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Decoherence remains a major challenge in quantum computing hardware and a variety of physical-
layer controls provide opportunities to mitigate the impact of this phenomenon through feedback
and feedforward control. In this work, we compare a variety of machine learning algorithms de-
rived from diverse fields for the task of state estimation (retrodiction) and forward prediction of
future qubit state evolution for a single qubit subject to classical, non-Markovian dephasing. Our
approaches involve the construction of a dynamical model capturing qubit dynamics via autoregres-
sive or Fourier-type protocols using only a historical record of projective measurements. A detailed
comparison of achievable prediction horizons, model robustness, and measurement-noise-filtering ca-
pabilities for Kalman Filters (KF) and Gaussian Process Regression (GPR) algorithms is provided.
We demonstrate superior performance from the autoregressive KF relative to Fourier-based KF
approaches and focus on the role of filter optimization in achieving suitable performance. Finally,
we examine several realizations of GPR using different kernels and discover that these approaches
are generally not suitable for forward prediction. We highlight the linkages between predictive per-
formance and kernel structure, and identify ways in which forward predictions are susceptible to
numerical artefacts.

I. INTRODUCTION

In predictive estimation, a dynamically evolving sys-
tem is observed and any temporal correlations encoded
in the observations are used to predict the future state
of the system. This generic problem is well studied in di-
verse fields such as engineering, econometrics, meteorol-
ogy, and seismology [1–5], and is addressed in the control-
theoretic literature as a form of filtering. Applying these
approaches to state estimation on qubits is complicated
by a variety of factors; dominant among these is the vi-
olation of the assumption of linearity inherent in most
filtering applications as qubit states are formally bilin-
ear. The case of an idling, or freely evolving qubit sub-
ject to dephasing is more complicated still, as an a priori
model of system evolution suitable for implementation
within standard filtering algorithms will not in general
be available.

Fortunately there are many lessons to learn from clas-
sical control, even in the presence of such complications.
For classical systems, machine learning techniques have
enabled state tracking, control, and forecasting for highly
non-linear and noisy dynamical trajectories or complex
measurement protocols (e.g. [6–10]). These demonstra-
tions move far beyond the simplified assumptions un-
derlying many basic filtering tasks such as linear dy-
namics and white (uncorrelated) noise processes. For
instance, so-called particle-based Bayesian frameworks
(e.g. particle filtering, unscented or sigma-point filter-
ing) allow state estimation and tracking in the presence of
non-linearities in system dynamics or measurement pro-
tocols [11]. Further extensions approach the needs of
a stochastically evolving system; recently, an ensemble
of so-called unscented Kalman filters, named after the
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underlying mathematical transformation, demonstrated
state estimation and forward predictions for chaotic, non-
linear systems in the absence of a prescribed model [10].
For non-chaotic, multi-component stationary random sig-
nals, other algorithmic approaches have been particularly
useful for tracking instantaneous frequency and phase in-
formation, [12, 13], enabling short-run forecasting.

In the field of quantum control, work has begun to
incorporate the additional challenges faced when con-
sidering state estimation on qubits, notably quantum-
state collapse under projective measurement. Under
such circumstances, in which the measurement backac-
tion strongly influences the quantum state (in contrast
with the classical case), it is not straightforward to ex-
tend machine learning predictive estimation techniques.
Work to date has approached the analysis of projective
measurement records on qubits as pattern recognition
or image reconstruction problems, for example, in char-
acterising the initial or final state of quantum system
(e.g. [14–16]) or reconstructing the historical evolution
of a quantum system based on large measurement records
(e.g. [17–22]). In adaptive or sequential Bayesian learn-
ing applications, a projective measurement protocol may
be designed or adaptively manipulated to efficiently yield
noise-filtered information about a quantum system (e.g.
[23–26]).

The demonstrations above typically assume the ob-
ject of interest is either static, or stochastically evolves
in a manner which is dynamically uncorrelated in time
(white) as measurement protocols are repeated. This
simplifying assumption falls well short of typical labo-
ratory based experiments where noise processes are fre-
quently correlated in time, and evolution may also oc-
cur rapidly relative to a measurement protocol. In such
a circumstance, further complexity is introduced as the
Markov condition commonly assumed in Bayesian learn-
ing frameworks [11] is immediately violated. Even in the
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classical case, the problem of designing an appropriate
representation of non-Markovian dynamics in Bayesian
learning frameworks is an active area of research (e.g
[27]). Hence, the canonical real-time tracking and pre-
diction problem - where a non-linear, stochastic trajec-
tory of a system is tracked using noisy measurements
and short-run forecasts are made - is under-explored for
quantum systems with projective measurements.

In this manuscript, we develop and explore a broad
class of predictive estimation algorithms allowing us to
track a qubit state undergoing stochastic but temporally
correlated evolution using a record of projective measure-
ments, and forecast its future evolution. Our approaches
employ machine learning algorithms to extract tempo-
ral correlations from the measurement record and use
this information to build an effective dynamical model of
the system’s evolution. We design a deterministic pro-
tocol to correlate Markovian processes such that a cer-
tain general class of non-Markovian dynamics can be ap-
proximately tracked without violating the assumptions
of a machine learning protocol, based on the theoreti-
cally accessible and computationally efficient frameworks
of Kalman Filtering (KF) and Gaussian Process Regres-
sion (GPR). Both frameworks provide a mechanism by
which temporal correlations (equally, dynamics) are en-
coded into an algorithm’s structure such that projection
of data-sets onto this structure enables meaningful learn-
ing, white-noise filtering, and effective forward predic-
tion. We perform numerical simulations to test the effec-
tiveness of these algorithms in maximizing the prediction
horizon under various conditions, and quantify the role
of the measurement sampling rate relative to the noise
dynamics in defining the prediction horizon. Simulations
incorporate a variety of measurement models, including
pre-processed data yielding a continuous measurement
outcome and discretised outcomes commonly associated
with single-shot projective qubit measurements. We find
that in most circumstances an autoregressive Kalman
framework yields the best performance, providing model-
robust forward prediction horizons and effective filtering
of measurement noise. Finally, we demonstrate that stan-
dard GPR-based protocols employing a variety of kernels,
while effective for the problem of filtering (fitting) a mea-
surement record, are not suitable for real-time forecasting
beyond the measurement record.

In what follows, we describe in detail the physical set-
ting for our problem in Section II and explain how this
leads to a specific choice of algorithm which may be de-
ployed for the task of tracking non-Markovian state dy-
namics in the absence of a dynamical model for system
evolution. We provide an overview of the central GPR
and KF frameworks in Section III, and we specify a series
of algorithms under consideration in this paper tailored
to different measurement processes. For pre-processed
measurement records, we consider four algorithmic ap-
proaches: a Least Squares Filter (LSF) from [28]; an
Autoregressive Kalman Filter (AKF); a so-called Liska
Kalman Filter from [29] adapted for a Fixed oscillator

Basis (LKFFB); and a suitably designed GPR learning
protocol. For binary measurement outcomes, we extend
the AKF to a Quantised Kalman Filter (QKF). In Sec-
tion IV A, we present optimisation procedures for tuning
all algorithms. Numerical investigations of algorithmic
performance are presented in Section IV and a compar-
ative analysis of all algorithms is provided in Section V.

II. PHYSICAL SETTING

Our physical setting considers a sequence of projective
measurements performed on a qubit. Each projective
measurement yields a 0 or 1 outcome representing the
state of the qubit. The qubit is then reset, and the exact
procedure is repeated. By considering a qubit state ini-
tialized in a superposition of the measurement basis (for
us, Pauli σ̂z eigenstates), we gain access to a direct probe
of qubit phase evolution. If, for instance, no dephas-
ing is present, then the probability of obtaining a binary
outcome remains static in time as sequential qubit mea-
surements are performed. If slowly drifting environmen-
tal dephasing is present, then the probability of obtain-
ing a given binary outcome also drifts stochastically. In
essence, the qubit probes dephasing noise and our proce-
dure encodes a continuous-time non-Markovian dephas-
ing process into time-stamped, discrete binary samples
through the nonlinear projective measurement, carrying
the underlying correlations in the noise. It is this series of
measurements which we seek to process in our algorith-
mic approaches to qubit state tracking and prediction.

Formally, an arbitrary environmental dephasing pro-
cess manifests as time-dependent stochastic detuning,
δω(t), between the qubit frequency and the system mas-
ter clock. This detuning is an experimentally measurable
quantity in a Ramsey protocol, as shown schematically
in Fig. 1 (a). A non-zero detuning over measurement pe-
riod τ (starting from t = 0) induces a stochastic relative
phase accumulation (in the rotating frame) for a qubit
superposition state as |0〉 + e−if(0,τ) |1〉 between qubit
basis states. The accumulated f(0, τ) at the end of a
single Ramsey experiment is mapped to a probability of
obtaining a particular outcome in the measurement basis
via the form of the Ramsey sequence.

In a sequence of n Ramsey measurements spaced
∆t apart with a fixed duration, τ , the change in the
statistics of measured outcomes over this measurement
record depends solely on the dephasing δω(t). We as-
sume that the measurement action over τ is much faster
than the temporal dynamics of the dephasing process,
and ∆t & τ . The resulting measurement record is a
set of binary outcomes, {dn}, determined probabilisti-
cally from n true stochastic qubit phases, f := {fn}.
Here the accumulated phase in each Ramsey experiment,

f(n∆t, n∆t+τ) ≡
∫ n∆t+τ

n∆t
δω(t′)dt′ and we use the short-

hand f(n∆t, n∆t + τ) ≡ fn. We define the statistical
likelihood for observing a single shot, dn, using Born’s
rule [30]:
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FIG. 1. (a) A Ramsey experiment at t = n∆t with fixed wait
time τ and time-steps, n, spaced ∆t > τ apart. A π/2 pulse
rotates qubit state to super-position of |d〉 states, d ∈ {0, 1};
qubit evolves via ĤN (t) accumulating relative stochastic fn,
for non-zero environmental dephasing δω(t). Jittering arrows
depict potential qubit state vectors permitted for (unknown)
random fn. Qubit state is measured as dn = d in σ̂z basis af-
ter a second π/2 rotation. (b) Black dots depict {dn} against
time steps, n; data collection stops at n = 0 separating past
state estimation from future prediction [blue region]. Black
solid line shows true qubit state likelihood ∝ h(fn); and red
solid line shows state estimate (prediction) for n < 0 (n > 0).
A prediction horizon is n < n∗ ∈ [0, NP ] for which dark-
grey region between red and black lines is minimised (Bayes
prediction risk) relative to predicting the mean of dephasing
noise; algorithmic tuning occurs by minimising light-grey re-
gion (Bayes state estimation risk). Q quantises black line into
noisy qubit measurements, dn, under Gaussian uncertainty
vn. (c) Single shot outcomes in (b) are pre-processed to yield
noisy measurements {yn} [black dots]; yn is linear in fn and
vn represents additive white Gaussian measurement noise.

Pr(dn = d|fn, τ, n∆t) =

{
cos2( fn2 ) for d = 1

sin2( fn2 ) for d = 0
(1)

The notation Pr(dn|fn, τ, n∆t) refers to the conditional
probability of obtaining measurement outcome dn given
a true stochastic phase, fn, accumulated over τ , begin-
ning at time t = n∆t. In the noiseless case, Pr(dn =
1|fn, τ, n∆t) = 1, ∀n, such that a qubit exhibits no
additional phase accumulation due to environmental de-
phasing. Following a single measurement the qubit state
is reset, but the dephasing noise correlations manifest

again via Born’s rule for another random value of the
bias at time-step n+ 1. A detailed discussion of Eq. (1)
can be found in Appendix A.

The action of measurement, expressed as h(fn), is
given by Pr(dn = d|fn, τ, n∆t) ≡ 1

2 − (−1)dh(fn) and
is depicted in Fig. 1(b) as a probability of seeing the
qubit in the d = 1 state. We begin by describing here
a ‘raw’ non-linear measurement record, {dn} where each
dn [black dots] corresponds to a binary outcome derived
from a single projective measurement on a qubit. The
sequence {dn} can be treated as a sequence of biased
coin flips, where the underlying bias of the coin is a non-
Markovian, discrete-time process and the value of the
bias is given by Eq. (1) at each n. The non-linearity of
the measurement, h(fn), is defined with respect to fn
where Eq. (1) is interpreted as a non-linear measurement
action for Bayesian learning frameworks.

This data series is contrasted with a linear measure-
ment record, {yn}, depicted in Fig. 1(c). Each value yn
is derived from the sum of a true qubit phase, fn, and
Gaussian white measurement noise, vn. The sequence
{yn} is generated by pre-processing raw binary measure-
ments, {dn} via a range of experimental techniques sub-
ject to a separation of timescales such that ∼ τ is much
faster than drift of δω(t). In the most common case,
one performs M runs of the experiment over which δω(t)
is approximately constant, giving an estimate of fn at
t = n∆t using averaging, a Bayesian scheme, or Fourier
analysis. A more complex linearization protocol involves
the use of low-pass or decimation filtering on a sequence
{dn} to yield P̂ r(dn|fn, τ, n∆t), from which accumulated
phase corrupted by measurement noise, {yn}, can be ob-
tained from Eq. (1). Since any low pass or a decimation
filter has an averaging effect on a signal, decimation fil-
tering a sequence {dn} provides an alternative, software-
based approach to physically averaging single shot qubit
measurements. Hence, the linear measurement record in
Fig. 1(c) arises either from software pre-processing (fil-
tering) data from a single qubit, or from experimental
averaging over an ensemble of qubits.

We impose properties on environmental dephasing
such that our theoretical designs can enable meaningful
predictions. We assume dephasing is non-Markovian, co-
variance stationary and mean-square ergodic. That is, a
single realisation of the process f is drawn from a power
spectral density of arbitrary, but non-Markovian form.
We further assume that f is a Gaussian process and the
separation of timescales between measurement protocols
and dephasing dynamics articulated above are met.

Given these conditions, our task is to build a dynam-
ical model to approximately track f over past measure-
ments (n < 0), and enable qubit state predictions in
future times (n > 0). This prediction is represented by
the red line in Fig. 1(b-c), and differs from the truth
by the so-called estimation (prediction) risk for past (fu-
ture) times as indicated by shading. We represent our
estimate of f for all times using a hat in both the lin-
ear and nonlinear measurement models. The major chal-
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lenge we face in developing this estimate, f̂ (equivalently

P̂ r(dn|fn, τ, n∆t)), is that for a qubit evolving under
stochastic dephasing (true state given by black solid line
in Fig. 1(b) and (c)), we have no a prior dynamical model
for the underlying evolution of f . In the next section,
we define the theoretical structure of KF and GPR al-
gorithms which allow us to build that dynamical model
directly from the historical measurement record.

III. OVERVIEW OF PREDICTIVE
METHODOLOGIES

Our objective is to implement an algorithm permitting
learning of underlying qubit dynamics in such a way as
to maximize the forward prediction horizon for a given
qubit data record. We first quantify the quality of our
state estimation procedure. The fidelity of any under-
lying algorithm during state estimation and prediction,
relative to the true state, is expressed by the mathemat-
ical quantity known as a Bayes Risk, where zero risk
corresponds to perfect estimation. At each time-step, n,
the Bayes risk is a mean square distance between truth,

f , and prediction, f̂ , calculated over an ensemble of M
different realisations of true f and noisy data-sets D:

LBR(n|I) ≡ 〈(fn − f̂n)2〉f,D (2)

The notation LBR(n|I) expresses that the Bayes Risk
value at n is conditioned on I, a placeholder for free pa-

rameters in the design of the predictor, f̂n. State estima-
tion risk is Bayes Risk incurred during n ∈ [−NT , 0]; pre-
diction risk is the Bayes Risk incurred during n ∈ [0, NP ].
State estimation and prediction risk regions for one real-
isation of dephasing noise are shaded in Fig. 1-3. We
therefore define the forward prediction horizon as the
number of time-steps for n∗ ∈ [0, NP ] during which a
predictive algorithm incurs a lower Bayes prediction risk

than naively predicting f̂n ≡ µf = 0 ∀n, the mean
qubit behaviour under zero-mean dephasing noise.

With this concept in mind, we introduce two general
approaches for algorithmic learning relevant to the stric-
tures of the problem we have introduced. Our general ap-
proach is shared between all algorithms employed and is
represented schematically for the KF and GPR in Fig. 2.
Stochastic qubit evolution is depicted for one realisation
of f [black solid line] given noisy linear measurements
[black dots] corrupted by Gaussian white measurement
noise vn. Our overall task is to produce an estimate,
given by the red line, which minimizes risk for the predic-
tion period. Ideally both estimation risk and prediction
risk are minimized simultaneously for well performing im-
plementations.

Examining the insets in both panels of Fig. 2, both
frameworks start with a prior Gaussian distribution over
qubit states [purple] that is constrained by the measure-
ment record to yield a posterior Gaussian distribution
of the qubit state [red]. The prior captures assumptions

about the qubit state before any data is seen and the
posterior expresses our best knowledge of the qubit state
under a Bayesian framework. The posterior distribution
in both KF and GPR is used to generate qubit state
estimates (n < 0) and predictions (n > 0) [red solid
line]. However the computational process by which this
posterior is inferred differs significantly between the two
methods; we provide an overview of the central features
of these algorithms below.

The key feature of a Kalman filter is the recursive
learning procedure shown in the inset to Fig. 2(a). Our
knowledge of the qubit state is summarised by the prior
and a posterior Gaussian probability distributions and
these are created and collapsed recursively at each time
step. The mean of these distributions is the true Kalman
state, xn, and the covariance of these distributions, Pn,
captures the uncertainty in our knowledge of xn; together
both define the Gaussian distribution. The Kalman fil-
ter produces an estimate of the state, x̂n at each step
through this recursive procedure taking into account two
factors. First, the Kalman gain, γn, updates our knowl-
edge of (xn, Pn) within each time step n and serves as
a weighting factor for the difference between incoming
data, and our best estimate for an observation based on
x̂n, suitably transformed via the measurement action,
h(x̂n). Next, the dynamical model Φn propagates the
state and covariance, (xn, Pn), to the next time step, such
that the posterior moments at n define the prior at n+1.
This process occurs for each time step and an estimate
of a true xn state is built up recursively based on all of
our existing knowledge, namely, a linear combination of
all past measurements; and all previously generated state
estimates. Beyond n = 0 we perform predictions in the
absence of further measurement data by simply propa-
gating the dynamic model with the Kalman gain set to
zero. Full details of the KF algorithm appear below in
Section III A.

In our application, we define the Kalman state, xn, the
dynamical model Φn, and a measurement action h(xn)
such that the Kalman Filtering framework can track a
non-Markovian qubit state trajectory due to an arbitrary
realisation of f . In standard KF implementations, the
discrete-time sequence {xn}, defines a “hidden” signal
that cannot be observed, and the dynamic model Φn is
known. We deviate from this standard construction such
that our true Kalman state and its uncertainty, (xn, Pn),
do not have a direct physical interpretation. Kalman
xn has no a priori deterministic component and corre-
sponds to arbitrary power spectral densities describing f .
Hence, the role of the Kalman xn is to represent an ab-
stract correlated process that, upon measurement, yields
physically relevant quantities governing qubit dynamics.
Moreover a key challenge described in detail below is to
construct an effective Φn from the measurement record.

In contrast to the recursive approach taken in the
KF, a GPR learning protocol illustrated schematically
in Fig. 2(b) selects a random process to best describe
overall dynamical behaviour of the qubit state under one
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FIG. 2. Comparison of the algorithmic structure between the KF and GPR by superposing lower panels of Fig. 1 with KF
and GPR predictive frameworks. (a) KF: Purple distribution represents a prior, with mean xn, and covariance Pn; propagated
in time-steps, n, using Kalman dynamics Φn, and updated within each n by the Kalman gain γn to yield posterior distribution
(red) at n. The posterior at n is the prior at n+ 1. The mean of a posterior distribution at each n is used to derive predictions
given by the red line using h(xn). In blue region, the red posterior predictive distribution is propagated using Φn but γn ≡ 0.
Gaussian white Kalman ‘process’ noise, wn, is coloured by Φn to yield dynamics for xn. (b) Purple prior distribution defined
over sequences, f , with mean, µf and variance Σf is constrained by the entire measurement record. The resulting posteriori
predictive distribution (red) is evaluated at test-points in time, n‡ ∈ [−NT , NP ]; state estimates (predictions) is the mean, µf‡

at n‡ < 0 (n‡ > 0). A choice of kernel defines each element in Σf ,Σf† . In both (a)-(b), the purple shadow represents posterior
state variance (diagonal Pn or Σf‡ elements) constrained by data and filtered measurement noise vn.

realisation of f . The key point is that sampling the prior
or posterior distribution in GPR yields random realisa-
tions of discrete time sequences, rather than individual
random variables, and GPR considers the entire mea-
surement record at once. In a sense, it corresponds to
a form of fitting over the entire data set. The output
of a GPR protocol is a predictive distribution which we
can evaluate at an arbitrarily chosen sequence of test-
points, where the test points can exist for n < 0 (n > 0)
such that we extract state estimates (forward predic-
tions) from the predictive distribution. Due to the nature
of this procedure, we wish to distinguish the set of test
points (in units of time-steps) using a ‡, namely, that we
are evaluating the predictive posterior distribution of a
GPR protocol at desired time labels. In this notation,
{n‡}, n‡ ∈ [−NT , NP ] are test-points; N‡ is the total
length of an array of test points; where state estimation
occurs if n‡ ≤ 0 and predictions occur if n‡ > 0.

The process of building the posterior distribution is
implemented using a kernel, or basis, from which to con-
struct the effective fit. In standard GPR implementa-
tions, the correlation between any two observations de-
pends only on the separation distance of the index of
these observations, and correlations are captured in the
covariance matrix, Σf . Each element, Σn1,n2

f , describes
this correlation for observations at arbitrary time-steps
indexed by n1 and n2: this quantity is given in a form
set by the selected kernel.

In our application, the non-Markovian dynamics of f

are not specified explicitly but are encoded in a general
way through the choice of kernel, prescribing how Σn1,n2

f
should be calculated. The Fourier transform of the kernel
represents a power spectral density in Fourier space. A
general design of Σn1,n2

f allows one to probe arbitrary
stochastic dynamics and equivalently, explore arbitrary
regions in the Fourier domain. For example, Gaussian
kernels (RBF) and mixtures of Gaussian kernels (RQ)
capture the continuity assumption that correlations die
out as separation in time increases. We choose to employ
an infinite basis of oscillators implemented by the so-
called periodic kernel to enable us to represent arbitrary
power spectral densities for f . Prediction occurs simply
by extending the GPR fit by choosing test-points n‡ > 0.

In the following subsections we provide details of the
specific classes of learning algorithm employed here with
an eye towards evaluating their predictive performance
on qubit-measurement records. We introduce a series of
KF algorithms capable of handling both linear and non-
linear measurement records, and restrict our analysis of
GPR to linear measurement records.

A. Kalman Filtering (KF)

In order for a Kalman Filter to track a stochastically
evolving qubit state in our application, the hidden true
Kalman state at time-step n, xn, must mimic stochastic
dynamics of a qubit under environmental dephasing. We
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propagate the hidden state xn according to a dynamical
model Φn corrupted by Gaussian white process noise, wn.

xn = Φnxn−1 + Γnwn (3)

wn ∼ N (0, σ2) ∀n (4)

Process noise has no physical meaning in our applica-
tion - wn is shaped by Γn and deterministically colored
by the dynamical model Φn to yield a non-Markovian
xn representing qubit dynamics under generalised envi-
ronmental dephasing. In addition to coloring via the
dynamical model, the process noise covariance matrix,
Qn ≡ ΓnΓTn , offers an additional mechanism to shape
input white noise by designing Γn.

We measure xn using an ideal measurement protocol,
h(xn), and incur additional Gaussian white measurement
noise vn with scalar covariance strength R, yielding scalar
noisy observations yn:

yn = zn + vn (5)

zn ≡ h(xn) (6)

vn ∼ N (0, R) ∀n (7)

The measurement procedure, h(xn), can be linear or non-
linear, allowing us to explore both regimes in our physical
application.

With appropriate definitions, the Kalman equations
below specify all Kalman algorithms in this paper. At
each time step, n, we denote estimates of the moments
of the prior and posterior distributions (equivalently, es-

timates of the true Kalman state) with (x̂n(−), P̂n(−))

and (x̂n(+), P̂n(+)) respectively. The Kalman update
equations take a generic form (c.f. [31]) :

x̂n(−) = Φn−1x̂n−1(+) (8)

Qn−1 = σ2Γn−1ΓTn−1 (9)

P̂n(−) = Φn−1P̂n−1(+)ΦTn−1 +Qn−1 (10)

γn = P̂n(−)HT
n (HnP̂n(−)HT

n +Rn)−1 (11)

ŷn(−) = h(x̂n(−)) (12)

x̂n(+) = x̂n(−) + γn(yn − ŷn(−)) (13)

P̂n(+) = [1− γnHn] P̂n(−) (14)

To reiterate, Eq. (8) and Eq. (10) bring the best state of
knowledge from the previous time step into the current
time step, n, as a prior distribution. Dynamical evolution
is modified by features of process noise, as encoded in
Eq. (9), and propagated in Eq. (10). The propagation
of the moments of the a priori distribution, as outlined
thus far, does not depend on the incoming measurement,
yn, but is determined entirely by the a priori (known)
dynamical model, in our case Φ ≡ Φn,∀n.

The Kalman gain in Eq. (11) depends on the uncer-

tainty in the true state, P̂n(−) and is modified by fea-
tures of the measurement model, Hn, and measurement
noise, Rn ≡ R, ∀n. It serves as an effective weighting

function for each incoming observation. Before seeing
any new measurement data, the filter predicts an obser-
vation ŷn(−) corresponding to the best available knowl-
edge at n in Eq. (12). This value is compared to the
actual noisy measurement yn received at n, and the dif-
ference is used to update our knowledge of the true state
via Eq. (13). If measurement data is noisy and unreli-
able (high R), then γ has a small value, and the algo-
rithm propagates Kalman state estimates according to
the dynamical model and effectively ignores data. In
particular, only the second terms in both Eq. (13) and
Eq. (14) represent the Bayesian update of the moments
of a prior distribution ((−) terms) to the posterior dis-
tribution ((+) terms) at n. If γn ≡ 0, then the prior and
posterior moments at any time step are exactly identi-
cal by Eqs. (13) and (14), and only dynamical evolution
occurs using Eqs. (8) to (10). This is the condition we
employ when we seek to make forward predictions be-
yond a single time-step, and hence we set γ ≡ 0 during
future prediction.

Since we do not have a known dynamical model Φ
for describing stochastic qubit dynamics under f , we
will need to make design choices for {x,Φ, h(x),Γ} such
that f can be approximately tracked. These design
choices will completely specify algorithms introduced be-
low and represent key findings with respect to our work
in this manuscript. For a linear measurement record,
h(x) 7→ Hx and we compare predictive performance for
Φ modeling stochastic dynamics either via so-called ‘au-
toregressive’ processes in the AKF, or via projection onto
a collection of oscillators in the LKKFB. In addition, we
use the dynamics of AKF to define a Quantised Kalman
filter (QKF) with a non-linear, quantised measurement
model such that the filter can act directly on binary qubit
outcomes. We provide the relevant details in sub-sections
below.

1. Autoregressive Kalman Filter (AKF)

Recursive autoregressive methods are well-studied in
classical control applications (c.f. [32]) presenting oppor-
tunities to leverage existing engineering knowledge in de-
veloping quantum control strategies. In our application,
we use an autoregressive Kalman filter to probe arbitrary,
covariance-stationary qubit dynamics such that the dy-
namic model is constructed as a weighted sum of q past
values driven by white noise i.e. an autoregressive pro-
cess of order q, AR(q). Using Wold’s decomposition, it
can be shown that any zero mean covariance stationary
process representing qubit dynamics has a representation
in the mean-square limit by an autoregressive process of
finite order, as in Appendix B.

The study of AR(q) processes falls under a general
class of techniques based on autoregressive moving av-
erage (ARMA) models in adaptive control engineering
and econometrics (e.g. [33, 34] respectively). For high-q
models in a typical time-series analysis, it is possible to
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decompose an AR(q) into an ARMA model with a small
number of parameters [35, 36]. However, we retain a
high-q model to probe arbitrary power spectral densities.
Further, literature suggests employing a high-q model is
relatively easier than a full ARMA estimation problem
and enables lower prediction errors [35, 37].

To construct the Kalman dynamical operator Φ for the
AKF, we introduce a set of q coefficients {φq′≤q}, q′ =
1, ..., q to specify the dynamical model:

fn = φ1fn−1 + φ2fn−2 + ...+ φqfn−q + wn (15)

We thus see that the dynamical model is constructed
as a weighted sum of time-retarded samples of f , with
weighting factors given by the autoregressive coefficients
up to order (and hence time lag) q. For small q < 3, it is
possible to extract simple conditions on the coefficients,
{φq′≤q}, that guarantee properties of f : for example,
that f is covariance stationary and mean square ergodic.
In our application, we freely employ arbitrary-q models
via machine learning in order to improve our approxima-
tion of an arbitrary f . Any AR(q) process can be recast
(non-uniquely) into state space form ([4]), and we de-
fine the AKF by the following substitutions into Kalman
equations:

xn ≡
[
fn . . . fn−q+1

]T
(16)

Γnwn ≡
[
wn0 . . . 0

]T
(17)

ΦAKF ≡


φ1 φ2 . . . φq−1 φq
1 0 . . . 0 0

0 1
. . .

...
...

0 0
. . . 0 0

0 0 . . . 1 0

 ∀n (18)

H ≡
[
1 0 0 0 . . . 0

]
∀n (19)

The matrix ΦAKF is the dynamical model used to re-
cursively propagate the unknown state during state esti-
mation in the AKF, as represented schematically in the
upper half of Fig. 3. In general, the {φq′≤q} employed
in ΦAKF must be learned through an optimisation pro-
cedure using the measurement record, where the set of
parameters to be optimised is {φ1, . . . , φq, σ

2, R}. This
procedure yields the optimal configuration of the autore-
gressive Kalman filter, but at the computational cost of
a q + 2-dimensional Bayesian learning problem for arbi-
trarily large q.

The Least Squares Filter (LSF) in [28] considers a
weighted sum of past measurements to predict the i-th
step ahead measurement outcome, i ∈ [0, NP ]. A gra-
dient descent algorithm learns the weights, {φq′≤q} for
the previous q past measurements, and a constant offset
value for non-zero mean processes, to calculate the i-th
step ahead prediction. The set of NP LSF models, col-
lectively, define the set of predicted qubit states under an
LSF acting on a measurement record. For i = 1, equiv-
alent to the single-step update employed in the Kalman
filter, we assert that learned {φq′≤q} in LSF effectively

LKFFB:          Oscillators

AKF/ QKF: Order q

Past

Time Steps (num)

(a
.u

.)

True State Msmts
Prediction

FIG. 3. Approaches to construction of the KF dynamical
model. Panel (a) from Fig. 2 superimposed with Kalman dy-
namical models, Φ ≡ Φn, ∀n. (a) AKF/QKF: A set of autore-
gressive coefficients, {φq′≤q}, define Φ to yield fn as a weight
sum of q past measurements. (b) LKFFB: Red arrows with

heights ||xjn|| depict set of basis oscillators for j = 1, . . . , J(B)

probe true purple spectrum of fn and yields time domain dy-
namics of fn as a stacked system of resonators, Θj . Black
L-shaped arrows depict a single instance of fn at n = 0 based
on historical {fn−1, fn−2, . . .}.

implements an AR(q) process (we validate numerically
in Section IV). Under this condition, and for zero-mean
wn, the LSF in [28] by definition searches for coefficients
for the weighted linear sum of past q measurements, as
described in in Eq. (15).

We use the parameters {φq′≤q} learned in the LSF
to define Φ in Eq. (18), therefore reducing the compu-
tational complexity of the remaining optimisation from
((q + 2) → 2)-dimensional for an AKF of order q.
Since Kalman noise parameters (σ2, R) are subsequently
auto-tuned using a Bayes Risk optimisation procedure
(see Section IV A), we optimise over potential remaining
model errors and measurement noise.

In general, LSF performance improves as q increases
and a full characterisation of model-selection decisions
for LSF are given in [28]. Defining an absolute value
for the optimal q is somewhat arbitrary as it is defined
relative to the extent to which a true f is oversampled in
the measurement routine and the finite size of the data.
For all analyses presented here, we fix the ratio q∆t = 0.1
(a.u.) and q/NT = 0.05 (a.u.), where the experimental
sampling rate is 1/∆t, NT and {φq′≤q} are identical in
the AKF and LSF. In practice this ensures numerical
convergence of the LSF during training.
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2. Liska Kalman Filter with Fixed Basis (LKFFB)

In LKFFB, we effectively perform a Fourier decompo-
sition of the underlying f in order to build the dynamic
model, Φ, for the Kalman filter. Here, we project our
measurement record on J (B) oscillators with fixed fre-
quency ωj ≡ jω

(B)
0 with j an integer as j = 1, . . . , J (B).

The temporal resolution of the state tracking procedure
is set by the maximum frequency in the selected basis
and properties of the spacing between adjacent basis fre-
quencies. The superscript (B) indicates Fourier domain
information about an algorithmic basis, as opposed to in-
formation about the true (unknown) dephasing process.
The LKFFB allows instantaneous amplitude and phase
tracking for each basis oscillator, directly enabling for-
ward prediction from the learned dynamics. The struc-
ture of this Kalman filter, referred to as the Liska Kalman
Filter (LKF), was developed in [29]; adding a fixed basis
in this application yields the Liska Kalman Filter with a
Fixed Basis (LKFFB).

For our application, the true hidden Kalman state, x,
is encoded as a collection of sub-states, xj , for the jth

oscillator. For clarity we remind that the superscript is
used as an index rather than a power. Each sub-state
is labeled by a real and imaginary component which we
represent in vector notation:

xn ≡
[
x1
n . . . x

j
n . . . x

J(B)

n

]
(20)

Ajn ≡ Re(xjn) (21)

Bjn ≡ Im(xjn) (22)

xjn ≡
[
Ajn
Bjn

]
(23)

The algorithm tracks the real and imaginary parts of
the Kalman sub-state simultaneously in order calculate
the instantaneous amplitudes (||xjn||) and phases (θjn) for
each Fourier component:

||xjn|| ≡
√

(Ajn)2 + (Bjn)2 (24)

θjn ≡ tan
Bjn

Ajn
(25)

The dynamical model for LKFFB is now constructed
as a stacked collection of these independent oscillators.
The sub-state dynamics match the formalism of a Marko-
vian stochastic process defined on a circle for each basis

frequency, ωj , as in Ref. [38]. We stack Θ(jω
(B)
0 ∆t) for

all ωj along the diagonal to obtain the full dynamical
matrix for Φn:

Φn ≡

 Θ(ω
(B)
0 ∆t) . . . 0

. . .Θ(jω
(B)
0 ∆t) . . .

0 . . .Θ(J (B)ω
(B)
0 ∆t)

 (26)

Θ(jω
(B)
0 ∆t) ≡

[
cos(jω

(B)
0 ∆t) − sin(jω

(B)
0 ∆t)

sin(jω
(B)
0 ∆t) cos(jω

(B)
0 ∆t)

]
(27)

We obtain a single estimate of the true hidden state by
defining the measurement model, H, by concatenating
J (B) copies of the row vector [1 0] :

H ≡
[
1 0 . . . 1 0 . . . 1 0

]
(28)

Here, the unity values of H pick out and sum the Kalman
estimate for the real components of f while ignoring the
imaginary components, namely, we sum Ajn for all J (B)

basis oscillators.
In [29], a state-dependent process-noise-shaping ma-

trix is introduced to enable potentially non-stationary
instantaneous amplitude tracking in LKKFB for each in-
dividual oscillator:

Γn−1 ≡ Φn−1
xn−1

||xn−1||
(29)

For the scope of this manuscript, we retain the form of
Γn in our application even if true qubit dynamics are co-
variance stationary. As such, Γn depends on the state es-
timates x. For this choice of Γn, we deviate from classical
Kalman filters because recursive equations for P cannot
be propagated in the absence of measurement data. Con-
sequently, Kalman gains cannot be pre-computed prior
to experimental data collection. Details of gain pre-
computation in classical Kalman filtering can be found
in standard textbooks (e.g. [31]).

There are two ways to conduct forward prediction for
LKFFB and both are numerically equivalent for an ap-
propriate choice of basis: (i) we set the Kalman gain to
zero and recursively propagate using Φ; (ii) we define
a harmonic sum using the basis frequencies and learned
{||xjn||, θjn}. This harmonic sum can be evaluated for all
future time to yield forward predictions in a single calcu-
lation. The choice of basis for an LKFFB and its impli-
cations for optimal predictive performance are discussed
in Appendix C 2.

3. Quantised Kalman Filter (QKF)

In QKF, we implement a Kalman filter that acts di-
rectly on discretised measurement outcomes, d ∈ {0, 1}.
To reiterate the discussion of Fig. 1(a), this means that
the measurement action in QKF must be non-linear and
take as input quantised measurement data. This holds
true irrespective of our dynamical model, Φ. In our ap-
plication we set the dynamical model to be identical to
that employed in the AKF, allowing isolation of the effect
of the nonlinear, quantised measurement action.

With unified notation across AKF and QKF, we define
a non-linear measurement model h(x) and its Jacobian,
H as:

zn ≡ h(xn[0]) ≡ 1

2
cos(fn) (30)

=⇒ Hn ≡
dh(fn)

dfn
= −1

2
sin(fn) (31)
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During filtering, zn = h(xn[0]) is used to compute mea-
surement residuals when updating the true Kalman state,
xn, whereas the state variance estimate, Pn, is propa-
gated using the Jacobian, Hn. Further, the Jacobian
is used to compute the Kalman gain. Hence the filter
can quickly destabilise if the linearisation of h(·) by Hn

doesn’t hold during dynamical propagation, resulting in
a rapid build up of errors.

In this construction, the entity zn is associated with an
abstract ‘signal’: a sequence formed by repeated appli-
cations of the likelihood function for a single qubit mea-
surements in Eq. (1). The true stochastic qubit phase,
fn, is our Kalman hidden state, xn. Subsequently, we
extract an estimate of the true bias, zn, as an unnatu-
ral association of the Kalman measurement model with
Born’s rule. The sequence {zn} is not observable, but
can only be inferred over a large number of experimental
runs.

To complete the measurement action, we implement
a biased coin flip within the QKF filter given ỹn. While
the qubit provides measurement outcomes which are nat-
urally quantised, we require a theoretical model, Q, to
generate quantised measurement outcomes with statistics
that are consistent with Born’s rule in order to propagate
the dynamic Kalman filtering equations appropriately. In
order to build this machinery we modify the procedure
in [39] to quantise zn using biased coin flips. In our no-
tation, we represent a black-box quantiser, Q, that gives
only a 0 or a 1 outcome based on ỹn:

dn = Q(ỹn) (32)

= Q(h(fn) + vn) (33)

The use of the notation ỹn is meant to indicate a corre-
spondence with yn introduced earlier, while the physical
meaning differs due to the discretised nature of the QKF.
Therefore, the stochastic changes in {ỹn} are represented
in the bias of a coin flip, subject to proper normalisation
constraints which maintains |ỹn| ≤ 0.5:

Pr(dn|ỹn, fn, τ) ≡ B(nB = 1; pB = ỹn + 0.5) (34)

QKF uses Eq. (34) to define a biased coin-flip dur-
ing filtering, where nB represents a single coin flip, pB
represents the stochastically drifting bias on the coin.
Kalman filtering with the coin-flip quantisation defined
by Eq. (34) presents a departure from classical amplitude
quantisation procedures in [39, 40].

From a computational perspective, we modify the pro-
cess noise features definition from AKF to QKF. We set
Q ≡ σ2ΓΓT → σ2I ∀n, I is q× q identity matrix, from
AKF to QKF. This rationale for this modification is that
it smears out the effect of white process noise in a way
that stabilizes inversions in the gain calculation in the
Kalman filter, but does not correlate any two Kalman
states in time (diagonal matrix). In practice, this modi-
fication only yields mild improvements over the original
AKF process noise features matrix.

The definitions of {Q, h(xn), Hn, Q} in this subsection,
and dynamics {xn,Φ} from the AKF now completely

specify the QKF algorithm for application to a discrete,
single-shot measurement record as depicted in Fig. 1 (a).

B. Gaussian Process Regression (GPR)

In GPR, correlations in the measurement record can
be learned if one projects data on a distribution of Gaus-
sian processes, Pr(f) with an appropriate encoding of
their covariance relations via a kernel, Σn1,n2

f . We return
to the linear measurement record and the definition of
scalar noisy observations yn corrupted by Gaussian mea-
surement noise, vn, as considered previously for AKF,
LSF, and LKFFB. Under linear operations, the distribu-
tion of measured outcomes, yn, is also a Gaussian. The
mean and variance of Pr(y) depends on the mean µf and
variance Σf of the prior Pr(f), and the mean µv ≡ 0 and
variance R of the measurement noise:

f ∼ Prf (µf ,Σf ) (35)

y ∼ Pry(µf ,Σf +R) (36)

For covariance stationary f , correlation relationships de-
pend solely on the time lag, ν ≡ ∆t|n1 − n2| between
any two time points n1, n2 ∈ [−NT , NP ]. An element of
the covariance matrix, Σn1,n2

f , corresponds to one value
of lag, ν, and the correlation for any given ν is specified
by the covariance function, R(ν):

Σn1,n2

f ≡ R(ν) (37)

Any unknown parameters in the encoding of correlation
relations via R(ν) are learned by solving the optimisation
problem outlined in Section IV A. The optimised GPR
model is then applied to datasets corresponding to new
realisations of f . Let indices n ∈ NT ≡ [−NT , 0] de-
note training points, and let a length N‡ vector contain
arbitrary testing points n‡ ∈ [−NT , NP ]. These test-
ing points in machine learning language encompass both
state estimation and prediction points in our notation.
We now define the joint distribution Pr(y, f‡), where f‡

represents the true process evaluated by GPR at desired
test points:[

f‡

y

]
∼ N (

[
µf‡

µy

]
,

[
K(N‡, N‡) K(NT , N

‡)
K(N‡, NT ) K(NT , NT ) +R

]
)

(38)

The additional ‘kernel’ notation Σf ≡ K(NT , NT ) is ubi-
tiquous in GPR. Time domain correlations specified by
R(ν) populate each element of a matrix K(·, ··), where
the dimensions of the matrix depend on the vector length
of each argument. For example, for K(NT , NT ), the
notation defines a square matrix where diagonals corre-
spond to ν = 0 and off-diagonal elements correspond to
separation of two arbitrary points in time i.e. ν 6= 0.

Following [41], the moments of the conditional predic-
tive distribution Pr(f‡|y) can be derived from the joint
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distribution Pr(y, f‡) via standard Gaussian identities:

µf‡|y = µf +K(N‡, NT )(K(NT , NT ) +R)−1(y − µy)

(39)

Σf‡|y = K(N‡, N‡)

−K(N‡, NT )(K(NT , NT ) +R)−1K(NT , N
‡)

(40)

The prediction procedure outlined above holds true for
any choice of kernel, R(ν). In any GPR implementa-
tion, the dataset, y, constrains the prior model yielding
an a posteriori predictive distribution. The mean values
of this predictive distribution, µf‡|y, are the state pre-
dictions for the qubit under dephasing at test points in
N‡.

In our work we focus on a ‘periodic kernel’ to encode a
covariance function which is theoretically guaranteed to
approximate any zero-mean covariance stationary pro-
cess, f , in the mean square limit, by having the same
structure as a covariance function for trigonometric poly-
nomials with infinite harmonic terms [38, 42]. The sine
squared exponential kernel represents an infinite basis of
oscillators and is defined as:

R(ν) ≡ σ2 exp(−
2 sin2(

ω
(B)
0 ν
2 )

l2
) (41)

This kernel is described using just two key hyper-
parameters: the frequency-comb spacing for our infinite
basis of oscillators, ω0, and a dimensionless length scale,
l. We use physical sampling considerations to approx-
imate their initial conditions prior to an optimisation
procedure, namely, that the longest correlation length
encoded in the data sets the frequency resolution of the
comb, and the scale at which changes in f are resolved is
limited physically by the minimum time taken between
sequential Ramsey measurements:

ω
(B)
0

2π
∼ 1

∆tN
(42)

l ∼ ∆t (43)

Because the periodic kernel can be shown to be formally
equivalent to the basis of oscillators employed in the
LKFFB algorithm in a limiting case (see Appendix C
for a discussion using results in [42]), the inclusion of
GPR using this kernel permits a comparison of the un-
derlying algorithmic structures for the task of predictive
estimation using spectral methods.

For the analysis of covariance stationary time series
under a GPR framework, we de-emphasise popular ker-
nel choices such as: a Gaussian kernel (RBF), a scale
mixture of Gaussian kernels (RQ), and Matern kernels
(e.g. MAT32) [41, 43]. An arbitrary-scale mixture of
zero-mean Gaussian kernels will probe an arbitrary area
around zero in the Fourier domain, as schematically de-
picted in Fig. 2(a). While such kernels capture the con-
tinuity assumption ubitiquous in machine learning, they

are structurally inappropriate for probing a process char-
acterized by an arbitrary power spectral density (e.g.
ohmic noise). Another common kernel for time-series
analysis is a quasi periodic kernel (QPER) defined by a
product of an RBF with a periodic kernel [44]. This cor-
responds to a convolution in the Fourier domain giving
rise to a comb of Gaussians at the expense of an increase
in the number of parameters required for kernel tuning.
One can also consider specific types of AR(q) processes
using Matern kernels of order q+ 1/2 but with increased
restrictions on the form of coefficients [41, 45]. A simple
consideration of autoregressive approaches suggest that
a Matern kernel for q = 1 (MAT32) can be briefly trialed
under GPR, whereas high-q autoregressive processes are
naturally and generally treated under a KF framework.
Further discussion of kernel choice appears in Sec. V.

IV. ALGORITHM PERFORMANCE
CHARACTERISATION

In the results to follow, our metric for characterising
performance of optimally tuned algorithms will be the
normalised Bayes prediction risk:

L̃BR ≡
LBR(n|I)

〈(fn − µf )
2〉f,D

, µf ≡ 0 (44)

A desirable forward prediction horizon corresponds to
maximal n∗ ∈ [0, NP ] for which normalised Bayes pre-
diction risk at all time-steps n ≤ n∗ is less than unity.
We compare the difference in maximal forward prediction
horizons between algorithms in the context of realistic
operating scenarios. We begin here by introducing the
numerical methods employed for generating data-sets on
which predictive estimation is performed.

We simulate environmental dephasing through a
Fourier-domain procedure described in Appendix A 2
[46] in order to simulate an f which is mean-square er-
godic and covariance stationary. For the results in this
manuscript, we choose a flat top spectrum with a sharp
high-frequency cutoff for simplicity as this choice of a
power spectral density theoretically favors no particular
choice of algorithm but violates the Markov property.

In our simulations we also must mimic a measurement
process which samples the underlying “true” dephasing
process. The algorithmic parameters {NT ,∆t} represent
a sampling rate and Fourier resolution set by the sim-
ulated measurement protocol; we choose regimes where
the Nyquist rate, r � 2. In generating noisy simulated
measurement records, we corrupt a noiseless measure-
ment by additive Gaussian white noise. Since f is Gaus-
sian, the measurement noise level, N.L., is defined as a
ratio between the standard deviation of additive Gaus-
sian measurement noise,

√
R and the maximal spread of

random variables in any realisation f . We approximate
the maximal spread of f as three sample standard devi-

ations of one realisation of true f , N.L. =
√
R/3

√
Σ̂n,nf .
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The use of a hat in this notation denotes sample statis-
tics. This computational procedure enables a consistent
application of measurement noise for f from arbitrary,
non-Markovian power spectral densities. For the case
where binary outcomes are required, we apply a biased
coin flip using Eq. (34).

A. Algorithmic Optimisation

All algorithms in this manuscript employ machine
learning principles to tune unknown design parameters
based on training data-sets. The physical intuition as-
sociated with optimising our filters is that we are cy-
cling through a large class of general models for environ-
mental dephasing and seeking the model(s) which best
fit the data subject to various constraints. This allows
each filter to track stochastic qubit dynamics under ar-
bitrary covariance-stationary, non-Markovian dephasing.
We elected to deploy an optimisation routine with mini-
mal computational complexity to enable nimble deploy-
ment of KF and GPR algorithms in realistic laboratory
settings, particularly since LSF optimisation is extremely
rapid for our application [28].

Kalman filtering in our setting poses a significant chal-
lenge for general optimisers as the lack of theoretical
bounds on the values of (σ,R) result in large, flat regions
of the Bayes Risk function. Further, the recursive struc-
ture of the Kalman filter means that no analytical gradi-
ents are accessible for optimising a choice of cost function
and a large computational burden is incurred for any op-
timisation procedure. We randomly distribute (σk, Rk)
pairs for k = 1, . . .K over ten orders of magnitude in two
dimensions in order to sample the optimisation space.

We then generate a sequence of loss values L(σk, Rk)
for each k by considering a small region around n = 0,
where the size of the region is nL number of time steps
we look forward or backwards from n = 0:

L(σk, Rk) ≡
nL∑
n=1

LBR(n|I = {σk, Rk}). (45)

Here, LBR(n|I = {σk, Rk}) is given by Eq. (2) and it is
summed over 0 ≤ nL ≤ |NT | (0 ≤ nL ≤ |NP |) backwards
(forwards) time-steps for state estimation (prediction).
In the notation for I above, we omit Kalman dynamical
model design parameters for ease of reading. Typically
I would include, for instance, the set of autoregressive
coefficients in AKF and the set of fixed basis frequen-
cies in LKFFB. Values of nL are chosen such that the
sequence {L(σk, Rk)} defines sensible shapes of the to-
tal loss function over parameter space and the numerical
experiments in this manuscript. A choice of small nL
in state-estimation ensures that data near the prediction
horizon are employed - a region where the Kalman fil-
ter is most likely to have converged. Similarly, in state
prediction, large nL will flatten the true prediction loss
function as long-term prediction errors dominate smaller

loss values occurring during the short term prediction
period. In addition, one can weight state estimation and
state prediction loss functions differently by choosing dif-
ferent values of nL for state estimation and prediction,
though we set nL to be the same in both regions. While
simple and by no means optimal, our tuning approach is
computationally tractable and efficient compared to the
application of standard optimisation routines where each
loss value calculation requires a recursive filter to act on
a long measurement record. Further, our approach en-
sures tuning procedures are performed off-line such that
a tuned algorithm is simple in its recursive structure and
performs rapid calculations at each time-step.

An ideal parameter pair (σ∗, R∗) minimises Bayes risk
over K trials for both state estimation and prediction.
We define acceptable low loss regions for state estima-
tion and prediction as being the set which returns loss
less than 10% of the median risk over K trials. In the
event that low risk regions do not exist for both state
estimation and prediction for a given parameter pair, we
deem the optimisation to have failed as state estimation
performance is uncorrelated with forward prediction (for
illustration, see panel (h) of Fig. 7).

In GPR the set of parameters I = {σ,R, ω(B)
0 , l} re-

quires optimisation. However, in contrast to the KF,
no recursion exists and analytic gradients are accessible
to simplify the overall optimisation problem. Instead of
minimising Bayes state-estimation risk, we follow a popu-
lar practice of maximising the Bayesian likelihood. Initial
conditions and optimisation constraints are derived from
physical arguments as described in Section III.

B. Performance of the KF using linear
measurement

The general performance of the various KF algorithms
discussed above is illustrated in Fig. 4 which compares
the AKF and LKFFB algorithms using a linear measure-
ment record. Here the solid black line represents the
underlying true f and solid markers indicate noisy simu-
lated linear measurement data. Future predictions using
the various KF formalisms and the (non-recursive) LSF
filter [28] are shown as coloured open markers, based on
these data. The selected single realization of the predic-
tion process demonstrated in (a) is representative of a
broad ensemble of simulated data sets and demonstrates
the ability of all algorithms to perform future prediction
with varying degrees of success.

In general, our objective is to maximise the forward
prediction horizon, n∗, in any algorithmic setting. In
Fig. 4(b)-(d), we explore the key determining factors set-
ting the value of the prediction horizon under the three
main Kalman filtering algorithms treated here. We plot
the ensemble-averaged L̃BR as a function of forward pre-
diction time when adjusting the ratio of the cutoff fre-
quency in the noise, Jω0, to the sample rate in the
measurement routine (ω(S) = 2π/∆t) without physical
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Time Steps (num)

(b) LSF (c) AKF

(a
.u

.)

2.0

(d) LKFFB

(a)
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.u
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FuturePast

MsmtsTrue AKF LKFFB LSF

FIG. 4. (a) Solid dots depict yn against time-steps n and
data collection ceases at n = 0. Optimised LSF, AKF and
LKFFB yield predictions n > 0 in the blue region plotted
as open, coloured markers. A black solid line shows one re-
alisation of true fn, drawn from a flat top spectrum with
J true Fourier components spaced ω0 apart and uniformly

randomised phases. Other parameters: ω0/ω
(B)
0 /∈ Z (nat-

ural numbers), J = 45000, ω0/2π = 8
9
× 10−3 Hz such

that > 500 number of true components fall between adja-
cent LKFFB oscillators; N.L. = 10%. (b)-(d) Procedure in
(a) is repeated for ensemble M different realisations of f and

noisy datasets to compute L̃BR for LSF, AKF, and LKFFB.
L̃BR v. n ∈ [0, NP ] is plotted; dark-grey horizontal line

marks L̃BR ≡ 1 for predicting the mean µf ≡ 0. Vertical
dashed lines mark the forward prediction horizon, n∗, where
L̃BR . 0.8 < 1 for all prediction time steps 0 < n ≤ n∗

in out-performing predicting the noise mean. Marker color
(dark indigo to pink) depicts true f cutoff, Jω0 varied rela-

tive to ω(B) ≡ ω
(B)
0 J(B) ≈ rω(S), with fixed Nyquist r � 2;

ω0/2π = 0.497 Hz, J = 20, 40, 60, 80, 200; N.L. = 1%. For all

(a)-(d), a trained LKFFB is implemented with ω
(B)
0 /2π = 0.5

Hz and J(B) = 100 oscillators; trained AKF / LSF models
are q = 100; with NT = 2000, NP = 50 steps, ∆t = 0.001s,
M = 50 runs, K = 75 optimisation trials.

aliasing such that Nyquist r � 2 and ω(S) ≈ ω(B)/r,

where ω(B) incorporates a (potentially incorrect) band-
width assumption about dephasing noise for LKFFB.
Here again, we have a forward prediction horizon for
time-steps 0 < n < n∗ if L̃BR . 1 for all time-steps
in this region and an algorithm seeks to maximise n∗.
In this region, each algorithm predicts future dynamics
better than naively predicting the mean behaviour of f
(µf ≡ 0), indicated by a dark-grey horizontal line.

The prediction horizon, indicated approximately by
dashed vertical lines, for all algorithms increases as the
measurement becomes sufficiently fast to sample the

highest frequency dynamics of f . We confirm numerically
that absolute prediction horizons for any algorithm are
arbitrary and adjustable through the sample rate, allow-
ing us to restrict our analysis to comparative statements
between algorithms for future results. While differences
between protocols appear reasonably small we note that
in most cases examined the AKF demonstrates superior
performance to the LKFFB subject to the realistic con-
straint that the true dynamics of f cannot be perfectly
projected onto the basis used in LKFFB (the latter sit-
uation corresponding to substantial a priori knowledge
of the dynamics of f). The role of undersampling in
the LKFFB becomes pronounced as predictive estimates
lead to unstable behavior relative to the naive predic-
tion of µf = 0 in the case Jω0/ω

(B) = 2 in Fig. 4(d).
The AKF and LSF share autoregressive coefficients and
therefore both algorithms demonstrate comparable L̃BR
prediction risk in the ensemble average.

A key implied benefit of the use of Kalman filter-
ing vs the LSF with high-order autoregressive dynam-
ics alone is the addition of robustness against measure-

(i) (iii)(ii) (iv)

(iii)

(ii)

(iv)

LSF 
outperforms AKF

AKF
outperforms LSF

N.L.(a)

(b)

(i)

Time Steps (num)

A
K

F/
LS

F 
(a

.u
.)

(a
.u

.)

AKF LSF

FIG. 5. Measurement noise filtering in AKF v. LSF.
(a) Dashed-lines with markers depict the ratio of L̃BR for
AKF to LSF against time-steps n > 0; for cases (i)-(iv) with
N.L. = 0.1, 1.0, 10.0, 25.0%. Green trajectory shows LSF out-
performs AKF with ratio > 1 for n ≤ n∗; crimson trajectories
show AKF outperforms LSF with ratio < 1 for n ≤ n∗. (b)

L̃BR against n is plotted for cases (i)-(iv) confirms a maximal
forward prediction horizon marked by n∗, exists for all ratios
in (a) for both LSF and AKF. In (a) and (b), AKF and LSF
share identical {φq}. True f is drawn from a flat top spectrum
with ω0/2π = 8

9
×10−3 Hz, J = 45000, NT = 2000, NP = 100

steps, ∆t = 0.001s, r = 20 such that Fig. 6(c) corresponds
to case (ii) in this figure. AKF is optimised with q = 100,
M = 50 runs, K = 75 trials.
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FIG. 6. Comparison of KF performance under various imperfect learning scenarios. (a)-(d) True noise properties are varied to
introduce pathological learning with respect to fixed algorithmic configuration: ω0/2π = 0.5, 0.499, 8

9
× 10−3, 8

9
× 10−3 Hz and

J = 80, 80, 45000, 80000 respectively. The relationship between LKFFB basis and true noise spectrum is shown schematically
above columns: (a) perfect learning; (b) imperfect projection on LKFFB basis; (c) finite computational Fourier resolution;

(d) relaxed basis bandwidth assumption. (a)-(d) L̃BR against time-steps n > 0 is shown for LKFFB, AKF, and LSF. (e)-(l)
Optimisation results for LKFFB [top row] and AKF [bottom row] in each of the four regimes in (a)-(d). Grey dots depict K

random (σ2, R) pairs; where M realisations of f,D are used to calculate L̃BR for each pair. Purple (crimson) circles represent
low loss regions where risk value in Eq. (45), for (σ2, R) is < 10% of the median risk value during state estimation (prediction)
for −nL < n < 0 (nL > n > 0), with nL = 50. Black star, (σ∗, R∗), minimises risk values over purple circles during
state estimation. A KF filter is ‘tuned’ if optimal (σ∗, R∗) lies in the overlap of low loss regions for state estimation [purple]
and prediction [crimson]; disjoint regions in (h) show LKFFB tuning failure. KF algorithms set up with q = 100 for AKF;

J(B) = 100, ω
(B)
0 /2π = 0.5 Hz for LKFFB; with NT = 2000, NP = 100 steps, ∆t = 0.001s, r = 20; N.L. = 1%.

ment noise. In order to probe this numerically, we
perform direct comparisons of filter performance un-
der varying measurement-noise strength for both the
AKF and LSF. Since autoregressive coefficients learned
in (noisy) environments are re-cast in Kalman form, we
test measurement-noise filtering in Kalman frameworks
enabled by the design parameter R. In Fig. 5 (a), we

plot L̃BR prediction risk for AKF and LSF as a ratio
such that a value greater than unity implies LSF out-

performs AKF. In cases (i)-(iv), we increase the applied
noise level to our data-sets {yn} representing simulated
measurements on f . For applied measurement noise level
N.L. > 1% in (ii)-(iv), we find that AKF/LSF < 1 and
AKF outperforms LSF for the conditions studied here,
with a general trend towards increasing benefits as noise
increases until the noise becomes so large (iv) that the
benefits fluctuate as a function of n. Calculations of the
ensemble-averaged L̃BR in Fig. 5 (b) demonstrate that
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all ratios reported in (a) correspond to a useful forward
prediction horizon.

In machine learning or optimal control settings, the
robustness of the learning procedure to small changes
in the underlying system is an essential characteristic of
the algorithm. In our case, we have already seen that
the quality of projection of the true dynamics of f onto
the LKFFB basis can have a significant impact on the
quality of learning and predictive estimation. We explore
this initial finding in more detail.

In Fig. 6, we simulate various learning conditions in-
cluding (a) perfect learning in LKFFB; (b) imperfect pro-
jection relative to the LKFFB basis; (c) imperfect pro-
jection combined with finite algorithm resolution; and
(d) imperfect learning and undersampling relative to true
noise bandwidth. The ordering of figure presentation
highlights the degree of impact of the introduced patholo-
gies on LKFFB. By contrast we find reasonable model
robustness in AKF/LSF at the expense of performance
in the somewhat unrealistic perfect learning case.

We expose the underlying optimisation results for
choosing an optimal (σ∗, R∗) for LKFFB in Fig. 6 (e)-(h)
and for AKF in Fig. 6 (i)-(l). Individual sample points
are highlighted as solid dots while low-loss pairs in this
2D space are highlighted for giving low state-estimation
[purple] or prediction [crimson] risk via shaded circles.
As the model pathologies indicated above increase, these
data demonstrate a divergence between regions of the op-
timisation space which permit low-loss state estimation
and forward prediction for LKFFB. In contrast, overlap
of low loss Bayes Risk regions do not change for AKF
across Fig. 6 (i)-(l).

Kalman filtering algorithms employed here combine re-
cursive state estimation with the establishment of a dy-
namical model in the Fourier domain. Therefore, one
way to explore algorithmic performance is to look di-
rectly at the efficacy of spectral estimation relative to
the true (here numerically engineered) hidden dynam-
ics of f . For both the LKFFB and AKF we plot the
extracted power spectral density, S(ω), as a function of
angular frequency ω, for different measurement sampling
conditions in Fig. 7 against the true spectrum used to de-
fine f . These simulated experimental conditions match
those introduced in Fig. 4 (b).

In the case of LKFFB, we plot the learned instan-
taneous amplitudes from a single run [blue markers]
and for AKF we extract optimised algorithm parameters
as described above [red markers]. Under the assertion
that the LSF implements an AR(q) process, the set of
trained parameters, {{φq′≤q}, σ2} from AKF allows us
to derive experimentally measurable quantities, includ-
ing the power spectral density of the dephasing process:

S(ω) = σ2
(

2π|1−
∑q
q′=1 φq′e

−iωq′ |2)
)−1

[35].

The critical feature in these data-sets is the existence
of a flat-top spectrum possessing a sharp high frequency
cutoff. Both classes of Kalman filtering algorithm suc-
cessfully identify this structure and locate this high-

(a) (b)

(c) (d)

AKFLKFFB True

FIG. 7. (a)-(d) Blue (red) open markers plot LKFFB (AKF)
spectrum estimates; true spectrum (flat top) of f plotted
in black solid line. Dashed black vertical line marks true
noise cutoff, Jω0, and this is varied relative to a measure-

ment sampling rate, ω(S), and ω(B) ≡ ω
(B)
0 J(B) ≈ ω(S)/r in

LKFFB; such that ω0/2π = 0.497 Hz, J = 20, 40, 80, 200. For
LKFFB, blue open markers are ∝ ||x̂jn||2 in a single run with

ω
(B)
0 /2π = 0.5 Hz for j ∈ J(B) = 100 oscillators; dashed blue

vertical line marks edge of LKFFB basis. For AKF, red mark-
ers are Ŝ(ω) computed using learned {φq′≤q} and optimised
σ∗, with order q = 100. In all plots, the zeroth Fourier com-
ponent is omitted on the log scale; and NT = 2000, NP = 50
steps, ∆t = 0.001s, r = 20, with M = 50 runs, K = 75 trials;
N.L. = 1%.

frequency cutoff. In general, however, the LKFFB pro-
vides superior spectral estimation relative to the AKF,
and enables better estimation of the signal strength in
the Fourier domain even in the presence of imperfect
projection of f onto the basis used in LKFFB. The only
case in which the LKFFB fails is in Fig. 7(d), where
the LKFFB basis is ill-specified relative to the true noise
bandwidth. The observed behavior is somewhat surpris-
ing given the generally superior performance of the AKF
in predictive estimation, but does highlight the practi-
cal difference between Fourier-domain spectral estima-
tion and time-domain prediction.

C. Performance of the quantised Kalman filter

The discrete nature of projective measurement out-
comes in quantum systems poses a potential challenge
for Kalman filters in the event that measurement pre-
processing as in Fig. 1(b) is not performed. We test filter
performance for predictive estimation when only binary
measurement outcomes are available via the QKF. To re-
iterate, QKF estimates and tracks hidden information,
fn, using the Kalman true state xn. In our construction
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the associated probability for a projective qubit measure-
ment outcome, ∝ zn is not inferred or measured directly
but given deterministically by Born’s rule encoded in the
non-linear measurement model, zn = h(fn). The mea-
surement action is completed by performing a biased coin
flip, where zn determines the bias of the coin.

For QKF, the normalised ensemble-averaged predic-
tion risk, 〈(zn − ẑn)2〉f,D/〈(zn − µz)2〉f,D, is calculated
with respect to z as the relevant quantity parameterising
qubit-state evolution, instead of the stochastic underly-
ing f . This quantity is labeled as Norm. Risk in Fig. 8
and we test if 〈(zn − ẑn)2〉f,D/〈(zn − µz)

2〉f,D < 1 for
0 < n < n∗ can be achieved for numerical experiments
considered previously in the linear regime. In particular,
we generate true f defined in numerical experiments in
Fig. 4(b) (and Fig. 7) for q = 100 and varying sample
rates.

We isolate the role of the measurement action by first
inputting into the QKF a true dynamical model rather
than a dynamical model learned as in the standard AKF.
To specify true dynamics, we begin with a set of {φq′≤q}
and exactly derive a new f ′. As a result the full set of
parameters relevant to the filter, {{φq′≤q}, σ, R}, are per-
fectly defined and known, and the filter simply acts on
single shot qubit measurements. These simulations re-
veal that subject to generic measurement oversampling
conditions introduced above the QKF is able to success-
fully enable predictive estimation. As in the linear case,
the absolute forward prediction horizon is arbitrary rela-
tive to ω0J/ω

(B) and implicitly, an optimisation over the
choice of q for a finite data size, NT , in our application.

Our simulations reveal that the QKF is considerably
more sensitive to measurement noise, model errors, and
the degree of undersampling than the linear model as
shown in Fig. 8 (b). Here the QKF incorporates a learned
dynamical model from AKF in the linear regime and we
tune (σ,R) for use in the QKF. In particular, we ex-
plore σ ≥ σ∗AKF to incorporate model errors as {φq′≤q}
were learned in the linear regime. We also incorporate
increased measurement noise via R ≥ R∗AKF as QKF re-
ceives raw data that has not been pre-processed or low-
pass filtered. The underlying optimisation problems are
well behaved for all cases in Fig. 8(b) [not shown]. As
the sampling rate is reduced, the QKF forward predic-
tion horizon collapse rapidly i.e 〈(zn − ẑn)2〉f,D/〈(zn −
µz)

2〉f,D > 1 prediction risk for all n > 0.

D. Failure of GPR in predictive estimation

Under a GPR framework, we test whether predictive
performance can be improved by considering the entire
measurement record (at once) and projecting this record
on an infinite basis of oscillators summarised by a pe-
riodic kernel. We investigate several different types of
GPR models for M = 50 realisations of f in the top
panel of Fig. 9. For the results shown, we use a popular
choice of a maximum-likelihood optimisation procedure

Time Steps (num)

(a)

(b)

 N
or

m
. R

is
k 

(a
.u

.)

True 

Learned 

Desired Perf.

FIG. 8. Norm. Risk against n > 0 plotted for QKF in open
markers; dark-grey line at µf ≡ 0 depicts performance un-
der predicting the noise mean. QKF outperforms predict-
ing the mean if open markers lie in green regions. Marker
colour (dark indigo to pink) depicts true noise cutoff varied
Jω0/ω(B) = 0.2, 0.4, 0.6, 0.8 for f defined identically in Fig. 7
with ω0/2π = 0.497 Hz, J = 20, 40, 60, 80; N.L. = 1%. (a)
We obtain {φq′≤q}, q = 100 coefficients from AKF/LSF act-
ing on a linear measurement record generated from true f .
A new truth, f ′, is generated from an AR(q) process using
{φq′≤q}, q = 100 as true coefficients and by defining a known,
true σ. Quantised measurements from f ′ are obtained; data is
corrupted by measurement noise of a true, known strength R.
(b) We use {φq′≤q}, q = 100 coefficients from (a) but we gener-
ate quantised measurements from the original, true f . QKF
noise design parameters are optimised for (σ∗AKF ≤ σQKF ,
R∗AKF ≤ RQKF ) with M = 50 runs, K = 75 trials. For
(a)-(b), NT = 2000, NP = 50 steps, ∆t = 0.001s, r � 2.

implemented via L-BFGS in GPy [47].
We find that the underlying optimisation procedure

for training on our measurement records remains diffi-
cult despite having access to an analytical calculation for
the cost function. For all results in Fig. 9(a) and (b),
we use significant manual tuning prior to deploying the
automated procedures in GPy. Hence, we focus on us-
ing numerical results under GPR to illuminate structural
implications of the choice of kernels in our application,
rather than making comparative statements about kernel
performance.

The results we have assembled demonstrate that the
implementation of GPR with a periodic kernel critically

depends on the frequency basis comb spacing, ω
(B)
0 , or

equivalently, a deterministic quantity, κ:

κ ≡ 2π

∆tω
(B)
0

−NT (46)

The term 2π/∆tω
(B)
0 is the theoretical number of mea-
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surements that, in principle, would be required to phys-
ically achieve the Fourier resolution set by the kernel

hyper-parameter, ω
(B)
0 , and the fundamentally discrete

nature of a sequential Ramsey measurement record, ex-
pressed by ∆t. Hence, if κ = 0, the physical Fourier
resolution determined by the data set matches the comb
spacing in the periodic kernel. For κ > 0, the comb spac-
ing in the periodic kernel is less than the Fourier spac-
ing defined by the experimental data collection protocol,
with total measurements NT .

In Fig. 9(a), we see that GPR predictive perfor-
mance for the periodic kernel improves as the Ker-
nel’s comb spacing is reduced. For each value of κ
we plot L̃BR against time-steps forward, n‡, where the
‡ corresponds to the evaluation of a predictive GPR
distribution on arbitrarily chosen test points, n‡ =
−NT , . . . ,−1, 0, 1 . . . , NP . Here, the optimiser is con-

strained to a region in 2π/ω
(B)
0 parameter space that

corresponds to the order of magnitude for κ. Grey mark-
ers correspond to κ ≤ 0, where the algorithm operates
above (or at) the Fourier resolution. In this physically
motivated parameter regime, prediction fully fails. It is
not until we set κ ∼ 103 – a nominally unphysical operat-
ing regime where the algorithm’s frequency-comb spacing
is smaller than the Fourier resolution – that prediction
succeeds [red traces]. This latter case is physically dif-
ficult to interpret given that in this regime we find the
best ensemble-averaged predictive performance only by
providing unphysical freedom to the algorithm. We note
that the optimised length scale for the periodic kernel
remains on of order ∆t ∼ 10∆t, such that for all red tra-

jectories in panel (a), we are operating in a high 2π/ω
(B)
0 ,

low l limit.
We contextualise the predictive performance of the

GPR periodic kernel (PER) [red solid line] in the high-
κ, low-l limit by comparing against predictions derived
using other standard kernels [dotted lines] in the in-
set to Fig. 9(a). In such circumstances the predictive
performance of the periodic kernel predictive is on par
with an application of a Gaussian kernel (RBF) and a
scale mixture of zero mean Gaussians with different de-
cay lengths (RQ). A Matern kernel (MAT32) and a quasi
periodic kernel (QPER) yield lower-than-anticipated per-
formance. Further discussion of the choice of kernel ap-
pears in Sec. V. For each individual time-trace contribut-
ing to the ensemble averages appearing here, we observe
that all kernels (PER, RBF, RQ, MAT32, QPER) yield
good state estimation and the state estimate at n‡ = −1
agrees well with the truth. For GPR with a PER, RBF,
and RQ kernels, the state estimate at n‡ = −1 smoothly
decays to the mean value (zero) for n‡ ≥ 0 and this ef-
fect yields a favourable normalised Bayes prediction risk
immediately after n‡ > 0 depicted by the solid lines in
inset of Fig. 9(a).

In order to illustrate the operating mechanism for the
periodic kernel, we dramatically simplify the model used
for f in Fig. 9 (a) and replace it with a single-frequency
sine curve. Fig. 9 (b)-(e) demonstrates the prediction
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FIG. 9. (a) L̃BR v. n‡ (in units of number of time steps)
are plotted for GPR with a periodic kernel. Dark-grey hori-
zontal line at unity for µf ≡ 0 marks L̃BR under predicting
the mean; GPR outperforms predicting the mean if data falls
below this line. Grey-black markers correspond to optimi-
sation within physical bounds for κ ≤ 0 (kernel resolution
at or above Fourier resolution); crimson markers and lines
depict optimisation within unphysical regimes, κ > 0; with
solid lines in high κ � 0 regime. Remaining {R, σ, l} opti-

mised for non-negative values. Inset (a) L̃BR v. n‡ of pe-
riodic kernel (PER) with κ ≈ 103 is plotted against results
from naively trained Gaussian kernels (RBF, RQ); a Matern
kernel (MAT32) and a quasi-periodic kernel (QPER). (b)-(d)
True state fn v. n [black solid line] and GPR predictions µ̂f‡

v. n‡ [open markers] plotted for periodic kernel for tracking
a sinusoid with frequency, ω0; noisy data record [not shown]
ceases at n = 0. We fix κ = 0, 70; triangles plot predictions for
manually tuned {R, σ, l}; circles plot predictions for optimised
{R, σ, l}. Vertical dashed lines mark n = κ, where we overlay
true f at the beginning of the data record as a red dashed

line. (b) Perfection projection is possible ω0/ω
(B)
0 ∈ Z (nat-

ural numbers), ω0/2π = 3 Hz. (c) Imperfect projection, with

ω0/ω
(B)
0 /∈ Z, ω0/2π = 3 1

3
Hz, κ = 0. (d) Moderately raise

κ > 0, such that ω0/ω
(B)
0 � 0 /∈ Z for original ω0/2π = 3

Hz. (e) Test (c) and (d) for κ > 0, ω0/ω
(B)
0 /∈ Z, ω0/2π = 3 1

3
Hz. For (b)-(e), NT = 2000, NP = 150 steps, ∆t = 0.001s;
N.L. = 1%.
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routine for GPR using a periodic kernel on a simplified
version of f , and as before, prediction is always con-
ducted from time-step zero. For this simple example, the
periodic kernel learns Fourier information in the mea-
surement record enabling interpolation using test-points
n‡ ∈ [−NT , 0] for all cases (b)-(e) in Fig. 9, and atyp-
ical features are seen only for test-points in the predic-
tion region [blue shaded region]. We consider predictions
from a manually tuned model [triangles] and an opti-
mised GPR model where remaining free {σ,R, l} param-
eters are tuned using GPy [circles].

An examination of different cases for imperfect learn-
ing reveal that this discontinuity exhibits deterministic
behavior linked to the underlying structure of the algo-
rithm, namely, to the value of κ. In our numerical ex-
periments, we find that in all cases of imperfect learning
under GPR with a periodic kernel, a discontinuity in the
prediction sequence arises at n‡ = κ. This is marked
by the vertical dashed lines in all panels of Fig. 9(b)-
(e). However, another feature appears which we identify
as being linked to oversampling of the underlying pro-
cess determining f . In such cases, the algorithm simply
predicts zero out to n‡ = κ before discontinuously pre-
dicting future evolution which does not appear similar
to the true value of f . By contrast an optimised model
gives smoothly varying predictions, which still adhere to
the underlying behaviour set by κ for n‡ > 0.

In Fig. 9(b)-(e), we also plot the value of f as given
from n = −NT , the start of the data set, on top of the
prediction from n‡ = κ. Here we see that the prediction
provided by GPR matches the earliest stages of the un-
derlying data set well. Through various numeric experi-
ments we find that the action of GPR in such parameter
regimes (moderately positive κ > 0) appears to be to
simply repeat the learned values of f from n = −NT be-
ginning at n‡ = κ. Accordingly these predictions rarely
describe the underlying forward dynamics of f well.

As we enter the high κ regime, κ � 0, the features
in Fig. 9(b)-(e) disappear, and GPR predictions begin to
track the (slow moving) ‘truth’ for n‡ � 0. Analogously
to inset (a), we see the performance of PER approach
that of standard Gaussian kernels in this simplified case.

V. DISCUSSION

The numeric simulations we have performed probe a
wide variety of operating conditions in order to explore
the algorithmic pathologies of leading forecasting tech-
niques drawn from engineering, econometrics, and ma-
chine learning communities when applied to predictive
estimation of qubit evolution. A qualitative summary of
our observations and key algorithmic differences is given
in Table I for ease of reference.

Our central finding is that overall the autoregres-
sive Kalman filter provides an effective path to perform
both state estimation and forward prediction for non-
Markovian qubit dynamics. Recasting dynamics into

an AKF filter, importantly, provides model robustness
against details of the underlying dynamics as well as fil-
tering of noise that allows it to outperform the simpler
LSF in [28]. Measurement noise filtering is enabled in the
Kalman framework through the optimisation procedure
for R and has a regularising (smoothing) effect. Addi-
tionally optimisation of the imperfectly learned dynami-
cal model is provided through the tuning of σ. The joint
optimisation procedure over (σ,R) ensures that the rela-
tive strength of noise parameters is also optimised.

AKF has also been demonstrated to work well with
discretised projective measurement models via what we
refer to as the QKF. In QKF, we employ single-shot,
discretised qubit data while enabling model-robust qubit
state tracking and increased measurement noise filtering
via the underlying AKF algorithm. However we find that
the QKF is vulnerable to the buildup of errors for arbi-
trary applications and we provide three explanatory re-
marks from a theoretical perspective. First, the Kalman
gains are recursively calculated using a set of linear equa-
tions of motion which incorporate the Jacobian Hn of
h(xn) at each n. All non-linear Kalman filters perform
well if errors during filtering remain small such that the
linearisation assumption holds at all time-steps. Second,
measurements are quantised and hence residuals must be
{−1, 0, 1} rather than continuously represented floating-
point numbers. In our case, the Kalman update to xn
at n, mediated by the Kalman gain cannot benefit from
a gradual reduction in residuals. A third effect incor-
porates consequences of both quantised residuals and a
non-linear measurement action. In linear Kalman filter-
ing, Kalman gains can be pre-calculated in advance of
the acquisition of any measurement data: the recursion
of Kalman state-variances Pn, can be decoupled from the
recursion of Kalman state-means, xn [31]. In our appli-
cation, quantised residuals affect the Kalman update of
xn, and further, they affect the recursion for the Kalman
gain via the state dependent Jacobian, Hn.

In this context, we demonstrate numerically that the
QKF achieves a desirable forward prediction horizon
when the build of errors during filtering is minimised, for
example, by specifying Kalman state dynamics and noise
strengths perfectly, and/or by severely oversampling rel-
ative to the true dynamics of f . At present, we sim-
ply interpret our results on the QKF as demonstration
that one may in principle track stochastic qubit dynamics
using single shot measurements under a Kalman frame-
work. The QKF also has the benefit, as constructed, of
reverting to the AKF if suitable pre-processing of data
is performed prior to execution of the iterative state-
estimation algorithm. In common laboratory settings
the measurement protocol may be effectively linearised
through simple averaging of multiple single-shot mea-
surements, application of Bayesian estimation protocols,
or other pre-processing as identified above. So long as
the pre-processing takes place on timescales fast relative
to the underlying qubit dynamics, the measurement lin-
earization has no impact other than to change the ef-



18

Algorithm Structure State Est.
Perf.

Prediction
Perf.

Advantages Weaknesses

Kalman, AKF Recursive; autoregressive
dynamical model

Good Best Robust to measurement
noise & variety of operating
regimes

Need to train AR model
prior to filtering and predic-
tion

Kalman, LKFFB Recursive; Fourier synthe-
sized dynamical model

Good Moderate Robust to measurement
noise

Oscillator structure not ro-
bust in all operating regimes

Kalman, QKF Recursive; single qubit data,
autoregressive dynamical
model

Moderate Moderate Direct processing of single
shot qubit data

Susceptible to rapid error ac-
cumulation via model non-
linearities and binary data

Least Squares, LSF Batch processing; linear re-
gression

Good Good Rapid extraction of autore-
gressive dynamics from large
datasets

Not robust against measure-
ment noise

GPR (PER) Batch processing; Bayesian
data constrained model se-
lection

Good Poor Good pattern interpolation
during state estimation

Susceptible to producing nu-
meric artifacts in forward
prediction

TABLE I. Overview of performance results for all algorithms in this study across all frameworks. Column 2 lists mechanisms for
data input (recursive or batch) and the key structural comparisons being made between algorithms. Columns 3-4 qualitatively
assess performance during qubit state estimation (n < 0) and prediction (n ≥ 0); we comment on conditions in which algorithms
are found to to perform strongly or fail in columns 5-6.

fective sample rate of the measurements. Thus it is our
view that full implementation of the QKF is not essential
if improved optimization routines are not accessible.

It is possible that QKF forward prediction hori-
zons in realistic learning environments can be improved
by solving the full q + 2 optimisation problem for
{{φq′≤q}, σ, R}, rather than employing the approach
taken in this manuscript. However, this poses its own
challenges given the observations we make about the op-
timisation landscape even for the 2D optimisation prob-
lem faced in the AKF. More sophisticated, data-driven
model selection schemes are described for both KF and
kernel learning machines (such as GPR) in literature
(e.g. [48, 49]). Beyond standard local-gradient and sim-
plex optimisers, we consider coordinate ascent [50] and
particle swarm optimisation techniques [51] as promis-
ing, nascent candidates and their application remains an
open research question. One may also consider switch-
ing from a high order AR(q) to an ARMA model with
a smaller number of optimisation parameters. Typically,
this is accomplished by incorporating either greater a pri-
ori information about the underlying dynamic process in
the design of the ARMA model and/or using model-less
particle-based / unscented filtering techniques to over-
come non-linearities in an ARMA representation (e.g.
[2]). The latter set of techniques are well adapted for non-
linear models but are likely to require a modification to
allow for non-Markovian dynamics (e.g. by designing an
appropriate transition probability for otherwise Markov
re-sampling procedures); in contrast, a typical recursive
ARMA formulation for our application may track tempo-
ral correlations but be ill-equipped for non-linear, coin-
flip measurements. One expects that a straightforward
application of such procedures will be complicated.

Our general results on the use of autoregressive models
for building Kalman dynamical models stand in contrast
to Fourier-domain approaches in LKFFB and GPR us-

ing a periodic kernel; both show significant performance
degradation in cases when learning of state dynamics was
imperfect. In investigating the loss of performance for
LKFFB, we find that the efficacy of this approach de-
pends on a careful choice of a probe (i.e. a fixed compu-
tational basis) for the dynamics of f capturing the effect
of dephasing noise on the qubit. In the imperfect learn-
ing regime of Fig. 4 and identically, Fig. 7, LKFFB re-
constructs Fourier domain information to a high fidelity
across a range of sampling regimes but is outperformed
by AKF in the time domain (Fig. 4). Since LKFFB
tracks instantaneous amplitude and phase information
explicitly for each basis frequency, the loss of LKFFB
time-domain predictive performance must accrue from
difficulty in tracking instantaneous phase, rather than
amplitude, information.

While difficulty of instantaneous phase estimation is
likely to disadvantage the time-domain predictive per-
formance of LKFFB, our results show that a Fourier-
domain approach yields high fidelity reconstructions of
power spectral density describing f . These reconstruc-
tions appear robust against imperfect projection on the
LKFFB oscillator basis even as oversampling is reduced.
This suggests that an application of LKFFB outside of
predictive estimation could be tested against standard
spectral estimation techniques in future work.

The challenge in adapting GPR for the task of time-
domain predictive estimation has proved more striking.
In our numerical simulations, under conditions compara-
ble to those tested in the AKF, the values of normalised
Bayes prediction risk for all GPR models are at least an
order of magnitude greater than the comparable perfor-
mance of the AKF or LKFFB (refer to panel Fig. 5(b- ii),
equivalently, Fig. 6(c)). This difference is somewhat sur-
prising because in the limit that Γn is set to the identity
in LKFFB and an infinite basis of oscillators in the pe-
riodic kernel is truncated at the finite value, J (B), both
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LKFFB and the GPR-PER are formally equivalent to
classical Kalman filtering for a collection of J (B) inde-
pendent state-space resonators [42]. In this limit, the
true f is described by theoretically identical covariance
functions in both KF and GPR frameworks. While we do
not operate in this regime, one would expect predictive
capabilities of these two algorithms to be comparable.

In contrast to our observations for the various flavors
of KF tested here, we observe that GPR predictions with
a periodic kernel are useful for filtering/retrodiction but
appear to have limited meaning for forward predictions
for time-steps n = n‡ > 0. In our application, predictive
performance of GPR with a periodic kernel for κ = 0 is
shown to yield poor predictive performance over the en-
semble average (Fig. 9(a)). For the unexpected regime of
κ� 0 and relatively small fixed l, predictive performance
improves and the periodic kernel performs similarly to
RBF and RQ. In this a high κ and a low l regime, the sin
term of the periodic kernel is slowly moving (sin(x) ≈ x)
and hence the argument of the exponential in the peri-
odic kernel approximates a Gaussian, reducing to an RBF
kernel. Our numerical investigations show that an opti-
mised RQ kernel consistently chooses parameter regimes
where an RQ also converges to an RBF. For the operat-
ing regimes pertinent to our application, it appears that
the choice of the periodic, RBF, and RQ kernels will pro-
duce theoretically equivalent results for forward predic-
tions of the qubit state. In our analysis, these ‘forward
predictions’ simply arise from a smoothed decay of state
estimates starting from test-point n‡ = −1 to the noise
mean for test-points n‡ > 0; and are difficult to interpret
compared to their Kalman counterparts.

Our numerical characterisation of the periodic kernel
for a simple, noiseless f demonstrates that this kernel
learns Fourier domain amplitude information in a way
that is better suited for pattern fitting than forward pre-
diction. The predictive time domain sequence of state
estimates is repetitive at n = n‡ = κ, and can be in-
terpreted as successful qubit-state predictions only when
f is perfectly learned (no discontinuities appear). When
learning is imperfect, however, GPR with a periodic ker-
nel is able to learn Fourier amplitudes to provide good
retrodictive state estimates for n‡ < 0, but forward pre-
dictions for n‡ > 0 typically fail. Unlike LKFFB, we
believe the periodic kernel does not permit actively ex-
tracting and updating phase information for each individ-
ual basis oscillators at n‡ = κ. Since phase information
can be recast as amplitude information for any fixed-
frequency oscillator, one would naively expect that for-
ward predictions can be improved by increasing κ moder-
ately, such that the higher order terms in a series expan-
sion of the sin term are non trivial and sin(x) ≈ x cannot
apply. However, any positive value of κ means that we
are probing dynamics at frequencies lower than appear-
ing in the data-set. As such, a GPR-PER model predicts
zero for n‡ ∈ [0, κ], κ > 0, before reviving at κ. The use
of a procedure optimising kernel noise parameters {σ,R}
does not change the behavior as n‡ → κ, but does smooth

the discontinuities, as illustrated in Fig. 9(f). In letting
κ � 0 (extremely large), we lose the uniqueness of the
periodic kernel in summarising an infinite basis of oscil-
lators, and standard Gaussian kernels (e.g. RBF, RQ)
are likely to apply.

It is possible that the choice of more complex kernels
could enhance forward time series predictions via GPR,
but they bring additional complications which thus far re-
main unresolved in relation to the current application. As
one example, our ability to use numerical investigations
to inform kernel design is further distorted by the need
for a robust optimisation procedure, as illustrated by
lower-than anticipated predictive performance observed
for QPER. Another class of GPR methods, namely, spec-
tral mixture kernels and sparse spectrum approximation
using GPR have been explored in [52, 53]. However,
these techniques also require efficient optimisation proce-
dures to learn many unknown kernel parameters, whereas
the sine-squared exponential in the periodic kernel is pa-
rameterised only by two hyper-parameters. Aside from
spectral methods, the generalisation of MAT32 to higher
q+1/2 models probes only a subset of all possible AR(q)
processes, as the restrictions on autoregressive coeffi-
cients in Matern kernels are greater than the general
case considered under an AKF in this manuscript. A
detailed investigation of the application of such methods
for forward prediction beyond pattern recognition and
with limited computational resources, remains an area of
future investigation.

VI. CONCLUSION

In this manuscript, we provided a detailed survey of
machine learning and filtering techniques applied to the
problem of tracking the state of a qubit undergoing non-
Markovian dephasing via a record of projective measure-
ments. We specifically considered the task of performing
predictive estimation: learning dynamics of the system
from the measurement record and then predicting evolu-
tion forward in time. To accommodate stochastic dynam-
ics under arbitrary dephasing, and without an a priori dy-
namical model, we chose two Bayesian learning protocols
- Gaussian Process Regression (GPR) and Kalman Fil-
tering (KF). All Kalman algorithms predicted the qubit
state forward in time better than predicting mean qubit
behaviour, indicating successful prediction, though an
autoregressive approach to building the Kalman dynam-
ical model demonstrated enhanced robustness relative to
Fourier-domain approaches. Forward prediction horizons
could be arbitrarily increased for all Kalman algorithms
by oversampling the underlying dephasing noise. Our
investigations included studies of both linear and non-
linear measurement routines and validate the utility of
the Kalman filtering framework for both. In contrast,
under GPR, we found numerical evidence that this ap-
proach enables retrodiction but not forward predictions
beyond the measurement record.
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There are exciting opportunities for machine learning
algorithms to increase our understanding of dynamically
evolving quantum systems in real time using projective
measurements. Quantum systems coupled to classical
spatially or temporally varying fields may benefit from
classical algorithms to analyse correlation information
and enable predictive control of qubits for applications
in quantum information, sensing, and the like. Moving
beyond a single qubit, we anticipate that measurement
records will grow in complexity allowing us to exploit the
natural scalability offered by machine learning for min-
ing large datasets. In realistic laboratory environments,
the success of algorithmic approaches will be contingent
on robust and computationally efficient algorithmic op-
timisation procedures as well as the extensions beyond
Markovian dynamics studied here. The pursuit of these
opportunities is the subject of ongoing research.
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Appendix A: Physical Setting

In this Appendix, we derive Eq. (1). We consider a qubit under environmental dephasing. For any two level
system, a quantum mechanical description of physical quantities of interest can be provided in terms of the Pauli
spin operators {σ̂x, σ̂y, σ̂z}. If ~ωA corresponds to an energy difference separating these two qubit states, then the
Hamiltonian for a single qubit in free evolution can be written in the Pauli representation. We consider a qubit states
in the σ̂z basis, |0〉 or |1〉 with energies E0, E1 in our notation, corresponding to a 0 or 1 outcome upon measurement.
This yields a Hamiltonian for a single qubit as:

σ̂z ≡ |1〉〈1| − |0〉〈0| (A1)

Î ≡ |0〉〈0|+ |1〉〈1| (A2)

E0,1 ≡ ∓
1

2
~ωA (A3)

Ĥ0 =
1

2
(E0|0〉〈0|+ E1|1〉〈1|) (A4)

+
1

2
[(E1 − E0)σ̂z + E0|1〉〈1|+ E1|1〉〈1|] (A5)

=
1

2
~ωAσ̂z (A6)

In this representation, the effect of dephasing noise on a free qubit system is that any initially prepared qubit
superposition of |0〉 and |1〉 states will decohere over time in the presence of dephasing noise. This physical effect is
modelled as a stochastically fluctuating process δω(t) that couples with the σ̂z operator. The noise Hamiltonian is
described as:

ĤN (t) ≡ ~
2
δω(t)σ̂z (A7)

In the formula above, δω(t) is a classical, stochastically fluctuating parameter that models environmental dephasing
and ~/2 appears as a convenient scaling factor. The total Hamiltonian for a single qubit under dephasing is:

Ĥ(t) ≡ Ĥ0 + ĤN (t) (A8)

Since ĤN (t) commutes with Ĥ0, we can transform away Ĥ0 by moving to a rotating frame with respect to H0. Let

|ψ(t)〉 be a state in the lab frame, let Û define a transformation to a rotating frame, and let |ψ̃(t)〉 be the state in
the rotating frame. The notation, ,̃ indicates operators and states in the transformed frame. In this simple case, the
transformed Hamiltonian governing the evolution of |ψ̃(t)〉 will just be ĤN (t):

Û ≡ e−iĤ0t/~ (A9)

|ψ̃(t)〉 ≡ Û†|ψ(t)〉 (A10)

i~
d

dt
|ψ̃(t)〉 ≡ i~ d

dt
Û†|ψ(t)〉 (A11)

= −Ĥ0Û
†|ψ(t)〉+ i~Û†

d

dt
|ψ(t)〉 (A12)

= (Û†H(t)Û − Ĥ0)|ψ̃(t)〉 (A13)

=⇒ ˆ̃H ≡ Û†H(t)Û − Ĥ0 (A14)

= Û†Ĥ0Û + Û†ĤN (t)Û − Ĥ0 (A15)

= ĤN (t), [Û , Ĥ0] = [Û , ĤN (t)] = 0 (A16)

(A17)

In the semiclassical approximation, ĤN (t) commutes with itself at different t, and hence we can write a unitary time
evolution operator in the rotating frame as:

ˆ̃U(t, t+ τ) ≡ e− i
~
∫ t+τ
t
ĤN (t′)dt′ = e−

i
2 f(t,t+τ)σ̂z (A18)

f(t, t+ τ) ≡
∫ t+τ

t

δω(t′)dt′ (A19)
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In the rotating frame, we prepare an initial state that is a superposition of |0〉 and |1〉 states. This state evolves

under ĤN (t) during a Ramsey experiment for duration τ . Subsequently, the qubit state is rotated before a projective
measurement is performed with respect to the σ̂z axis i.e. the measurement action resets the qubit.

Without loss of generality, define the initial state as |ψ̃(0)〉 ≡ 1√
2
|0〉 + 1√

2
|1〉 in the rotating frame. Then, the

probability of measuring the same state after time τ in a single shot measurement, dn as:

Pr(dn = 1|f(0, τ), τ) = |〈ψ̃(0)| ˆ̃U(0, τ)|ψ̃(0)〉|2 (A20)

Pr(dn = 0|f(0, τ), τ) ≡ 1− Pr(dn = 1|f(0, τ), τ) (A21)

The second π/2 control pulse rotates the state vector such that a measurement in σ̂z basis is possible, and the
probabilities correspond to observing the qubit in the |1〉 state. Hence, Eq. (A20) defines the likelihood for single
shot qubit measurement. Further, Eq. (A20) defines the non linear measurement action on phase noise jitter, f(0, τ).
We impose a condition that f(0, τ)/2 ≤ π such that accumulated phase over τ can be inferred from a projective
measurement on the σ̂z axis.

1. Experimentally Controlled Discretisation of Dephasing Noise

In this section, we consider a sequence of Ramsey measurements. At time t, the Eq. (A20) describes the qubit
measurement likelihood at one instant under dephasing noise. We assume that the dephasing noise is slowly drifting
with respect to a fast measurement action on timescales of order τ . In this regime, Eq. (A19) discretises the continuous
time process δω(t), at time t, for a number of n = 0, 1, ..., N equally spaced measurements with t = n∆t. Performing
the integral for τ � ∆t and slowly drifting noise such that we substitute the following terms in Eq. (A19):

δω̄n ≡ δω(t′)|t′=n∆t (A22)

fn ≡ f(n∆t, n∆t+ τ) (A23)

=
~
2

∫ n∆t+τ

n∆t

δω̄ndt
′ =

~
2
σ̂zδω̄nτ (A24)

In this notation, δω̄n is a random variable realised at time, t = n∆t, and it remains constant over short duration of
the measurement action, τ . We use the shorthand fn ≡ f(n∆t, n∆t+ τ) to label a sequence of stochastic, temporally
correlated qubit phases f ≡ {fn}.

Since the qubit is reset by each projective measurement at n, the unitary operator governing qubit evolution is

also reset such that { ˆ̃Un ≡ ˆ̃U(n∆t, n∆t + τ)} are a collection of N unitary operators describing qubit evolution for
each new Ramsey experiment. They are not to be interpreted, for example, as describing qubit free evolution without
re-initialising the system. Hence, for each stochastic qubit phase fn, the true probability for observing the |1〉 in a
single shot is given by substituting fn for f(0, 1) in Eq. (A20).

Pr(dn = d|fn, τ, n∆t) =

{
cos( fn2 )2 for d = 1

sin( fn2 )2 for d = 0
(A25)

The last line follows from the fact that total probability of the qubit occupying either state must add to unity. This
yields Eq. (1) in the main text.

2. True Dephasing Noise Engineering

In the absence of an a priori model for describing qubit dynamics under dephasing noise, we impose the following
properties on a sequence of stochastic phases, f ≡ {fn} such that we can design meaningful predictors of qubit state
dynamics. We assert that a stochastic process, fn, indexed by a set of values, n = 0, 1, . . . N satisfies:

E[fn] = µf ∀n (A26)

E[f2
n] <∞ ∀n (A27)

E[(fn1
− µ)(fn2

− µ)] = R(ν), ν = |n1 − n2|, ∀n1, n2 ∈ N (A28)

R(ν) 6= σ2δ(ν) (A29)
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Covariance stationarity of f is established by satisfying Eqs. (A26) to (A28) , namely that the mean is independent
of n, the second moments are finite, and the covariance of any two stochastic phases at arbitrary time-steps, n1, n2,
do not depend on time steps but only on the separation distance, ν. The δ(ν) in the last condition, Eq. (A29), is the
Dirac-delta function and establishes that f is not delta-correlated (white). This condition captures the slowly drifting
assumption for environmental dephasing noise.

We also require that correlations in f eventually die off as ν → ∞ otherwise any sample statistics inferred from
noise-corrupted measurements are not theoretically guaranteed to converge to the true moments. Let M be the
number of runs for an experiment with M different realisations of the random process f , µf be the true mean, µ̂f its
estimate, DM denote the dataset of M experiments, and R(ν) define the correlation function for the true process, f .
Then mean square ergodicity states that estimators approach true moments only if the correlations die off over long
temporal separations:

lim
M→∞

1

M

M−1∑
ν=0

R(ν) = 0 ⇐⇒ lim
M→∞

E[(µ̂f − µf )2]DM = 0

for ν = |nm1
− nm2

|, ∀m1,m2 ∈M,nm1
, nm2

∈ N

with µ̂f =
1

M

M∑
m=0

fnm (A30)

The statement above means that a true R(ν) associated with f is bandlimited for sufficiently large (but unknown)
M . If correlations never ‘die out’, then any designed predictors for one realisation of dephasing noise will fail for a
different realisation of the same true dephasing. For the purposes of experimental noise engineering, we satisfy the
assumptions above by engineering discretised process, f , as:

fn = αω0

J∑
j=1

jF (j) cos(ωjn∆t+ ψj) (A31)

F (j) = j
η
2−1 (A32)

As described in [46], α is an arbitrary scaling factor, ω0 is the fundamental spacing between true adjacent discrete
frequencies, such that ωj = 2πf0j = ω0j, j = 1, 2, ...J . For each frequency component, there exists a uniformly
distributed random phase, ψj ∈ [0, π]. The free parameter η allows one to specify an arbitrary shape of the true
power spectral density of f . In particular, the free parameters α, J, ω0, η are true dephasing noise parameters which
any prediction algorithm cannot know beforehand.

It is straightforward to show that f is covariance stationary. To show mean square ergodicity of f , one requires
phases are randomly uniformly distributed over one cycle for each harmonic component of f [54]. Subsequently,
one shows that an ensemble average and a long time average of multi-component engineered f are equal. For the
evaluation of the long time average, we use product-to-sum formulae and observe that the case j 6= j′ has a zero
contribution as any finite contribution from cosine terms over a symmetric integral are reduced to zero as N → ∞.
For j = j′, only a single cosine term survives. The surviving term depends on ν and N cancels to yield a finite,
non-zero contribution that matches the ensemble average.

We briefly comment that f is Gaussian by the central limit theorem in the regimes considered in this manuscript.
The probability density function of a sum of random variables is a convolution of the individual probability density
functions. The central limit theorem grants that each element of fn at n appears Gaussian distributed for large
J , irrespective of the underlying properties of the constituent terms or the distribution of the phases ψ. Numerical
analysis shows that J > 15 results in each fn appearing approximately Gaussian distributed.

There is an important difference between fn - defined here in Appendix A and - and fn in Appendices B and C.
In subsequent Appendices B and C, the term fn defines the ‘true model’ for an algorithmic representation of an
arbitrary covariance stationary process - either by invoking Wold’s decomposition theorem (AKF, QKF) or the
spectral representation theorem (LKFFB, GPR with Periodic Kernel). This means that fn in subsequent Appendices
only approximates the true covariance stationary stochastic qubit phases, {fn} of the Appendix A in the limit where
total size of available sample data increases to infinity. Our notation, fn, fails to distinguish these two different
interpretations as such a difference does not arise in typical applications - in our case, we have no a priori true
model of describing stochastic qubit phases, and must rely on mean square approximations. Henceforth, we retain
fn to be the true model for an algorithm with an understanding that this refers to an approximate representation

of an arbitrary, covariance stationary sequence of stochastic qubit phases. We reserve the use of the f̂n for the state
estimates and predictions that an algorithm makes having considered a single noisy measurement record.
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Appendix B: Autoregressive Representation of f in AKF (and QKF)

Our objective in this Appendix is to justify the representation of fn assumed by the AKF. In particular, we justify
any fn drawn from any arbitrary power spectral density satisfying the properties in Appendix A 2 can be approximated
by a high order autoregressive process.

Such results are well known, if dispersed among standard engineering and econometrics textbooks [4, 11, 33–35, 55].
We struggled to find standard references that explicitly link high q AR models in approximating arbitrary covariance
stationary time series of arbitrary power spectral densities, though some general comments are made in [55]. In the
discussion below, we summarise relevant background, and link a high q AR process to a theorem that guarantees
arbitrary representation of zero mean covariance stationary processes, and provide explicit references for proofs out
of scope of introductory remarks in this Appendix. In order to achieve this, we will consider autoregressive (AR)
processes of order q, (AR(q)), and moving average processes of order, p (MA(p)). A model incorporating both types
of processes is known as an ARMA(q, p) model in our notation.

First, we define the lag operator, L. This operator defines a map between time series sequences and enables a
compact description of ARMA processes. For an infinite time series {fn}∞n=−∞ and a constant scalar, c, the lag
operator is defined by the following properties:

Lfn = fn−1 (B1)

Lqfn = fn−q (B2)

L(cfn) = cLfn = cfn−1 (B3)

Lfn = c, ∀n, =⇒ Lqfn = c (B4)

Next, we define a Gaussian white noise sequence, ξ, under the strong condition than what is stated simply in Eq. (B6),
that ξn1 , ξn2 are independent ∀n1, n2:

E[ξ] ≡ 0 (B5)

E[ξn1ξn2 ] ≡ σ2δ(n1 − n2) (B6)

With these definitions, we can define an autoregressive process and a moving average process of unity order. Eq. (B7)
defines an AR(q = 1) process and dynamics of fn are given as lagged values of the variable f . The second definition
in Eq. (B8) depicts a MA(p = 1) process where dynamics are given by lagged values of Gaussian white noise ξ.

(1− φ1L)fn = c+ ξn (B7)

fn = c′ + (Ψ1L+ 1)ξn (B8)

Here, Ψ1, φ1 are known scalars defining dynamics of fn; wn is a white noise Gaussian process, and c, c′ are fixed
scalars. It is well known that an MA(∞) representation is equivalently an AR(1) process, and the reverse relationship
also applies. For example, we can re-write Eq. (B7) as:

fn = c+ ξn + φ1fn−1 (B9)

= wn + φ1fn−1 (B10)

= wn + φ1(wn−1 + φ1fn−2) (B11)

... (B12)

= φn+1
1 F0 + φn1w0 + φn−1

1 w1 + . . . wn (B13)

= φn+1
1 F0 + φn1 (c+ ξ0) + . . .+ (c+ ξn) (B14)

= φn+1
1 F0 + c(φn1 + φn−1

1 + . . .+ 1) +

n∑
k=0

φk1ξn−k (B15)

wn ≡ c+ ξn (B16)

F0 ≡ fn=−1 (B17)

In the last line (and for all subsequent analysis in this Appendix), k should only be interpreted as a index variable for
compactly re-writing terms in an equation as summations. We restrict |φ1| < 1 such that f is covariance stationary
[34]. Under these conditions, we take the limit of f capturing an infinite past, namely, as n → ∞. The initial state
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F0 is eventually forgotten, φn+1
1 F0 ≈ 0 if n is large and |φ1| < 1. Similarly, the terms c(φn1 + φn−1

1 + . . .+ 1) can be
summarised as a geometric series in φ1. The remaining terms satisfy the definition of an MA(∞) process:

fn = c
1

1− |φ1|
+

∞∑
k=0

φk1ξn−k, |φ1| < 1 (B18)

It is straightforward to show that the reverse is true, namely, an MR(1) is equivalent to an AR(∞) representation
[34].

The consideration of an MA(∞) process leads us directly to Wold’s decomposition for arbitrary covariance stationary
processes, namely, that any covariance stationary f can be represented as:

fn ≡ c′ +
∞∑
k=0

ΨkLkξn (B19)

c′ ≡ E[fn|fn−1, fn−2, . . .] (B20)

Ψ0 ≡ 1 (B21)
∞∑
k=0

Ψ2
k <∞ (B22)

Eq. (B19) defines an MA(∞) process derived previously as an AR(1) process. This process is ergodic for Gaussian
ξ. However, such a representation of f requires fitting data to an infinite number of parameters {Ψ1,Ψ2, . . .} and
approximations must be made.

We approximate an arbitrary covariance stationary f using finite but high order AR(q) processes. Below we show
that any finite order AR(q) process has an MA(∞) representation satisfying Wold’s theorem.

We define an arbitrary AR(q) process as:

ξn ≡ (1− φ1L − φ2L2 − . . .− φqLq)(fn − c) (B23)

In particular, we define λi, i = 1, . . . , q as eiqenvalues of the dynamical model, Φ:

Φ ≡



φ1 φ2 φ3 . . . φq−1 φq
1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0


(B24)

λ ≡
[
λ1 . . . λq

]
s.t.|Φ− λIq| = 0 (B25)

(B26)

We use the following result from [34] without proof that the above implies:

1− φ1L − φ2L2 − . . .− φqLq (B27)

≡ (1− λ1L) . . . (1− λqL) (B28)

This yields:

ξn = (1− λ1L) . . . (1− λqL)(fn − c) (B29)

For us to invert this problem and recover an MA process, we need to show that the inverse for each (1− λq′L) term
exists for q′ = 1, . . . , q. To do this, we start by defining the operator Λq(L) :

Λq(L) ≡ lim
k→∞

(1 + λqL+ . . .+ λkqLk) (B30)
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We consider an arbitrary q′-th eigenvalue term in process and we multiply Λq′(L) :

Λq′(L)ξn = Λq′(L)(1− λ0L) . . . (1− λq′L) . . . (fn − c) (B31)

= lim
k→∞

(1 + λq′L+ . . .+ λkq′Lk)(1− λq′L)(1− λ0L) . . . (1− λq′−1L)(1− λq′+1L) . . . (1− λqL)(fn − c)
(B32)

= lim
k→∞

(1 + λq′L+ . . .+ λkq′Lk)(1− λ0L) . . . (1− λq′−1L)(1− λq′+1L) . . . (1− λqL)(fn − c) (B33)

− lim
k→∞

(λq′L+ . . .+ λk+1
q′ L

k+1)(1− λ0L) . . . (1− λq′−1L)(1− λq′+1L) . . . (1− λqL)(fn − c) (B34)

= lim
k→∞

(1 + λk+1
q′ L

k+1)(1− λ0L) . . . (1− λq′−1L)(1− λq′+1L) . . . (1− λqL)(fn − c) (B35)

Each of the residual terms, λk+1
q′ Lk+1 → 0 if |λq′ | < 1 for large k, and this case Λq′(L) defines the inverse (1−λq′L)−1.

This procedure is repeated for all q eigenvalues to invert Eq. (B29) and subsequently perform a partial fraction
expansion as follows:

fn − c =
1

(1− λ1L) . . . (1− λqL)
ξn (B36)

=

q∑
q′=1

aq′

1− λq′L
ξn (B37)

aq′ ≡
λq−1
q′∏q

q′′=1,q′′ 6=q′(λq′ − λq′′)
(B38)

The coefficients are aq′ as obtained via the partial fraction expansion method during which L is treated as an ordinary
polynomial. At present, we have a represent f via a finite q weighted average of values of ξ. However, in substituting
the definition of Λq′ ≡ (1−λq′L)−1 from Eq. (B30) in Eq. (B37) and regrouping terms in powers of L, we recover the

form of an MA representation (setting c ≡ f̃n = 0, ∀n for simplicity):

fn =

 q∑
q′=1

aq′L0 + lim
k→∞

k∑
k′=1

 q∑
q′=1

aq′λ
k′

q′

Lk′
 ξn (B39)

= Ψ0 +

∞∑
k=1

ΨkLkξn (B40)

Ψ0 ≡
q∑

q′=1

aq′L0 (B41)

Ψk ≡
q∑

q′=1

aq′λ
k′

q′ (B42)

By examining the properties of Φ raised to arbitrary powers, it can be shown that
∑q
q′=1 aq′ ≡ 1 and Ψk is the first

element of Φ raised to the k-the power [34], yielding absolute summability of Ψk if |φq′<q| < 1. This ensures that
Wold’s theorem is fully satisfied and an AR(p) process has an MA(∞) representation. In moving to an arbitrarily
high q, we enable the approximation of any covariance stationary f .

The proofs that high q AR approximations for covariance stationary f improve with q for example, in [37]. The
key correspondence is that the number of finite lag terms q in an AR(q)) model contribute to the first q values of the
covariance function. This approximation improves with q even if f is not a true AR process [37, 55]. Asymptotically
efficient coefficient estimates for any MA(∞) representation of f are obtained by letting the order of a purely AR(q)
process tend to infinity and increasing total data size, N [37].

When data is fixed at N , we expect a high q model to gradually saturate in predictive estimation performance. One
can arbitrarily increase performance by increasing both q,N [37]. In our application with finite data N , we increase
q to settle on a high order AR model while training LSF to track arbitrary covariance stationary power spectral
densities [35].

A high q AR model is often the first step for developing models with smaller number of parameters, for example,
considering a mixture of finite order AR(q) and MA(p) models and estimating p + q number of coefficients using
a range of standard protocols [35, 55]. The design of potential ARMA models for our application requires further
investigation beyond the scope of this manuscript.
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Appendix C: Spectral Representation of f in GPR (Periodic Kernel) and LKFFB

The well-known spectral representation theorem guarantees that any covariance stationary random process (real or
complex) can be represented in a generalised harmonic basis. We defer a detailed treatment of spectral analysis of
covariance stationary processes in standard textbooks, for example, [34, 38] and present background and key results
to provide insights into the choice of LKFFB and GPR (periodic kernel).

The spectral representation theorem states that any covariance stationary random process has a representation
given by fn, and correspondingly, a probability distribution, F (ω) over [−π, π] in the dual domain such that:

fn = µf +

∫ π

0

[a(ω) cos(ωn) + b(ω) sin(ωn)]dω (C1)

R(ν) =

∫ π

−π
e−iωνdF (ω) (C2)

Here, µf is the true mean of the process f . The processes a(ω) and b(ω) are zero mean and serially and mutually
uncorrelated, namely,

∫ ω2

ω1
a(ω)dω is uncorrelated with

∫ ω4

ω3
a(ω)dω and

∫ ωj′
ωj

b(ω)dω for any ω1 < ω2 < ω3 < ω4 and

any choice of j, j′ within the half cycle [0, π].
The distribution F (ω) exists as a limiting case of considering cumulative probability density functions for fn at

each n and letting n→∞ such that a sequence of these density functions approach F (ω) [38]. If F (ω) is differentiable
with respect to ω, then we see the power spectral density S(ω) and R(ν) are Fourier duals [38]:

R(ν) =

∫ π

−π
e−iωνS(ω)dω (C3)

S(ω) ≡ dF (ω)

dω
(C4)

The duality of the covariance function and the spectral density is formally expressed in literature by the Wiener
Khinchin theorem.

We consider the finite sample analogue of the spectral representation theorem considered above by following [34].
To proceed, we define mean square convergence as a distance metric for determining when a sequence of random

variables {f̂n} converges to a random variable, fn in the mean square limit if:

E[f̂2
n] <∞ ∀n (C5)

lim
n→∞

E[f̂n − fn] = lim
n→∞

||f̂n − fn|| = 0 (C6)

The statement ||f̂n − fn|| = 0 measures the closeness between random variables f̂n and fn even though the mean

square limit is defined for terms of a sequence of random variables, {f̂n}, where convergence improves with n → ∞.

In context of this study, we define f̂n as a linear predictor of fn belonging to a covariance stationary f . Hence, each

f̂n for large n is a linear combination of the set of random variables belonging all past noisy observations (and in

Kalman Filtering, all past state predictions). Mean square convergence of ||f̂n−fn|| = 0 in our context is a statement

of the quality of a predictor, f̂n , in predicting fn as the total measurement data grows.
Next, we account for finite data and define the finite sample analogue for the spectral representation theorem. We

suppose there exists a set of arbitrary, fixed frequencies {ωj} for j = 1, . . . , J . We let n denote finite time steps for
observing fn at n = 1, . . . , N . Further, we define a set of zero mean, mutually and serially uncorrelated random
process {aj} and {bj} as finite sample analogues of the true a(ω) and b(ω) for the j-th spectral component. In
particular, these processes are constant over n by covariance stationarity of f . Then, the finite sample analogue for
the spectral representation theorem becomes [34]:

fn = µf +

J∑
j=1

[aj cos(ωjn) + bj sin(ωjn)] (C7)

E[aj ] = E[bj ] = 0 (C8)

E[ajaj′ ] = E[bjbj′ ] = σ2δ(j − j′) (C9)

E[ajbj′ ] = 0 ∀j, j′ (C10)

µf ≡ 0 (C11)
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The last line enforces a zero mean stochastic process and simplifies analysis without loss of generality and δ(·) is the
Dirac-delta function.

To illustrate, the first two moments are of the form:

E[fn] = µf +

J∑
j=0

E[aj ] cos(ωjn) + E[bj ] sin(ωjn) = 0 (C12)

R(ν) =

J∑
j

J∑
j′

σ2
j δj, j

′[cos(ωjn) cos(ω′j(n+ ν)) + sin(ωjn) sin(ω′j(n+ ν))] (C13)

= σ2
J∑
j

pj cos(ωjν) (C14)

pj ≡
σ2
j

σ2
≡

σ2
j∑
j σ

2
j

(C15)

We introduce process noise, wn, into the formula for true fn, and this establishes a commonality with state dynamics
in Kalman filtering for a covariance stationary process:

fn = µf +

J∑
j=1

[aj cos(ωj(n− 1)) + bj sin(ωj(n− 1))] + wn (C16)

In the absence of measurement noise and operating in the oversampling regime, an ordinary least squares (OLS)

regression can be constructed by providing a collection of J (B) basis frequencies {ω(B)
j }, as in [34]. The OLS problem

is constructed by separating the set of coefficients {µ̂f , â1, b̂1, . . . âJ , b̂J} and regressors {1, cos(ω1(n− 1)), sin(ω1(n−
1)), . . . , cos(ω

(B)
J (n−1)), sin(ω

(B)
J (n−1))}. For the specific particular choice of basis, J (B) = (N −1)/2, (odd N) and

ω
(B)
j ≡ 2πj/N , we state the key result from [34] that the coefficient estimates are obtained as:

f̂n = µ̂f +

J(B)∑
j=1

[âj cos(ω
(B)
j (n− 1)) + b̂j sin(ω

(B)
j (n− 1))] (C17)

âj ≡
2

N

N∑
n′=1

f̂n′ cos(ω
(B)
j (n′ − 1)) (C18)

b̂j ≡
2

N

N∑
n′=1

f̂n′ sin(ω
(B)
j (n′ − 1)) (C19)

This choice of basis results in the number of regressors being the same as the length of the measurement record.

Further, the term (â2
j + b̂2j ) is proportional to the total contribution of the j-th spectral component to the total sample

variance of f , or in other words, the amplitude estimate for the power spectral density of true f .
Next, we depart from the OLS problem above by in several ways, firstly, by introducing measurement noise and

secondly, by changing basis oscillators considered in the problem above. As in the main text, the linear measurement
record is defined as:

yn ≡ fn + vn (C20)

vn ∼ N (0, R) (C21)

The link in GPR (periodic kernel) is direct and the link with LKFFB is made by setting fn ≡ Hnxn. In both
frameworks, we incorporate the effect of measurement noise through the measurement noise variance, R, which has
the effect of regularising the least squares estimation process discussed above.

1. Infinite Basis of Oscillators in a GPR Periodic Kernel

The departure from simple OLS plus measurement noise (above) to GPR (periodic kernel) arises from the fact that
data is projected on an infinite basis of oscillators, namely, J (B) →∞.
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We follow the sketch of a proof provided in [42] to show that a sine squared exponential (periodic kernel) used in
Gaussian Process Regression satisfies covariance function of trigonometric polynomials. Here, the index j labels an
infinite comb of oscillators and m represents the higher order terms in the power reduction formulae in the last line
of the definition below:

ω
(B)
0 ≡

ω
(B)
j

j
, j ∈ {0, 1, ..., J (B)} (C22)

R(ν) ≡ σ2 exp(−
2 sin2(

ω
(B)
0 ν
2 )

l2
) (C23)

= σ2 exp(− 1

l2
) exp(

cos(ω
(B)
0 ν)

l2
) (C24)

= σ2 exp(− 1

l2
)

M→∞∑
m=0

1

m!

cosm(ω
(B)
0 ν)

l2m
(C25)

Next, we expand each cosine using power reduction formulae for odd and even powers respectively, and we re-group
terms. For example, we expand the terms for m = 0, 1, 2, 3, 4, 5... as:

R(ν) = σ2 exp(− 1

l2
) cos(ω

(B)
0 ν)

[
2

(2l2)

(
1

0

)
+

2

(2l2)3

1

3!

(
3

1

)
+

2

(2l2)5

1

5!

(
5

2

)
. . .

]
(C26)

+ σ2 exp(− 1

l2
) cos(2ω

(B)
0 ν)

[
2

(2l2)2

1

2!

(
2

0

)
+

2

(2l2)4

1

4!

(
4

1

)
+ . . .

]
(C27)

+ σ2 exp(− 1

l2
) cos(3ω

(B)
0 ν)

[
2

(2l2)3

1

3!

(
3

0

)
+

2

(2l2)5

1

5!

(
5

1

)
. . .

]
(C28)

+ σ2 exp(− 1

l2
) cos(4ω

(B)
0 ν)

[
2

(2l2)4

1

4!

(
4

0

)
+ . . .

]
(C29)

+ σ2 exp(− 1

l2
) cos(5ω

(B)
0 ν)

[
2

(2l2)5

1

5!

(
5

0

)
+ . . .

]
(C30)

...

+ σ2 exp(− 1

l2
)

[
1

(2l2)2

1

2!

(
2

1

)
+

1

(2l)4

1

4!

(
4

2

)
+ . . .

]
+ σ2 exp(− 1

l2
) (C31)

In the expansion above, the vertical and horizontal dots represent contributions from m > 5 terms. The key message
is that truncating m to a finite number of terms M will truncate j to represent a finite number of oscillators. For
the example above, if the power reduction expansion indexed by m above was truncated to M = 5 terms, then the
number of basis oscillators (number of rows) would also be truncated. We now summarise the amplitudes Eq. (C26)
to Eq. (C30) in second term of R(ν) and Eq. (C31) corresponds to p0,M term below:

R(ν) = σ2(p0,M +

∞∑
j=0

pj,M cos(jω
(B)
0 ν)) (C32)

pj,M ≡ σ2 exp(− 1

l2
)

β=βMAXj,m∑
β=0

2

(2l2)(j+2β)

1

(j + 2β)!

(
j + 2β

β

)
(C33)

β ≡ 0, 1, ..., βMAX
j,m (C34)

p0,M = exp(− 1

l2
)

α=αMAXm∑
α=0

1

(2l2)(2α)

1

(2α)!

(
2α

α

)
(C35)

α ≡ 0, 1, ..., αMAX
m (C36)

By examining the cosine expansion, one sees that a truncation at (M,J (B)) means our summarised formulae will

require βMAX
j,M = bM−j2 c and αMAX

M = bM2 c where bc denotes the ceiling floor. If we truncate with M ≡ J (B) such

that αMAX
M = bJ

(B)

2 c, β
MAX
j,M = bJ

(B)−j
2 c and re-adjust the kernel for the zero-th frequency term, then we agree with

final result in [42].
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We compare the covariance function of the periodic kernel in Eq. (C32) with the covariance function of trigonometric
polynomials in Eq. (C14). Here, pj,M for the periodic kernel are not identically specified in general to those under
the spectral representation theorem, but otherwise retain a structure as a cosine basis where the correlations between
two random variables in a sequence only depends on the separation between them. For a constant mean Gaussian
process, the form of the periodic kernel allows the underlying process to satisfy covariance stationarity and appears
to permit an interpretation via the spectral representation theorem.

2. Amplitude and Phase Extraction for Finite Oscillator Basis in LKFFB

In LKFFB, we depart from the simple OLS plus measurement noise problem considered earlier by specifying a fixed
basis of oscillators at the physical Fourier resolution established by the measurement record. Using a specific state
space model, we can track amplitudes and phases for each basis oscillator individually to enable forward prediction
at any time-step of our choosing. The design of a fixed basis necessarily incorporates a priori assumptions about the
extent to which a fast measurement action over-samples slowly drifting non-Markovian noise, that is, a (potentially
incorrect) assumption about dephasing noise bandwidth.

The efficacy of the Liska Kalman Filter in our application assumes an appropriate choice of the ‘Kalman basis’
oscillators. The choice of basis can effect the forward prediction of state estimates. To illustrate, consider the choice

of Basis A - C defined below. Basis A depicts a constant spacing above the Fourier resolution (e.g. ω
(B)
0 ≥ 2π

NT∆t ).
Basis B introduces a minimum Fourier resolution and effectively creates an irregular spacing if one wishes to consider
a basis frequency comb coarser than the experimentally established Fourier spacing over the course of the experiment.
Basis C is identical to Basis B but allows a projection to a zero frequency component.

Basis A: ≡ {0, ω(B)
0 , 2ω

(B)
0 . . . J (B)ω

(B)
0 } (C37)

Basis B: ≡ { 2π

N∆t
,

2π

N∆t
+ ω

(B)
0 , . . . ,

2π

N∆t
+ J (B)ω

(B)
0 } (C38)

Basis C: ≡ {0, 2π

N∆t
,

2π

N∆t
+ ω

(B)
0 , . . . ,

2π

N∆t
+ J (B)ω

(B)
0 } (C39)

While one can propagate LKFFB with zero gain, it may be advantageous for predictive control applications to
generate predictions in one calculation rather than recursively. This means we sum contributions over all j ∈ J (B)

oscillators and we reconstruct the signal for all future time values in one calculation, without having to propagate

the filter recursively with zero gain. The interpretation of the predicted signal, f̂n, requires an additional (but time-
constant) phase correction term ψC that arises as a byproduct of the computational basis (i.e. Basis A, B or C). The
phase correction term corrects for a gradual mis-alignment between Fourier and computational grids which occurs
if one specifies a non-regular spacing inherent in Basis B or C. Let nC denote the time-step at which instantaneous
amplitudes ||x̂jnC || and instantaneous phase θx̂jnC

is extracted for the oscillator represented by the j-th state space

resonator, xjn, where super-script j denotes an oscillator of frequency ω
(B)
j ≡ jω(B)

0 (not a power):

f̂ =

J(B)∑
j=0

||x̂jnC || cos(m∆tω
(B)
j + θx̂jnC

+ ψC), (C40)

nC ∈ NT , m ∈ NP

ψC ≡

{
0, (Basis A)

≡ 2π

ω
(B)
0

(ω
(B)
0 − 2π

N∆t ), (Basis B or C)
(C41)

The output predictions from calculating a harmonic sum using learned instantaneous amplitudes, phases and the
LKFFB Basis A-C agree with zero-gain predictions if ψC is specified as above. The calculation of ψC is determined
entirely by the choice of computational and experimental sampling procedures, and assumes no information about
true dephasing.

Next, we define an analytical ratio to define the optimal training time, nC , at which LKFFB predictions should
commence, irrespective of whether the prediction procedure is recursively propagating the Kalman Filter with zero
gain, or by calculating a harmonic sum for all prediction points in one go.

nC ≡
1

∆tω
(B)
0

=
fs

ω
(B)
0

(C42)
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Consider an arbitrarily chosen training period, NT 6= nC . For fs fixed, our choice of NT > nC means we are achieving
a Fourier resolution which exceeds the resolution of the LKFFB basis. Now consider NT < nC . This means that we’ve
extracted information prematurely, and we have not waited long enough to project on the smallest basis frequency,

namely, ω
(B)
0 . In the case where data is perfectly projected on our basis, this has no impact. For imperfect learning,

we see that instantaneous amplitude and phase information slowly degrades for NT > nC ; and trajectories for the
smallest basis frequency have not stabilised for NT < nC .

Of these choices, Basis A for ω
(B)
0 ≡ 2π

NT∆t is expected to yield best performance, at the expense of computational
load, and this is confirmed in numerical experiments. All results in this manuscript are reported for Basis A with
NT ≡ 1

∆tω
(B)
0

= fs

ω
(B)
0

.

3. Equivalent Spectral Representation of f in LKFFB and GPR Periodic Kernel

In this section, we consider the structural similarities between LKFFB and GPR with a periodic kernel. We show
that the LKFFB has an analogous structure to a stack of stochastic processes on a circle [38], and in moving from
discrete to continuous time, we recover a covariance function that has the same structure if the periodic kernel was
truncated to a finite basis of oscillators, J (B). For zero mean, Gaussian random variables, covariance stationarity
is established, completing the link between LKFFB and the periodic kernel. For the case Γnwn → wn in LKFFB,
stacked Kalman resonators as an approximation to infinite oscillators in a periodic kernel is documented in [42].

At time step n, the posterior Kalman state at n − 1 acts as the initial state at n, such that ν = ∆t for a small
∆t such that a linearised trajectory is approximately true for each basis frequency. We show this using the following
correlation relations and a Gaussian assumption for process noise, where n,m ∈ N are indices for time steps and
j = 0, 1, . . . J (B) indexes the set of basis oscillators:

E[wn] = 0 ∀j ∈ J (B), n ∈ N (C43)

E[wn, wm] = σ2δ(n−m) n,m ∈ N (C44)

E[Aj0] = E[Bj
′

0 ] = 0, ∀j, j′ ∈ J (B) (C45)

E[AjnB
j′

m] = 0, ∀j, j′ ∈ J (B), n,m ∈ N (C46)

E[AjnA
j′

m] = E[BjnB
j′

m] = σ2
j δ(n−m)δ(j − j′), ∀j, j′ ∈ J (B), n,m ∈ N (C47)

E[wnA
j
m] = E[wnB

j′

m] ≡ 0 ∀j, j′ ∈ J (B), n,m ∈ N (C48)

Consider a j-th state space resonator, xjn, in the LKFFB, where super-script j denotes an oscillator (not a power)
and we obtain:

Θ(jω
(B)
0 ∆t) =

[
cos(jω

(B)
0 ∆t) − sin(jω

(B)
0 ∆t)

sin(jω
(B)
0 ∆t) cos(jω

(B)
0 ∆t)

]
(C49)

xjn ≡

[
Ajn
Bjn

]
= Θ(jω

(B)
0 ∆t)

Î +
wn−1√

Ajn−1
2 +Bjn−1

2

[Ajn−1

Bjn−1

]
(C50)

(C51)
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=⇒ E[xjn] = 0 (C52)

=⇒ E[xjnx
j
m
T ]j = Θ(jω

(B)
0 ∆t)E[

[
Ajn−1A

j
m−1 Ajn−1B

j
m−1

Bjn−1A
j
m−1 Bjn−1B

j
m−1

]
]Θ(jω

(B)
0 ∆t)T (C53)

+ Θ(jω
(B)
0 ∆t)

 wn−1√
Ajn−1

2 +Bjn−1
2

+
wm−1√

Ajm−1
2 +Bjm−1

2

[Ajn−1A
j
m−1 Ajn−1B

j
m−1

Bjn−1A
j
m−1 Bjn−1B

j
m−1

]
Θ(jω

(B)
0 ∆t)T

(C54)

+ Θ(jω
(B)
0 ∆t)

 wn−1wm−1√
Ajn−1

2 +Bjn−1
2

√
Ajm−1

2 +Bjm−1
2

[Ajn−1A
j
m−1 Ajn−1B

j
m−1

Bjn−1A
j
m−1 Bjn−1B

j
m−1

]
Θ(jω

(B)
0 ∆t)T

(C55)

= σ2
j δ(n−m)

[
1 0

0 1

]
(C56)

The cross correlation terms disappear under the temporal correlation functions so defined, namely, if assume n ≥ m,
then states Ajm−1, B

j
m−1 at m − 1 at most have a wn−2 term (for the case n = m) and cannot be correlated with a

future noise term wn−1.
The dynamical trajectory in LKFFB is linearised for small ∆t. The linearisation is an approximation to a true,

continuous time deterministic trajectory defining a stochastic process on a circle.
We briefly visit this continuous time trajectory to specify the link between LKFFB and GPR (periodic kernel).

Let t denote the continuous time deterministic dynamics for random initial state given by aj0, b
j
0, where super-script

j denotes an oscillator with frequency ωj ≡ jω(B)
0 (not a power):

E[aj0] = E[bj
′

0 ] = 0, ∀j, j′ ∈ J (B) (C57)

E[aj0b
j′

0 ] = 0, ∀j, j′ ∈ J (B) (C58)

E[aj0a
j′

0 ] = E[bj0b
j′

0 ] = σ2
j δ(j − j′), ∀j, j′ ∈ J (B) (C59)

xj(t) ≡

[
cos(ωjt) − sin(ωjt)

sin(ωjt) cos(ωjt)

][
aj0
bj0

]
(C60)

E[xj(t)] = 0 (C61)

E[xj(t)xj(t′)T ] =

[
cos(ωjt

′) − sin(ωjt
′)

sin(ωjt
′) cos(ωjt

′)

][
aj0
bj0

] [
aj0 bj0

] [
cos(ωjt) − sin(ωjt)

sin(ωjt) cos(ωjt)

]
(C62)

= σ2
j

[
cos(ωjν) 0

0 cos(ωjν)

]
, ν ≡ |t′ − t| (C63)

We see that the initial state variables, aj0, b
j
0, must be zero mean, independent and identically distributed variables

for each j such that xj(t) is covariance stationary. If aj0, b
j
0 are Gaussian, then the joint distribution, xj(t), remains

Gaussian under the linear operations above. Hence, the continuous time limit of the dynamics in LKFFB for J (B)

independent substates, xj(t), describe a process with the same first and second moments for a periodic kernel truncated
at J (B). For Gaussian processes, this results in an approximate equivalent representation of LKFFB for J (B) stacked
resonators with an expansion of the periodic kernel truncated at J (B).

While the formalism of LKFFB shares a common structure with GPR (periodic kernel) in a particular limit, the
physical interpretation of Ajn, B

j
n is that these are components of the Hilbert transform of the original signal [29].

This gives us the ability to track and extract instantaneous amplitude and phase associated with each basis oscillator
in LKFFB. In contrast, the coefficients of the periodic kernel are always contingent on the arbitrary truncation of the
infinite basis, as seen in Eqs. (C32), (C33) and (C35). Hence, tracking (or extracting) amplitudes and phases for
individual oscillators does not seem appropriate for the periodic kernel, as these values would change depending on
the arbitrary choice of a truncation point.
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