains is constricted by about 14% relative to the nn separation in the 2H structure. Between 2H 
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and 1T phases, the simulation also reveals another novel structure called β which has four 

coordinated Se atoms instead of three in the � phase.4 These results are consistent with scanning 

tunneling electron microscopy (STEM) data, which reveal α and β as boundary-layer structures 

in the 2H→1T transition in MoS2.  

In recent years, supervised and unsupervised machine learning models have shown tremendous 

success in material science for efficient discovery of new materials with desired properties.5-9 

Data-driven force field models based on several different approaches 10,11, including neural 

network and kernel ridge regression, have shown quantum-mechanical density functional theory 

(DFT)-level accuracy in the prediction of atomic forces and energies.12-14 Similarly, 

unsupervised learning algorithms namely, deep generative models such as autoencoders and 

adversarial networks have been applied to in silico synthesis of molecular design with desired 

properties.15,16 Here, we use a deep generative model based on variational autoencoder (VAE) to 

learn the relationship among the complex phases that are generated during the fracture of 

MoWSe2 heterostructure. With enough training examples, VAE can learn probability distribution 

functions and sample structures from those distributions. The VAE trained by the MD data is 

used to synthesize two types of devices involving 2H/α and 2H/β interfaces. Quantum 

simulations based on DFT indicate that these semiconductor-metal heterostructures are stable 

and suitable for bottom-up fabrication of Schottky diodes, nanoscale transistors17 and quantum 

leads for one-dimensional charge and spin transport.18   

Results and Discussion 

Crack propagation and the resulting changes in the structure of MoWSe2 are studied for two 

orientations of the initial 2H lattice relative to the direction of the applied strain. Here the 

primary focus is on the (11) orientation in which one of the Mo-Se bond in the 2H structure is 



 5

parallel to the direction of the applied strain, namely the y axis. Results for the (10) orientation, 

where one of the Mo-Se bond in the 2H lattice is perpendicular to the y axis, are presented in the 

supplemental material.29 The pre-crack begins to propagate when the applied strain in the (11) 

orientation is increased to 2.5%, which is consistent with the experimental observation of the 

response of MoWSe2 heterostructure under strain.1 Figure 1(a) presents a snapshot of the primary 

crack at the critical strain corresponding to the onset of crack propagation. The tip of the primary 

crack is in the 2H structure of the MoSe2 matrix before the onset of crack propagation. The crack 

tip velocity is 2.1 km/s, which is 65% of the Rayleigh wave speed in MoSe2 (See Section 4 in 

supplemental material).29 

Crack propagation in MoSe2 is accompanied by a rapid 2H  → 1T phase transformation in 

which the 2H/1T phase boundary propagates at an average speed of 2.6 േ 0.5 km/s.  The crack 

and the 2H/1T phase boundary slow down slightly when they enter a nanoscale patch of WSe2. 

The slowing down is caused by the nucleation of new intermediate structures and defects at the 

MoSe2/WSe2 interface. Experimental studies of strain-induced deformation and fracture reveal 

that 2H →1T phase transformation and the presence of WSe2 patches combine to enhance 

toughening of the MoSe2 matrix.1 

The primary crack bifurcates into two secondary crack branches at an applied strain of 2.5%, 

see Fig. 1(b). This bifurcation occurs with the formation of new structures and point defects 

inside the 2H/1T phase boundary. The speed of the primary crack at the onset of bifurcation is 

65% of the Rayleigh wave speed. This has also been observed in an MD simulation study of 

fracture along the (10) orientation in graphene.19,20 We observe that 2H/1T phase transformation 

along each secondary crack branch also propagates at a higher speed than the secondary cracks. 

Secondary cracks also slow down when they enter WSe2 patches.  
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Figure 1(c) shows stress distribution in MoWSe2 at the onset of primary crack propagation (see 

movie S1 in supplemental material).29 The local fracture toughness calculated from the stress at 

the crack front and the corresponding crack length is close to the calculated K1C ൫1.54 MPa √m൯ 

of MoSe2 in the 2H phase.21 Figure 1(d) shows stress distribution in MoWSe2 when secondary 

cracks nucleate from the primary crack in the MoSe2 matrix. The secondary cracks are inclined 

at an angle of 50 േ 5°, (see Fig. 1(b) and the movie S2 in the supplemental material),29 which is 

due to the fact that the maximum stress at the primary crack front causing Mo-Se bond breaking 

is along these two directions. We observe closure of some of the secondary cracks, which 

reflects toughening of the MoWSe2 heterostructure. 

 Figure 2 shows intermediate structures between 2H and 1T phases in the MoSe2 matrix 

and WSe2 nanoscale patches. The α phase is always a precursor structure in the 2H → 1T 

transition in both MoSe2 and WSe2. The key signature of the α structure is zig-zag chains 

consisting of three-to-four Mo-Se or W-Se bonds in which Mo atoms are five coordinated and 

Mo-Mo and W-W nn distances are constricted relative to their respective nn separation in 

unstrained MoSe2 and WSe2. The � structure between 2H and 1T phases has been observed in 

STEM studies of MoS2.4  

 We also observe another intermediate structure called β shown in Fig. 2(b) and the movie 

S3 in supplemental material.29 Se atoms in the ߚ structure are four-fold coordinated. This is 

consistent with STEM observations of the 2H →1T phase transformation in MoS2.4 The 2H/1T 

transformation and the intermediate � and β structures in the STEM experiment arise from 

elevated temperatures (400 – 700°C). In our simulation, the local temperature near the 2H → 1T 

transformation front reaches 900°C, which is higher than the temperature in strained MoWSe2 

regions far removed from the process zone. 
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We have further analyzed the relationship among the complex phases that are generated during 

the fracture of MoWSe2 heterostructure using a deep generative model based on VAE. The input 

data for VAE are atomic trajectories generated by MD simulations. We examine transition 

pathways between different phases of MoWSe2 by training the VAE using 40,000 examples 

consisting of uniform distributions of 2H, 1T, �, β, defects, and crack branches from the MD 

simulation. The model is trained for 200 epochs. The reconstruction loss and KL divergence loss 

converge as shown in Fig. S4 in supplemental material.29 Details of the VAE architecture and the 

training process are given in Method section and supplemental material.29   

The VAE model, tensor representation of the MD data, and visualization of the latent space 

after training are shown schematically in Fig. 3(a). The latent space dimension (10) is 

significantly smaller than the dimension of the original input data, 64 ൈ 64 ൈ  3 ൌ 12288. 

Hence, to reconstruct the original input data, VAE must learn the most important statistical 

features of the data representation in the latent dimension. The t-distributed stochastic neighbor 

embedding (t-SNE) visualization after training shows a clear separation of 2H, 1T, α, β, and 

defects in the latent space, see Fig. 3(a).22  Figure 3(b) shows the principal component analysis 

(PCA) visualization of the latent space, which unlike t-SNE captures the global relationship 

among various clusters present in the data. The PCA visualization shows that the encoding of �, 

β and defect structures lies between the encoding of 2H and 1T structures. This leads to the 

inference that VAE can correctly identify � and β phases between 2ܪ ՜ 1ܶ transformation.  

We further examine the phase transformation pathways using latent space algebra.23 We first 

calculate the mean of 2H (1T) structures in the latent space, i.e. ߤଶு ሺߤଵ்ሻ, by randomly selecting 

20,000 2H (1T) patches and averaging their z value. Subsequently, we sample structures from 

the decoder where the input z value is computed using linear mixing: 
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ݖ  ൌ ܽ ൈ ଶுߤ ൅ ሺ1 െ ܽሻ ൈ  ଵ்             (1)ߤ

The value of ܽ controls the relative sizes of 2H and 1T structures in the sample. Figures 3(b-c) 

show the transformation pathway 2ܪ ՜ 1ܶ using the mixing rules applied to the structures in the 

latent space. Similar transformation pathway for 2ܪ ՜ 1ܶ is observed for randomly-selected 

encoding of 2H and 1T and applying linear mixing to z instead of μ in Eq. (1). However, the 

range of z values corresponding to ߙ or ߚ structure is still unknown. Hence, it is difficult to 

generate a specific structure using VAE without knowing the values of ߤ and the width of the 

Gaussian distribution ߪ.  

In order to build a generative model that can create any specific type of structure, we train 

conditional VAE 24 (CVAE) with a loss function 

ݏݏ݋ܮ  ൌ ௑~஽ܧ  ቂܧ௭~ொሾlog ܲሺܺ|ݖ, ܿሻ െ ,ܺ|ݖ௄௅ሾܳሺܦ ܿሻ||ܲሺݖ|ܿሻሿሿቃ         (2) 

This loss function is similar to the one used in VAE except that it contains a conditional 

variable, c, which controls the nature of the generated output. During training, the conditional 

variable (c) is appended to the input training data and a z value is generated by the encoder. 

Details of the training process is given in supplemental material.29 After training, the decoder 

takes as input a random number generated from a normal distribution (input z value) and a 

conditional variable c to generate a specific structure. Figures 4(a) and 4(e) show ߙ and ߚ 

structures generated by CVAE. In our model, values of ܿ ൌ 0, 1, 2, 3, 4 control the distribution of 

the generated 2H, 1T, ߚ ,ߙ and defects, respectively. 

To validate the stability of these interfaces, we perform ab initio simulations based on DFT to 

relax the ߙ and ߚ interfacial structures generated by VAE and CVAE (See Method section for 

further details). Figures 4(b) and 4(f) depict atomic displacements during the relaxation of as-

generated interfacial structures to their local minima. The VAE and CVAE generate high-quality 
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interfaces that differ from the DFT-relaxed atomic positions by less than 0.18 Å and lie within 70 

meV/atom of the local energy minima. The relatively small atomic displacements demonstrate 

that the CVAE can accurately reproduce high-quality interfacial structures close to local energy 

minima. Figures 4(b) and 4(f) also show that atomic relaxation arises mostly from the 

accommodation of the 2H/1T interfacial strain by the mechanically softer 1T WSe2 structure. 

This behavior is consistent with the observed mechanism of α-interface formation in TMDCs 

such as MoS2, where interfacial strain is accommodated by contraction in interplanar distances in 

the 1T structure. Additionally, the dynamic stability of the VAE-generated interfaces was 

confirmed by ab initio MD simulations at room- and high temperatures, which showed negligible 

structural change from the as-generated interfaces from VAE (see Figure S5). 

Figures 4(c) and 4(g) depict the DFT-calculated density of electronic states of a metal-

semiconductor-metal configuration containing α and β structures, respectively. The density of 

states of this material configuration, common in electronic devices like transistors, is 

characterized by the presence of valence and conduction bands arising from energy levels 

belonging to the MoSe2 2H crystal and gap-spanning states belonging to the energy levels from 

interfacial and bulk-like (i.e. far from the interface) 1T WSe2 regions. These states span the 

forbidden energy range of the 2H structure, closing the 1.3 eV band gap (Fig. 4(c, g)) 

characteristic of the pristine MoSe2 monolayer.  Figures 4d and 4h show that Fermi-level states 

in the metal-semiconductor-metal structure are highly localized on the semi-metallic interfacial 

and bulk 1T WSe2 regions with negligible contribution from the semiconducting 2H MoSe2 

crystal. 

In summary, MD simulations reveal that crack propagation in an MoWSe2 monolayer induces 

not only 2ܪ ՜ 1ܶ transformation but also novel intermediate structures � and β. The α structure 
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is characterized by zigzag chains in which Mo-Mo nearest-neighbor separation is constricted by 

14%. This is consistent with STEM observations showing 15% Mo-Mo constriction in MoS2. In 

the ߚ structure, each Se is 4 coordinated and the neighboring Mo are 6 coordinated which is 

again in accord with STEM data on MoS2. The STEM experiment on MoS2 also reveals another 

intermediate structure called γ between 2H and 1T phases. We also observe a few γ structures in 

our MD simulation but the data are not sufficient to train the VAE. We have used conditional 

VAE to computationally synthesize heterogeneous � and β phases in MoWSe2. DFT simulations 

show minimal relaxation in as-generated atomic configurations, indicating that deep generative 

models such as VAE can accurately synthesize high-quality metal-semiconductor interfaces for 

electronic devices. 

Methods 

Molecular Dynamics Methodology 

We create an MoWSe2 heterostructure similar to the one synthesized by the CVD process.1 

The system consists of an MoSe2 matrix of dimensions 0.5 μm x 0.5 μm in which W atoms are 

substituted randomly on Mo sites to create nanoscale patches of WSe2.  We insert a pre-crack of 

length 0.17 μm and clamp around 20Å from the edges of the boundaries of the heterostructure. 

Molecular dynamics (MD) simulations are performed on the pre-cracked MoWSe2 with 

Stillinger-Weber type force field trained by DFT calculations and validated by experimental data 

for mechanical properties of MoSe2 and WSe2. The Stillinger-Weber forcefield models covalent 

interatomic interactions in the MoSe2 and WSe2 crystal structures using 2-body and 3-body terms 

that mimic energy profiles for bond-stretching and bond-bending (i.e. bond-angle distortion) 

interactions. Details of force-field parameterization and validation are given in the supplemental 

material.29 
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Before studying mode 1 fracture of MoWSe2 heterostructure, the system with the pre-crack is 

first relaxed using conjugate gradient and then heated to 100 K in the NVT ensemble for 100 ps. 

It is further thermalized for another 100 ps in the NVE ensemble. The time step is 1fs during 

heating, thermalization and mechanical straining. The thermalized system at 100 K is then 

subjected to mode 1 fracture, and no thermostat is applied at this time. During mode-1 fracture, 

the tensile strain is applied perpendicular to the pre-crack at a strain rate of 2.25 ൈ 10ି଻secିଵ, 

and the system is relaxed for 100 ps after each incremental strain of 0.225% 

We have further studied the effect of system size, distribution of WSe2 patches in MoSe2 

matrix and presence of interfacial point defects on the failure behavior of MoWSe2 

heterostructure. Details of these simulations are provided in section 2 in the supplemental 

material.29 

Variational Autoencoder (VAE) Architecture and Training   

Atomic configurations from the MD simulation are used to create input data for VAE. The 

input consists of randomly selected patches of size 2 ݊݉ ൈ 2 ݊݉. Each patch is converted into a 64 ൈ 64 ൈ  3 tensor, where the grid size is 0.031 ݊݉ ൈ 0.031 ݊݉. Channels 1 and 3 of the 

input tensors map the atomic coordinates of top and bottom Se layers, respectively, and channel 

2 encodes the atomic information of the Mo layer. We use an exponential kernel to transform the 

atomic coordinates into a tensor representation: 

௖ܶୀଵ,ଶ,ଷሺݔ, ሻݕ ൌ ∑ exp ቀെ ሺ௫ି௫೔ሻమାሺ௬ି௬೔ሻ మఎమ ቁே௜ୀଵ ,                       (3) 

where c refers to the channel of the input tensor, ሺݔ,  ሻ correspond to the center of a specificݕ

grid of the tensor T, ሺݔ௜,  ௜ሻ are the coordinates of Mo or Se atoms, N is the total number ofݕ

atoms within 2 nm square from the origin ሺݔ ൌ 0, ݕ ൌ 0ሻ, and ߟ is the width of the exponential 

kernel (taken as 0.02 nm).   
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The VAE architecture is build using TensorFlow. The VAE encoder consists of 3 

convolutional layers and a fully connected layer. The dimension of the first, second and third 

convolutional layers of the encoder are 32 ൈ 32 ൈ  32, 16 ൈ 16 ൈ  64 and 8 ൈ 8 ൈ  128, 

respectively. The output of the third convolutional layer is flattened and converted into a 10-

dimensional vector using a fully connected layer. The decoder consists of two fully connected 

networks with 64 and 8192 hidden units, followed by two convolutional layers of dimension 16 ൈ 16 ൈ  64 and 32 ൈ 32 ൈ  32, and an output layer of dimensions 64 ൈ 64 ൈ  3. In each 

conv. layer, filter of size 4 ൈ 4 is used along with a stride of 2, and leaky relu (alpha = 0.2) as a 

non-linear activation function. The output generated from the decoder is transformed from its 

tensor representation into cartesian coordinate by doing depth first search (DFS) on each 

channels of output tensor. DFS search returns clusters of non-empty grids, where each grid is 

connected to its immediate eight neighbors. After that, the center of each cluster is used as an 

atomic coordinate.  Details of VAE training is given in the supplemental material.29 

Ab initio DFT simulations 

Interfacial structures and ground-state energies are optimized with density functional theory 

(DFT) using the projector augmented wave (PAW)25 implementation in the Vienna Ab initio 

Simulation Package (VASP).26,27 Exchange and correlation effects are calculated using the 

Perdew–Burke–Ernzerhof form of the generalized gradient approximation to the exchange-

correlation functional.28 Valence electron wave functions are constructed using a plane wave 

basis set containing components up to a kinetic energy of 450 eV and the reciprocal space is 

sampled at the ߁ point with a 0.1 eV Gaussian smearing of orbital occupancies. DFT simulations 

are performed on systems containing 216 atoms, corresponding to 33 formula units of MoSe2 

and 39 formula units of WSe2, in a simulation cell of dimensions 18.0 Å ⨉ 39.375 Å along the a- 
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and b-directions, respectively. The simulation cell spans 20 Å along the c-axis and contains a 15 

Å thick vacuum to remove spurious image interactions. DFT calculations are run until the energy 

converges to within 1 ൈ 10ି଺ eV/atom and forces on ions are under 5 ൈ 10ିଶ eV/Å in each self-

consistency cycle. 
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training and dynamic stability of VAE-generated 2H-1T interfacial structures and movies 
showing strain incuded phase transformation in MoWSe2 during mode 1 fracture. 

 
 

Figures 

Figure 1. Structural phase transformation induced by crack propagation in a ૙. ૞ ࢓ࣆ ൈ૙. ૞ ࢓ࣆ MoWSe2 heterostructure. Snapshot showing local strain analysis in 2ܪ ՜ 1ܶ 

transformation (a) at the onset of crack propagation and (b) after fracture. The post-fracture 

heterostructure consists of multiple crack branches, grain boundaries and strain-induced 

transformed regions consisting of 1T structure and defects. Black and Red regions in (a) and (b) 

represent MoSe2 and WSe2 in the 2H crystal structure. Light and dark green regions in (a) and 

(b) represent the 1T crystal structure in MoSe2 and WSe2 respectively. Dark blue regions indicate 

defects in grain boundaries. The color bar in (a) and (b) indicates local strain in the system,(7) (c) 

and (d) are snapshots of the stress distribution (σyy) in the material at the onset of crack 

propagation and after fracture respectively. 

Figure 2. Dynamics of interfacial structures at the 2H/1T boundary. (a)-(c) show the 

evolution of interfacial regions between 2ܪ ՜ 1ܶ as the crack propagates though the MoWSe2 

heterostructure. Here, the magenta area is the 2H structure and yellow regions are fracture-

induced 1T structure, which also contains grain boundaries and defects (shown in black). (d) 

shows an enlarged view of the interfacial regions consisting of ߙ (green) and ߚ (blue) structures. 

Interfacial regions without ߙ and ߚ structures are shown in gray. (e-g) atomic views of ߚ ,ߙ and 

defects in the crack respectively. In the ߙ structure, each Mo/W is either 5 or 7 coordinated and 

the neighboring Se are 3 coordinated. In the ߚ structure, each Se is 4 coordinated and the 

neighboring Mo are 6 coordinated.  
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Figure 3. Deep generative model for strain-induced structural transformation in MoWSe2. 

(a) The figure shows how VAE unfolds the phase-transformation pathway in MoWSe2 

heterostructure. The latent space visualization of the VAE after training reveals structural 

representations of 2H, 1T, ߚ ,ߙ and various defects including the complex relationships among 

them. (b-g) show 2ܪ ՜ 1ܶ transformation pathways. Here, samples are synthesized by mixing 

2H and 1T in the latent-space using Eq. (1). 

Figure 4. Stability and electronic structure of VAE-synthesized interfaces. (a) CVAE based 

synthesis of heterogeneous α phase in MoWSe2., which is validated by DFT simulations (b-d), 

The relatively small atomic displacement vectors (b, magnified 5X for clarity) show minimal 

relaxation from as-generated atomic configurations, indicating that CVAE can accurately 

reproduce high-quality interfacial structures close to local energy minima. (c) Total (top) and 

spatially-decomposed (middle and bottom) density of electronic states indicate that the 

interfacial and bulk-like distorted 1T metallic states close the band gap in the 2H crystal. Spatial 

distribution of electronic states around the Fermi level (energy range highlighted in green) are 

described in (d), which shows that these states are localized at the 2H-1T interface and the 

distorted 1T region with negligible intensity in the semiconducting 2H region. (e) CVAE-based 

synthesis of beta interfacial structure in MoWSe2 validated by DFT simulations (f-h), Atomic 

displacement vectors (f, magnified 5X for clarity) show only small relaxations from CVAE-

generated atomic configurations. (g) Total (top) and spatially-decomposed (middle and bottom) 

density of electronic states indicate that the interfacial and bulk-like distorted 1T metallic states 

close the band gap in the 2H crystal. Spatial distribution of electronic states around the Fermi 

level (energy range highlighted in green) are described in (h), which shows that these states are 
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localized at the 2H-1T interface and the distorted 1T region with negligible intensity in the 

semiconducting 2H region. 
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