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Surface acoustic waves (SAW) propagating in a piezoelectric substrate covered with a thin ferro-
magnetic/heavy metal bilayer are found to exhibit a substantial degree of nonreciprocity, i.e. the
frequencies of these waves are non-degenerate with respect to the inversion of the SAW propagation
direction. The simultaneous action of the magneto-elastic interaction in the ferromagnetic layer and
the interfacial Dzyaloshinskii-Moriya interaction (IDMI) in the ferromagnetic/heavy metal inter-
face, results in the openings of magneto-elastic bandgaps in the SAW spectrum, and the frequency
position of these bandgaps are different for opposite SAW propagation directions. The bandgap
widths and the frequency separation between them can be controlled by a proper selection of the
magnetization angle and the thickness of the ferromagnetic layer. Using numerical simulations
we demonstrate that the isolation between SAWs propagating in the opposite directions in such a
system can exceed the direct SAW propagation losses by more than one order of magnitude.

I. INTRODUCTION

Surface acoustic waves (SAWs) transmission lines,
based on high-quality piezoelectric single crystals, find
applications as frequency filters, sensors, and other sig-
nal processing devices [1–4]. SAWs have very low prop-
agation losses in the frequency range from megahertz to
several gigahertz. They can be excited with a very high
efficiency in piezoelectric crystals, and the use of unidi-
rectional transducers [3, 4] can reduce the insertion losses
of a SAW transmission lines to just several dB. Moreover,
typical propagation speeds (and, therefore, wavelengths)
of SAWs in crystals are several orders of magnitude less
than the speed of electromagnetic waves, thus allowing
the miniaturization of SAW signal processing devices,
compared to their electromagnetic counterparts.
A typical frequency spectrum ωk of a SAW is recipro-

cal, i.e. it is degenerate for the SAWs having opposite
wave vectors k and −k: ωk = ω−k. This degeneracy is
a result of a fundamental time-reversal symmetry in the
laws of mechanics. However, frequency nonreciprocity
(when ωk 6= ω−k) is extremely important for applica-
tions: it allows to isolate signals traveling in the opposite
directions [5, 6]. From a practical point of view, a good
isolator should demonstrate high rejection, i.e. should
be blocking most of the power traveling in one direction
(say, from port “2” to port “1”), and, simultaneously,
low insertion loss, i.e. should be transmitting nearly all
the power traveling in the opposite direction (from port
“1” to port “2”). It is known that SAW-based devices
demonstrate very low transmission losses, and, therefore,
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should be useful as isolators, if a nonreciprocal propaga-
tion SAW propagation in these devices can be demon-
strated.

Unfortunately, a nonreciprocal propagation of SAW is
not easy to achieve. So far, the nonreciprocal propaga-
tion of SAW was found in devices with moving or rotat-
ing elements [7, 8], where the effect of the summation
of velocities of sound and moving media was used. An
alternative way to achieve acoustic nonreciprocity is to
use nonlinear effects in high-power acoustic waves, where
the acoustic wave loss or gain are power-dependent [9–
12]. Unfortunately, both these ways did not lead to the
development of practical nonreciprocal devices based on
acoustic waves.

In contrast to acoustic waves, the frequency nonre-
ciprocity of spin waves (SWs) propagating in ferromag-
netic media is not an exotic phenomenon. The SW non-
reciprocity is a consequence of the intrinsic breaking of
time-reversal symmetry in magnetized magnetic materi-
als, where magnetization precesses only clockwise around
its equilibrium direction. The frequency nonreciproc-
ity for SWs can be achieved in multiple ways, e.g. by
non-symmetric boundary conditions [13–15], by pattern-
ing of a ferromagnet [16–18], or by bulk or interfacial
Dzyaloshinskii-Moriya interaction [19–22]. It should be
noted, that the application of the SWs themselves for
the development of compact nonreciprocal microwave de-
vices is a challenging task, as the magnetic field bias is
needed, and the problem of a relatively high SW propa-
gation losses should be solved.

Fortunately, due to the magneto-elastic interaction in
magnetostrictive materials, the SWs and acoustic waves
can interact with each other, and SWs can act as a
“source” of nonreciprocity for acoustic waves. The non-
reciprocity of magneto-elastic waves [23–25], as well as
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the magneto-elastic interaction itself [26–28], were stud-
ied for a long time in the case of bulk samples. The bulk
materials, however, typically do not show good acous-
tic, magnetic, magneto-elastic and piezoelectric proper-
ties simultaneously, which hinders their practical appli-
cations in nonreciprocal devices. For example, many pa-
pers were devoted to the studies of magneto-elastic waves
in yttrium-iron garnet (YIG), which has nice magnetic
properties, but the magneto-elastic interaction in YIG is
weak, and this material has no piezoelectricity at all. At
the same time, metallic ferromagnets (such as Ni, Co,
Fe) have rather large magnetostriction (3-4 order larger
than in YIG), but prohibitively bad acoustic properties.

Rather promising recent experiments [29–32] have
demonstrated that the propagation of SAWs in piezoelec-
tric substrates can be controlled by a thin magnetic layer
placed atop the substrate. The use of such heterostruc-
tures allows one to combine in a single device a high-
quality piezoelectric substrate (like LiNbO3) and a ferro-
magnet with large magnetostriction (e.g., Ni). Moreover,
it has been shown that SAWs propagating in a LiNbO3

substrate covered by a thin Ni film, indeed, demonstrate
some degree of nonreciprocity [32], although the observed
nonreciprocity effect was small. In such a case the SWs
are generally reciprocal, and the small transmission non-
reciprocity comes from the slightly different widths of
the magneto-elastic bandgaps having the same central
frequency in the SAW spectrum for waves with opposite
wave vectors. As a result, the nonreciprocal transmission
appears on a background of large propagation (insertion)
losses.

In this work we propose a way to substantially en-
hance the nonreciprocal properties of SAW in piezo-
electric/ferromagnetic heterostructures using the ma-
terials with interfacial Dzyaloshinskii-Moriya interac-
tion (IDMI). We show, that IDMI results in a non-
degeneracy of the central frequencies of the magneto-
elastic bandgaps with respect to the inversion of the
SAW propagation direction. Since the central frequen-
cies of the bandgaps are different for the two counter-
propagating waves, a wave traveling in one direction falls
within the bandgap, while the wave traveling in the oppo-
site direction does not “feel” the bandgap at all. There-
fore, the damping of the wave propagating in one direc-
tion is tremendously increased, while for the wave propa-
gating in the opposite direction is practically unaffected,
resulting in the simultaneously high isolation and low in-
sertion losses. In our numerical simulations we used the
parameters of a transmission line based on a LiNbO3 sub-
strate covered by a thin Ni/Pt bilayer, and showed, that,
using a high quality Ni film, one can achieve the isolation
of up to 45 dB with the insertion losses of about 20 dB.

The article is organized as follows. In Sec. II we present
a general formalism for the magneto-elastic coupling be-
tween the linear SWs and SAWs in the framework of
a perturbation theory. Then, we consider the condi-
tions for the appearance of nonreciprocal magneto-elastic
bandgaps in the wave spectrum (Sec. III B), and the

ways for the optimization of the nonreciprocal properties
(Sec. III C). Finally, Sec. III D is devoted to the calcula-
tion of the SAW line transmission characteristics in the
presence of IDMI and the SAW coupling to SW.

II. THEORY OF WEAKLY-COUPLED LINEAR

MAGNETO-ELASTIC WAVES

In this section we revisit the theory of magneto-elastic
interaction in ferromagnetic samples, and develop an an-
alytical formalism for magneto-elastic coupling between
the spin-waves and acoustic waves suitable for the sys-
tems having arbitrary wave profiles (e.g. suitable for
surface magneto-elastic waves), limiting ourselves to the
case of linear coupling between SWs and SAWs.
The dynamics of the magneto-elastic waves is governed

by the coupled Landau-Lifshitz equation for SWs and
elastic mechanical equations [2, 5] for acoustic waves.
Simulations solution of these equations is complicated,
and often possible only numerically [33–36]. However, in
almost all the practically important situations the mag-
netostriction is weak in comparison to the other interac-
tions in a ferromagnet, which allows us to consider the
magneto-elastic interaction in the framework of a pertur-
bation theory.
For the consideration of linear excitations the mag-

netization vector M can be represented as a sum
of a static and dynamic components, M(r, t) =
Ms [µ(r) +m(r, t)], where Ms is the saturation magne-
tization, µ is the unit vector pointing in the direction of
the static magnetization, and m is a dimensionless dy-
namic magnetization (|m| ≪ 1). Then, the equations
describing the coupled magneto-elastic dynamics can be
written as:

1

γ
Ĵ · dm(r, t)

dt
−
∫

Ω̂ ·m(r′, t)dr′ = bme(r, t) , (1)

ρ
∂2

∂t2
ξi(r, t)− cijln

∂2

∂xj∂xl

ξn(r, t) = fme
i (r, t) . (2)

Here Ĵ = ê ·µ is the operator of the angular momentum,
ê is the Levi-Chivita anti-symmetric tensor, Ω̂ = Ω̂(r, r′)
is the operator of magnetic interactions (see Refs. 37–39
for more details),ξ(r, t) is the elastic displacement, ρ is
the density, and cijlm are the components of the elastic
stiffness tensor. The magneto-elastic coupling is given by
the terms in the right-hand side of the equation, where
bme(r, t) is the effective magnetic field generated by the
acoustic deformations via the inverse magnetostriction,
and fme is the effective force generated by the magneti-
zation dynamics and acting on the sample via the direct
magnetostriction effect. In Eq. (1) we skipped another
coupling term of the form m(µ · bme), as it is of the
second-order of smallness, and cannot result in a linear
coupling between the waves. In Eq. (2) and below the
repeating indices (i, j, l,m) = (x, y, z) are assumed to be
summed.
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The magneto-elastic coupling can be obtained from the
following magneto-elastic energy density:

Wme =
1

M2
s

bijlnuijMlMn , (3)

where b̂ is the tensor of magnetostriction [40] and û(r, t)
is the tensor defining the strain created by the displace-
ment ξ(r, t) [2]:

uij =
1

2

(

∂ξi
∂rj

+
∂ξj
∂ri

)

. (4)

The values of the field bme and the force fme can be
calculated using (3) as:

bme
n (r, t) = −∂Wme

∂M
≈ − 2

Ms

bijlnuij(r, t)µl(r) , (5)

fme
i (r, t) =

∂

∂xi

∂

∂uij

Wme ≈ 2
∂

∂xj

bijlnµl(r)mn(r, t) ,

(6)

where we left only the terms that are linear in the dy-
namic magnetization m or displacement ξ as they are
responsible for the linear coupling between the waves.
The other terms, corresponding, e.g., for the parametric
coupling between the waves, are disregarded.
Eqs. (1, 2) can be solved within a standard framework

of an eigenmodes expansion:

m(r, t) =
∑

ν

cν(t)mν(r) + c.c. , (7)

ξ(r, t) =
∑

λ

qλ(t)ξλ(r) + c.c. , (8)

where mν(r) and ξλ(r) are the profiles of the linear SWs
and acoustic modes, while cν(t) and qλ(t) are the un-
known complex amplitudes of the eigenmodes. The spa-
tial profiles of the eigenmodes and their eigenfrequencies,
ων and ω̃λ, respectively, are the solutions of Eqs. (1) and
(2) with zero right-hand-side parts in the form m(r, t) =
mν(r)e

−iωνt, while ξ(r, t) = ξλ(r)e
−iω̃λt.

The linear SW modes satisfy the following orthogonal-
ity relation [37, 38]:

Ms

γ

∫

m∗
ν′(r) · µ(r)×mν(r)dr = −iAνδν,ν′ , (9)

where Aν > 0 is the spin-wave normalization constant
having the dimensionality of action [41]. A similar or-
thogonality condition can be written for the acoustic
modes [2, 42]:

2ωλ

∫

ρ(r)ξ∗λ(r) · ξλ′(r)dr = Qλδλλ′ , (10)

where Qλ > 0 is a positive normalization constant having
the same dimensionality as Aν .

Substituting the expansions Eqs. (7, 8) for m(r, t) and
ξ(r, t) in Eqs. (1, 2) and using the orthogonality rela-
tions, we get the following final equations for the ampli-
tudes of the coupled spin and acoustic waves:

dcν
dt

+ iωνcν + Γνcν = i
∑

λ

√

Qλ

Aν

κν,λqλ ,

dqλ
dt

+ iω̃λqλ + Γ̃λqλ = i
∑

ν

√

Aν

Qλ

κ∗
ν,λcν ,

(11)

where we also introduce in a common way [8, 38] the
damping rates of the spin and acoustic modes Γν and
Γ̃λ, respectively. The coupling coefficient is equal to

κν,λ =
2√

AνQλ

∫

µ(r) ·
(

b̂ · ûλ(r)
)

·m∗
ν(r)dr . (12)

This expression is the central result of the above devel-
oped theory. The coupling coefficient can be calculated
for the arbitrary spatial profiles of the acoustic and SW
modes. The exact profiles of the SW and acoustic modes,
as well as the mode eigenfrequencies ων and ω̃λ, in sim-
ple cases can be found analytically, or, otherwise, can be
extracted from numeric simulations.

In the case of propagating waves, characterized by a
wave vector k, the solution of Eq. (11) can be easily
obtained. In the equations above we change mν →
mk(ρ)e

ik·r and ξλ → ξk′(ρ)eik
′·r, where ρ is two-

dimensional radius vector, perpendicular to the wave
propagation direction, defined by k. Then, Eq. (12) is
transformed to

κk,k′ =
2√

AkQk′

∫

µ(r)·
(

b̂ · ûk′(ρ)
)

·m∗
k
(ρ)ei(k

′−k)·rdr .

(13)
It is clear, that in the case when the static magnetiza-
tion is uniform along the wave propagation direction, the
exponent under the integral gives zero integration result
until k 6= k′. Therefore, in this case the spin and acous-
tic waves can interact only if they have the same wave
vector k. Note, that the length L of the sample in the
wave propagation direction, which appears after the in-
tegration in Eq. (13), is canceled by the same term in the
normalization constants of SW and SAW. The dispersion
relation for the interacting waves can be written as:

ωk =
ωSW + ωAW

2
±

√

(

ωSW − ωAW

2

)2

+ |κk|2 , (14)

where ωSW = ωSW,k and ωAW = ωAW,k are the disper-
sion relations of non-interacting SWs and acoustic waves,
respectively.
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FIG. 1. A layout of the heterostructure under study – piezo-
electric substrate covered by ferromagnetic/heavy metal bi-
layer.

III. NONRECIPROCAL SURFACE

MAGNETO-ELASTIC WAVES

A. Spin-wave modes in a ferromagnetic film with

IDMI

In this section we apply the above presented general
theory to the study of the surface magneto-elastic waves
in a magnetic/nonmagnetic heterostructure. A sketch of
a considered heterostructure is shown in Fig. 1. It con-
sists of a nonmagnetic substrate which supports propa-
gation of a surface acoustic wave (SAW). Typically, this
substrate is a piezoelectric single-crystal, like LiNbO3,
LiTaO3 or quartz. The piezoelectric substrate is cov-
ered with a thin ferromagnetic film having a large mag-
netostriction (e.g. Ni), and, then, by a thin heavy metal
layer (typically Pt), which induces IDMI at the ferromag-
netic/heavy metal interface. The ferromagnetic layer is
biased by an external magnetic field Be applied in the
film plane at the angle φ respective to the wave prop-
agation direction. The value of the bias field should be
sufficient to magnetize the ferromagnetic film in its plane,
thus overcoming the effect of the surface perpendicular
magnetic anisotropy, which can exists at the ferromag-
netic / heavy metal interface.
Since IDMI is an interface effect, the thickness of a

ferromagnetic film necessary to produce a significant SW
nonreciprocity should be sufficiently small. As it became
clear from the results of our numerical simulations, the
ferromagnetic film thickness should not exceed several
tens of nanometers. In this case we can use the as-
sumption of a uniform SW profile across the thickness
of a ferromagnetic layer, mk /∈ f(z). The dispersion of
SWs, propagating along the x-axis (see Fig. 1), can be
expressed as [20, 43]:

ωSW,k =
√

ΩzzΩIP − ωMD̃k sinφ , (15)

where

ΩIP =
[

ωH + ωM

(

λ2
exk

2 + f(kt) sin2 φ
)]

,

Ωzz =
[

ωH − ωan + ωM

(

λ2
exk

2 + 1− f(kt)
)]

.
(16)

In these equations ωH = γBe, ωM = γµ0Ms, ωan =
2γKs/(MstFM) where Ks is the constant of the sur-
face perpendicular anisotropy, k = kx, f(x) = 1 − (1 −

e−|x|)/|x| is a function describing the dynamic demag-
netization, and the effect of IDMI is described by the
expression D̃ = 2Db/(µ0M

2
s tFM), where D is the IDMI

constant, b is the thickness of an atomic monolayer of
the ferromagnet [21, 44]. From Eq. (15) it is clear, that
the SW dispersion is nonreciprocal, ωSW,k 6= ωSW,−k if
φ 6= 0, π. Due to the symmetry of the effective field,
produced by IDMI, the vector structure of the SW mode
does not depend on IDMI [43], and can be expressed
as mk = [−mIP sinφ,mIP cosφ, imz], where mIP is the
in-plane dynamic component of magnetization, and the
relation between the magnetization dynamic components
is mz/mIP =

√

ΩIP/Ωzz.

B. Analysis of the coupling of surface acoustic

waves with spin waves

The calculation of a dispersion relation and mode pro-
file of SAWs in a layered structure consisting of a piezo-
electric substrate and a metallic layer is, itself, not a
simple task. Thus, to simplify our analytical analysis we
used several approximations. First, we considered the
substrate as isotropic and non-piezoelectric, and used the
Poisson ratio as an adjustable parameter, as it is often
done in analytical calculations [1]. Within this approx-
imation it is not possible to answer the question on the
SAW stability, but it is possible to adequately describe
the profile of the SAW mode and, therefore, to evaluate
the main characteristics of the magneto-elastic coupling
of SAWs and SWs.
Second, we neglected the influence of the thin metallic

layer on the SAW properties. In general, shear acous-
tic waves in sputtered metals are slower, than the shear
acoustic waves in piezoelectric single crystals. Thus, in
such a system the substrate is loaded by the metal layer,
and the surface acoustic wave does not have any cut-off
wavenumbers [2, 45, 46]. In reality, the thickness of the
ferromagnetic layer is of the order of tNi ≈ 10 nm, and
the layer of the heavy metal can be as thin as 2-3 nm,
because the further increase of the heavy metal thick-
ness does not affect the strength of IDMI [47]. The SAW
wavenumber for the considered range of frequencies (1-
5 GHz) is of the order of kx < 10µm−1. Thus, we can
work in an approximation that kx(tNi + tPt) ≪ 1, and
assume that the SAW is only weakly affected mechan-
ically by the bilayer. Therefore, we can use the wave
dispersion and the wave mode profiles calculated for a
free substrate [2, 45]. It should be noted, that the above
presented formalism (Sec. II) remains to be valid if one
considers the exact values of both the acoustic field dis-
tribution and the SAW dispersion. This property could
be useful in the future more accurate calculations of the
coupling parameter κ.
Taking into account the above described approxima-

tions, we considered a Rayleigh surface acoustic wave
[48]. The in-plane component of the displacement, per-
pendicular to SAW propagation direction, is absent, ξy =
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0, so the strain tensor components uxy = uyz = uyy = 0.
The oscillations in the x and z directions are shifted in
phase by π/2, resulting in the effective rotation in the
medium over an elliptic trajectory.

The only non-zero components of the SAW strain
tensor are uxx, uzz and uxz. At the surface (z = 0
in Fig. 1) the off-diagonal strain component vanishes,
uxz(z = 0) = 0, while the components uxx and uzz

remain nonzero. The dispersion of the SAW is linear,
ωSAW,k = cSAW|k|, where cSAW is the SAW velocity.

The magneto-elastic coupling tensor b̂ in the case of
a cubic crystal (Ni, Fe, Co) has only two independent
components [5]: biiii = b1 and bijij = b2 (for i 6= j),
while all the other components are zero (in the case of
an isotropic media b1 = b2). Noting the symmetry of
the magneto-elastic tensor, we calculated the coupling
coefficient κk for SW in the ferromagnet and a Rayleigh
SAW using Eq. (12):

κk =
2tFM√
AkQk

[

−b1ūxx,km
∗
IP,k sinφ+ b2ūxz,km

∗
z,k

]

cosφ ,

(17)
where ūij are the strain components, averaged over the
ferromagnetic film thickness, and in the definition of the
normalization constants Ak, Qk (Eqs. (9, 10)) the inte-
gration over the volume is replaced by the integration
over the z coordinate.
It is clear from Eq. (17), that the magneto-elastic inter-

action between the SW and SAW vanishes for φ = π/2,
while this angle corresponds to the maximum IDMI-
induced SW nonreciprocity, see Eq. (15). As it was
pointed out earlier, at the free surface the strain com-
ponent uxz = 0, so the averaged value |ūxz| ≪ |ūxx|, and
the coupling coefficient is mainly determined by the first
term in the brackets in Eq. (17). Therefore, the coupling
coefficient is approximately proportional to the function
κk ∼ sin 2φ, which reaches its maximum at φ = π/4.
Consequently, the maximal coupling of SW and SAW is
realized for the magnetization angle close to φ = π/4.
This feature has been already observed in Refs. 29 and
32.
We also note, that the SW eigenmode does not change

with the reversal of the propagation direction m = m−k.
At the same time, the SAW strain tensor transforms as
uxx,−k = −uxx,k, uxz,−k = uxz,k [48]. Therefore, the
coupling between the SW and SAW is nonreciprocal even
without IDMI, κk 6= κ−k (if φ 6= 0, π/2), and this non-
reciprocity becomes more pronounced for thicker ferro-
magnetic film due to an increase of ūxz component. Un-
equal coupling results in different propagation losses of
SAW in opposite directions, that was observed in Ref. 32.
However, to achieve a good isolation, while maintaining
a low insertion loss, one should have |κk| ≪ |κ−k|. A
simple analysis from Eq. (17) reveals, that this require-
ment leads to the requirement on the stain distribution
ūxx ≈ ūxz, that can be realized if ferromagnetic film
thickness becomes of the order of the SAW penetration
depth. For metallic layers this requirement is difficult to

fulfill, because a thick ferromagnetic layer significantly
affect the mechanical properties of the substrate, and
increases the acoustic loss. However, this regime may,
possibly, be implemented in dielectric single-crystal fer-
romagnets, such as YIG.

C. Wave spectrum and magneto-elastic bandgaps

For our numerical example demonstrating nonrecip-
rocal surface magneto-elastic waves we have chosen a
LiNbO3/Ni/Pt heterostructure. LiNbO3/Ni heterostruc-
tures have been already fabricated and studied in Refs. 29
and 32, and have demonstrated good magneto-elastic
coupling. LiNbO3 is one of the best piezoelectric materi-
als supporting SAW propagation in the frequency range
of up to 10 GHz [49], while Ni shows large magnetostric-
tion, and the combination Ni/Pt gives the largest IDMI
among the studied combinations of Ni with other heavy
metals. We used the Y-cut of LiNbO3 having the density
ρ = 4650 kg/m

3
as a substrate, and the SAW was propa-

gating along the Z-axis. The substrate had the following
material parameters: longitudinal and transversal sound
velocities cl = 7350m/s and ct = 3600m/s [50], and the
corresponding SAW velocity was cSAW = 3361m/s. For
the Ni layer we used the following parameters: saturation
magnetization µ0Ms = 0.66T, exchange stiffness A =
9.5 × 10−12 J/m3 (λex = 7.4 nm), surface perpendicular

anisotropy energy Ks = 6×10−4 J/m
2
, g-factor g = 2.21,

magneto-elastic coupling coefficients b1 = 9.38MJ/m
3
,

b2 = 10MJ/m
3
[51, 52]. The IDMI energy at the Pt/Ni

interface was equal to D = −2.7× 10−3 J/m2, the lattice
constant was b = 0.352 nm [53].

An example of the spectra of SW and SAW in the
heterostructure is shown in Fig. 2. By selection of the
magnitude of Be and the angle φ of the bias magnetic
field it is possible to achieve a crossing between the spec-
tra of non-interacting SW and SAW in a desirable fre-
quency range. The interaction between the SAW and
SW leads to the opening of bandgaps in the spectrum
of a magneto-elastic surface wave. The widths of the
bandgaps are determined by the coupling coefficient κk:
∆ω = 2π∆f = 2|κk|. Since the SW spectrum is nonre-
ciprocal, the crossing of the SW dispersion curves with
the SAW spectrum takes place at different points, and the
magneto-elastic bandgaps open at different frequencies

and wave-numbers for the waves propagating in opposite
directions. This feature is clearly visible in Fig. 2(b),
where the central frequencies of the bandgaps are shifted
by 170 MHz with respect to each other. Therefore,
within the frequency range of one of the bandgaps, the
SAW propagating in one direction is strongly coupled
to SW forming a slow and dissipative magneto-elastic
wave, while the wave traveling in the in opposite direc-
tion is almost unaffected by the magneto-elastic interac-
tion. This property exists only due to the SW frequency
nonreciprocity induced by the IDMI in our case.
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FIG. 2. (a) - Spectra of surface magneto-elastic waves in the
LiNbO3/Ni/Pt heterostructure, that away form the points of
wave hybridization look like independent crossing spectra of
SAW and SW, respectively, (b) - close view of the spectra
near the hybridization points (marked by dashed rectangles
in (a)), where the magneto-elastic bandgaps are clearly seen.
Ni thickness tNi = 10nm, magnetization angle φ = π/4, bias
field Be = 41mT.

The widths of the bandgaps and separation between
their central frequencies depend on the thickness of the
ferromagnetic layer. The width ∆f of a bandgap in-
creases with the thickness of the Ni layer tNi, because
the coupling coefficient between SW and SAW is pro-
portional to tNi, see Eq. (17). However, due to in-
terfacial nature of the IDMI, the nonreciprocity of the
SWs, and, therefore, the frequency separation between
the bandgaps corresponding to the opposite propagation
directions, decreases with the increase of the Ni thick-
ness. These tendencies are clearly illustrated by Fig. 3,
where the positions and the widths of the bandgaps are
plotted as functions of tNi. The bias field at each value
of tNi was chosen in such a way, that the averaged fre-
quency position of the bandgaps is kept constant (3 GHz
in Fig. 3(a), and 5 GHz in Fig. 3(b), respectively). For
applications it is desirable to have the widest possible
bandgaps which, however, should be well-separated from
one another, at least by a frequency interval of the or-
der of bandgap width. Thus, there is an optimum range
of the ferromagnetic film thicknesses, in which it is pos-
sible to achieve the best nonreciprocal properties of the
magneto-elastic surface waves propagating in the oppo-
site directions. For example, in the above described het-
erostructure LiNbO3/Ni/Pt the optimum thickness of
the Ni layer is tNi ≈ 8 − 9 nm for both averaged fre-
quencies of 3 GHz and 5 GHz (see Fig. 2). For higher
averaged frequencies, the optimum Ni thickness remains
almost the same, at least up to the frequency of 10 GHz,
at which the SAW excitation and propagation in LiNbO3

were observed experimentally in [49].
It should be noted, that the crossing and hybridiza-

tion of the dispersion curves of SW and SAW at any
desirable frequency cannot be always satisfied for the op-
timum magnetization angle of φ = π/4. For example,
for tNi > 19 nm the crossing cannot be achieved at the
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FIG. 3. Positions and widths of the magneto-elastic bandgaps
in a spectrum of surface magneto-elastic waves for opposite
propagation directions: (a) – for averaged frequency of 3 GHz;
(b) for averaged frequency of 5 GHz. The magnetization angle
is optimum, φ = π/4.

frequency below 3 GHz for any value of the bias field.
This property is related to the increase of the SW group
velocity at k → 0 taking place with the increase of the
film thickness. A solution of this problem is to use a
smaller magnetization angle φ < π/4 which decreases
the SW group velocity, and even changes its sign for
sin2 φ < ωH/(ωH + ωM − ωan). At such magnetization
angles one can achieve the formation of magneto-elastic
bandgaps at almost any desirable frequency. However,
the widths of the bandgaps, as well as the separations be-
tween them, become smaller (see Eqs. (15, 17)). This fea-
ture limits the applicability of the IDMI-induced nonre-
ciprocity of surface magneto-elastic waves in a relatively
low-frequency range (below 2 GHz).

D. Transmission characteristics

In this section we consider how the appearance of the
magneto-elastic bandgaps affects the transmission char-
acteristics of a SAW line. In general, the appearance of
the bandgaps leads to the variation of the wave group ve-
locity vgr = ∂ωk/∂k (slope of the dispersion curve), and
to the variation of the wave damping rate in the vicinity
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of the bandgaps. Both these factors contribute to the
variation of a transmission rate in a magneto-acoustic
transmission line.

It should be noted, that common methods of the SAW
transmission calculations (see, e.g. [1, 54]) are not ap-
plicable in our case. These methods use the assump-
tion of a negligibly small resonance linewidth, so that
the wave group velocity and the efficiency of inter-digital
transducers (IDTs) can be calculated locally, at the point
k = k(ω). This assumption is natural for SAWs, which,
typically, have a very small linewidth ( for example, for
LiNbO3 this linewidth is only 500 kHz at the 5 GHz fre-
quency [55]). However, the SW damping rate and, conse-
quently, the damping rate of magneto-elastic waves in the
vicinity of the bandgaps, can be comparable to (or larger
than) the bandgap width. In such a case, the nonreso-
nant wave excitation becomes important, and one should
integrate contributions from all the excited waves within
the resonance line.

To calculate the transmission characteristics, we need
to introduce into Eq. (11) an external harmonic force,
which describes the excitation of SAWs by an IDT. The
application to an IDT of a microwave voltage V (t) =
Vine

−iωt of the frequency ω results in the appearance of
an mechanical force in the LiNbO3 substrate, and this
force has a certain spatial profile, which depends on the
IDT geometry. The efficiency of the coupling of IDT to
a SAW, having a certain wave vector k = kex, can be
decomposed into 2 terms.

The first of these terms is the normalized Fourier-
transform Fk of the force spatial profile in the x-direction,
which determines the k-dependence of the excitation ef-
ficiency. This term is often approximated by a function
Fk = sinc[πNf (k − k0)/k], where Nf is the number of
fingers in the IDT, and ω0 = cSAWk0 is the central fre-
quency of the IDT [54].

The second term describes all the other effects: piezo-
electric coupling, overlap of the mechanical force with
SAWs (in the z-direction), etc.. A detailed consideration
of this second term lies beyond the scope of this article,
and below the influence of this second term is described
by a coefficient C1. The coefficient C1 can also be k-
dependent, but this dependence is much weaker than that
of the term Fk, and, therefore, is neglected below. Thus,
the excitation force, which appears in the right-hand-side
part of the equation for the SAW amplitudes qk in the
system Eq. (11) is expressed as fe(t) = C1VinFke

−iωt.
The solution of Eq. (11) with the excitation term gives
the amplitudes of the excited SAWs qk in the form:

qk = −iC1VinFk

ω − (ωSW − iΓSW)

(ω − ω1)(ω − ω2)
, (18)

where

ω1,2 =
ωSW − iΓSW + ωSAW − iΓSAW

2

±

√

[

(ωSW − iΓSW)− (ωSAW − iΓSAW)

2

]2

+ |κk|2 ,

(19)
and the obtained frequencies of the coupled waves are
complex, because damping has been taken into account.
At the receiving IDT the displacement created by a

SAW ξ(x) = (1/2π)
∫

ξkqke
ikxdk is transformed into

the output voltage via piezoelectric effect. Similarly
to the excitation efficiency, the efficiency of detection
of a SAW, having the wave vector k, can be decom-
posed into 2 terms, and, then,similar to the descrip-
tion of the efficiency at the input IDT, represented as
C2Fk. The total output microwave voltage is obtained
by the integration over all the SAW wave vectors, Vout =
(C2/2π)

∫

Fkqke
ikLdk, where L is the distance between

the input and output IDTs. Thus, the transmission pa-
rameters S12 and S21, which are defined as ratios of the
output voltage to the input one for two opposite direc-
tions of the signal propagation (from the port “1” to the
port “2” and vice versa) are equal to:

S12,21 =
C1C2

2πi

∫

ω − (ωSW − iΓSW)

(ω − ω1)(ω − ω2)
F 2
k e

±ikLdk , (20)

where S12 differs from S21 by the sign in front of the
length L of the SAW line, and both IDTs are assumed
to be the same. In a general case this expression can-
not be further simplified, because the widths of the
magneto-elastic bandgaps, the SW damping rate and
the characteristic width of the function Fk can be of
the same order of magnitude. In the limiting case
of the absence of magneto-elastic coupling and a suf-
ficiently wide spectrum of the IDT (i.e. in the case
when the range of variation of the function Fk is much
larger than ΓSAW/cSAW) Eq. (20) simplifies to the form:
S12,21 = (C1C2/cSAW) exp[−ΓSAWL/cSAW]. The calcu-
lation of the coefficients C1, C2 requires an accurate
accounting of the piezoelectric coupling and impedance
matching between the SAW line and the external circuit,
and lies beyond the scope of this article. Below, we use
the normalization C1C2/cSAW = 1, i.e. we consider only
the effects of the propagation losses of magneto-elastic
waves and the spatial spectra of IDTs, given by Fk.
As it was pointed above, the widths of the magneto-

elastic badgaps ∆ω = 2|κk| are several orders of mag-
nitude larger than the SAW linewidth, ΓSAW ≪ ∆ω,
and, at the same time the SW linewidth is, typically,
larger than the width of the magneto-acoustic bandgap
ΓSW > ∆ω. An example of the transmission charac-
teristics calculated for this case is given in Fig. 4. For
these calculation we used the thickness of a polycrys-
talline Ni layer of tNi = 5nm, which is smaller than
optimum thickness, in order to demonstrate, that a sig-
nificant nonreciprocity of the transmission characteristic
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FIG. 4. Transmission characteristics of the SAW lines with a
polycrystalline Ni film (αG = 0.045) having different IDTs for
two opposite directions of the wave propagation (S12 (dashed
line) and S21 (solid line)): (a) – IDT1 with central frequency
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f0 = 5.16GHz, Nf = 20. The thickness of the Ni layer was
tNi = 5nm, SAW line length L = 250µm, bias magnetic field
Be = 82mT was applied at the angle φ = π/4 to the line axis.

can be achieved not only in the unique optimum case.
We have chosen the central frequency of the badgaps of
5 GHz, and the Gilbert damping parameter of the Nickel
layer was chosen to be αG = 0.045, which is a typical
value for polycrystalline Ni films [51]. For these param-
eters the spectral widths are: ΓSAW/(2π) = 500 kHz,
ΓSW/(2π) = 360MHz and ∆ω = 2|κk|/(2π) = 60MHz.

The parameters of the SAW line transmission char-
acteristics can be adjusted by the selection of the IDT
central frequency f0 and the number of IDT fingers. For
example, if the IDT central frequency f0 lies between the
magneto-elastic bandgaps and the spectrum of the IDT
is wide enough to cover both bandgaps (small number
of fingers), then the transmission characteristic contains
two nonreciprocal bands where the transmission reaches
a maximum value at different frequencies for the oppo-
site wave propagation directions (see Fig. 4(a)). In con-
trast, if f0 lies within one of the bandgaps and the IDT
spectrum is narrow (large number of fingers), there is
one main unidirectional transmission band, as shown in
Fig. 4(b). The isolation in both of cases is close to 10 dB,
while the propagation losses at the transmission maxi-
mum do not exceed 10 dB. We note, that these values
of the isolation are much larger than the ones that were

observed for a single Ni film on a LiNbO3 substrate (with-
out Pt) [32], and can be easily measured and, possibly,
used in applications.
The isolation of the SAW line with magneto-elastic

coupling can be substantially improved if a high-quality
ferromagnetic film is used. As one can show form
Eq. (19), the damping of the magneto-elastic waves at
the crossing point depends on the relative values of
the magneto-elastic coupling coefficient |κk| and the SW
linewidth ΓSW. If |κk| > (ΓSW + ΓSAW)/2, the damping
rate of the hybridized waves is Γ1,2 = (ΓSW − ΓSAW)/2.
Otherwise, for |κk| < (ΓSW + ΓSAW)/2, the damping
rate of the magneto-acoustic waves is equal to Γ1,2 =

(ΓSW + ΓSAW)/2 ±
√

(ΓSW − ΓSAW)2/4− |κk|2, i.e. the
damping rate of one of the hybridized magneto-acoustic
waves decreases with the increase of ΓSW, and, in the
limit ΓSW ≫ |κk|, it is reduced to Γ1 → ΓSAW. Nat-
urally, this low-damping hybridized wave makes a dom-
inant contribution to the signal transmission rate, and
the isolation in the transmission line decreases in spite of
the fact that the signal frequency lies within a magneto-
acoustic bandgap.
Thus, to maximize the influence of the magneto-elastic

coupling on the signal transmission, the SW damping
rate should be ΓSW < 2|κk|, while the use of ferromag-
netic materials with high magnetic damping leaves SAW
transmission almost unaffected.
For the studied heterostructure LiNbO3/Ni/Pt such an

optimum case could be realized if high-quality monocrys-
talline Ni film is used. In our numerical example illus-
trated in Fig. 5 we used a high quality Ni film with
Gilbert damping constant of αG = 0.014 [56]. Here we
have chosen the Ni layer thickness of tNi = 9nm, for
which 2κk/(2π) = 105MHz and ΓSW = 104MHz. As it
is clear from Fig. 5, the isolation in this case is increased
remarkably, up to 45 dB and, also, this isolation exists
in a rather wide frequency band.
It follows from Eq. (20), that the maximum achiev-

able isolation in such a SAW transmission line is of the
order of S12 − S21 ∼ exp[(Γmin − ΓSAW)L/cSAW], where
Γmin = min Im[ω1,2] is the smallest damping rate of the
hybridized magneto-elastic waves. This maximum iso-
lation is achieved at the frequency in the center of one
of the magneto-elastic bandgaps, provided the excitation
spectra of the used IDT is sufficiently narrow, compared
to the bandgap width. This can be achieved using an
IDT with a sufficiently large number of ”fingers” Nf .
As it was pointed out previously, if the magneto-elastic

coupling is relatively weak |κk| < (ΓSW+ΓSAW)/2, we get

Γmin = (ΓSW + ΓSAW)/2 −
√

(ΓSW − ΓSAW)2/4− |κk|2.
In this case a weak damping of one of the hybridized
magneto-elastic waves strongly limits the maximum
achievable isolation, and an increase of on the number
Nf of the IDT fingers does not lead to a significant im-
provement of the isolation. For example, for the parame-
ters used in Fig. 4(b) the increase of Nf from Nf = 20 to
Nf = 100 gives only 1 dB of the isolation enhancement.
In contrast, in the optimum case of a strong cou-
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was applied at the angle φ = π/4 to the line axis.

pling and a high-quality FM layer, when |κk| > (ΓSW +
ΓSAW)/2, the maximum isolation could be very high, so
the signal level in one direction can be below the level of
a thermal noise. For example, it follows from Fig. 5, that
at the frequency 5.09GHz the isolation is 84 dB, and can
be made even higher for the increased number Nf of IDT
”fingers”. This, however, will lead to a severe limitation
in the frequency band of the transmitted signal.
Thus, we have shown that by using a well-known acous-

tic and magnetic materials, such as LiNbO3 in combi-
nation with a Ni film covered by a thin layer of Pt,
it is possible to achieve the transmission of hybridized
magneto-acoustic waves with quite a large level of non-
reciprocal isolation. The characteristics of such a nonre-
ciprocal magneto-acoustic isolator could be further im-
proved using ferromagnetic materials with lower damp-
ing. A promising materials for this purpose could be
CoFe alloys, which, at a certain composition, show ultra-
low magnetic damping of αG = 0.0014 [57]. Unfortu-
nately, the magneto-elastic properties and the DMI of
these alloys have not been studied yet.

IV. CONCLUSION

In this work we presented a general theory of a linear
magneto-elastic coupling between the spin and acoustic
waves propagating in an arbitrary magnetic / nonmag-

netic layered structure and having arbitrary mode pro-
files. The developed theory uses the relative weakness of
the magneto-elastic interaction, and reduces the problem
to a standard form of equations for coupled oscillators.
The theory provides a simple method for the calculation
of the magneto-elastic wave dispersion, damping parame-
ters of the coupled waves, as well as for the determination
of the condition of nonzero magneto-elastic interaction
between the acoustic and spin waves.
Using the developed theory we demonstrated that the

SW nonreciprocity, induced by the IDMI, can be “trans-
ferred” to the “hybridized SAWs” existing in piezoelec-
tric / ferromagnetic / heavy metal heterostructures. The
magneto-elastic interaction results in the appearance of
bandgaps in the spectra of magneto-elastic surface waves,
and, because of the IDMI-induced SW nonreciprocity,
these bandgaps exist at different frequency and wave
number positions for the opposite wave propagation di-
rections. The widths of these bandgaps and the fre-
quency separation between them can be optimized by
a proper selection of the in-plane magnetization angle
(φ ≈ π/4 relative to the direction of the SAW propaga-
tion) and the thickness of a ferromagnetic layer (about
8-9 nm for the studied LiNbO3/Ni/Pt heterostructure),
while the central frequency of the bandgaps can be tuned
by varying the magnitude of the bias magnetic field.
We demonstrated, that the transmission characteris-

tics of the surface magneto-elastic waves can be substan-
tially nonreciprocal, while having relatively low direct
insertion losses. Our calculations show that for LiNbO3

covered by a think Ni/Pt layer it is possible to achieve
the isolation of 10-45 dB, while maintaining the SAW
propagation losses below 10-20 dB. The isolation could
be further improved by a selection of a proper ferromag-
netic material having large values of the magnetostriction
and IDMI, but low magnetic losses.
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