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Abstract 

 

Elastic waves propagating in piezoelectric materials are accompanied by a time-varying electric 

potential, which is of critical importance for acousto-electronic applications. The spatial mapping 

of such a potential at microwave frequencies is challenging since the characteristic length scale is 

determined by the acoustic wavelength of several micrometers. In this work, we report the 

visualization of surface acoustic waves (SAWs) on ferroelectric samples by transmission-mode 

microwave impedance microscopy (T-MIM). The SAW potential launched by the interdigital 

transducer is detected by the tip and demodulated by the microwave electronics as time-

independent spatial patterns. Wave phenomena such as interference and diffraction are imaged and 

the results are in excellent agreement with the theoretical analysis. Our work opens up a new 

avenue to study various electromechanical systems in a spatially resolved manner. 
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The linear electromechanical coupling in piezoelectric materials enables the interconversion 

between electrical and acoustic signals1, which has found numerous applications in modern science 

and technology2,3. For instance, the excitation and detection of surface acoustic waves (SAWs) in 

quartz crystals are widely utilized in electronic components such as delay lines, filters, and 

oscillators2,3. The oscillating potential carried by propagating SAWs can manipulate the two-

dimensional electrons hosted in piezoelectric GaAs quantum wells4,5. In periodically poled 

superlattices of piezoelectric/ferroelectric lithium niobate (LiNbO3), the coupling between giga-

Hertz (GHz) electromagnetic and acoustic waves leads to polaritons with novel phononic band 

structures6-11. In these systems, the characteristic dimension is set by the acoustic wavelength in 

piezoelectric solids, which is 5 orders of magnitude smaller than the electromagnetic wavelength 

at the same frequency (f). Research work that provides spatial information in the mesoscopic length 

scale is therefore highly desirable for studying wave phenomena, such as the interference, 

diffraction, and localization, of few-GHz supersonic SAWs. 

 

In the past few decades, much effort has been made to probe acousto-electronic properties in a 

spatially resolved manner. Scanning laser interferometry, for example, images the out-of-plane 

displacement fields12,13 with sub-picometer sensitivity and a diffraction-limited lateral resolution 

around 1 m. The spatial resolution of surface displacement fields can be improved to ~ 20 nm in 

scanning acoustic force microscopy (SAFM), which detects the nonlinear mixing of two slightly 

detuned SAWs through a cantilever probe at the difference frequency14-16. The sub-nm SAW 

amplitude has also been visualized by stroboscopic X-ray imaging17,18. On the other hand, the 

piezoelectric SAW potential that is critical for the applications has not been thoroughly studied. It 

was demonstrated that the secondary electrons in a scanning electron microscope (SEM) could be 

modulated by the spatially varying SAW electric field19,20. The applicability of this method, 

however, is rather limited due to the strong charging effect in insulating piezoelectric crystals19, 

resulting in a moderate resolution of ~ 1 m and an operation frequency below 0.5 GHz. In this 

paper, we report the visualization of piezoelectric SAW potential on the surface of z-cut LiNbO3 

crystals by transmission-mode microwave impedance microscopy (T-MIM), an atomic-force-

microscopy (AFM) based technique with sub-100 nm spatial resolution. The SAW potential 

generated by interdigital transducers (IDTs) is demodulated by the homodyne detection electronics, 

showing time-independent spatial patterns in the two orthogonal channels. The superposition of 
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two counter-propagating SAWs and wave diffraction due to a small domain with opposite 

polarization are also observed by the T-MIM. Our work introduces a new direction to locally probe 

acousto-electronic phenomena in complex systems by near-field electromagnetic imaging. 

 

As a rapidly evolving technique in recent years, MIM is commonly used to study the nanoscale 

permittivity and conductivity distribution in advanced materials21-24. In a typical reflection-mode 

MIM (R-MIM) setup shown in Fig. 1a, the GHz signal is delivered to the probe through an 

impedance-match section22. The small variation of tip-sample impedance Zt-s during the 

measurement leads to changes of the reflected microwave, which is demodulated by the quadrature 

IQ mixer. By adjusting the local oscillator (LO) phase , the real and imaginary components of the 

admittance change Yt-s = (Zt-s
-1) can be mapped as R-MIM-Re/Im images22. As shown in Fig. 

1b, it is straightforward to reconfigure the system as a transmission-mode MIM (T-MIM), where 

the tip acts as a receiver to detect the local RF voltage Vs. The equivalent circuits of R-MIM and 

T-MIM are schematically shown in Figs. 1c and 1d, respectively. At our operation frequency of ~ 

1 GHz, the cantilever probe25 can be viewed as a lumped element dominated by an effective 

capacitance of 1 pF. Using transmission-line analysis26 (Appendix A), it can be shown that the 

receiver has an input impedance |Zin| ~ 1 k at 1 GHz. Through a similar tip-sample coupling 

impedance Zt-s, an input signal of Vin = Vs  Zin/(Zt-s + Zin) is picked up by the tip and then amplified 

and demodulated by the electronics. It is worth noting that similar transmission-type probes have 

been used to map out the RF fields in microwave resonators27,28 and metamaterials29,30. In those 

systems, however, the characteristic length scale is determined by the electromagnetic wavelength 

(30 cm at 1 GHz) and a mesoscopic spatial resolution is not necessary.  
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FIG. 1. (a) Schematic of the R-MIM. The excitation signal is delivered to the tip and the reflected signal 

is amplified and demodulated by the IQ mixer to form the R-MIM-Re/Im images. (b) Schematic of the 

T-MIM. The excitation signal is delivered to the IDT on the sample and the transmitted signal is 

amplified and demodulated by the IQ mixer to form the T-MIM-Ch1/Ch2 images. (c) Equivalent 

circuits of the R-MIM and (d) T-MIM. 

 

Fig. 2a shows the SEM image of a pair of IDTs used in our experiment. The device was designed 

to excite the x-propagating Rayleigh-type SAW on the z-cut LiNbO3 substrate, which was poled 

to be a single ferroelectric domain prior to the device fabrication. LiNbO3 has a trigonal crystal 

structure with a mirror yz-plane and a direct triad z-axis along the polar direction31. Using finite-

element modeling (Appendix B), one can show that the piezoelectric SAW potential Vs is about 

10% of the excitation voltage at the transmitting IDT (1 V). In addition, since the coupling 

impedance Zt-s between the tip and metal electrodes is much smaller than that between the tip and 

LiNbO3, the signals on the IDTs are very strong and saturate the T-MIM output.  The S-parameters 

of the two IDTs measured by a vector network analyzer are plotted in Fig. 2b. The passband of ~ 

50 MHz around 1 GHz is consistent with the use of 20 pairs of interdigital fingers2. The dip of S12 

in the middle of the passband is likely due to the SAW reflection from the receiving IDT. 
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FIG. 2. (a) SEM image of the SAW device with a pair of IDTs. (b) Return loss S11 and insertion loss 

S12 of the SAW device measured by a vector network analyzer. The T-MIM frequency of 957 MHz is 

labeled in the plots. (c) AFM and T-MIM images in the dashed rectangular region in (a). Wave-like 

features are seen in the T-MIM data. The scale bars are 4 m. 

 

Fig. 2c displays the simultaneously acquired AFM and T-MIM-Ch1 images when the excitation 

IDT is powered by 10 dBm microwave at f = 957 MHz. While only the interdigital fingers are seen 

in the surface topography, the electrical potential on both the IDT and the LiNbO3 surface can be 

clearly imaged by the T-MIM. In Fig. 3, we focus on the data taken in an area of 10 m  20 m 

between the two IDTs. The featureless R-MIM images in Fig. 3a indicate that there is no 

permittivity or conductivity variation, whereas the two T-MIM images in Fig. 3b exhibit sinusoidal 

patterns. As discussed before, the tip is picking up an input signal that is proportional to the SAW 

potential. Without loss of generality, the signals at the RF and LO ports of the mixer can be 

represented as 𝑉RF ∝ 𝑉𝑠 ∝ 𝑒𝑖(𝜔𝑡−𝑘𝑥) and 𝑉LO ∝ 𝑒𝑖(𝜔𝑡+𝜙) (: angular frequency, k: acoustic wave 

vector, : mixer phase), respectively. Ignoring the terms containing 2𝜔𝑡, we obtain the output 

signals from the quadrature mixer as follows. 

𝑉Ch1 ∝ Re(𝑉RF𝑉LO
∗ ) = cos(𝑘𝑥 + 𝜙)      (1) 

𝑉Ch2 ∝ Im(𝑉RF𝑉LO
∗ ) = − sin(𝑘𝑥 + 𝜙)   (2) 

In other words, the electronics demodulate the time-varying SAW potential into time-independent 

spatial patterns, which is in good agreement with the T-MIM data. The line profiles in Fig. 3c 

show the same amplitude and a phase difference of 90 between the two channels. We have also 

confirmed that a change in the mixer phase  introduces the same phase shift to both channels. By 

fitting the periodicity of the sinusoidal curves, a phase velocity of v = 3.8 km/s is obtained, which 

is consistent with that of the x-propagating Rayleigh SAW32. Further analysis of the signal level 

(Appendix A) also shows that the tip-sample coupling impedance in our experiment |Zt-s| ~ 160 

k, which is much greater than |Zin|.  
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FIG. 3. (a) AFM and R-MIM-Re/Im images in an area between the two IDTs. (b) T-MIM-Ch1/Ch2 

images in the same area as (a). All scale bars are 4 m. (c) Line profiles of the two T-MIM channels. 

The dash-dotted lines show that the two sinusoidal curves are offset by 90. (d) Positions of the peaks 

and valleys in the T-MIM data. The linear fits to the data points correspond to the Rayleigh SAW speed 

of 3.8 km/s. 

 

We now turn to the T-MIM imaging of a standing wave formed by two counter-propagating SAWs. 

Fig. 4a shows the schematic of the experimental setup, where two balanced signals (0 dBm in 

amplitude) with a phase offset of   are fed into the pair of IDTs. This geometry is technologically 

important in that it can create acoustic trapping potentials for electrons33. Following the same 

analysis above, the input signals to the mixer can be written as 𝑉RF ∝ 𝑒𝑖(𝜔𝑡−𝑘𝑥) + 𝑒𝑖(𝜔𝑡+𝑘𝑥+𝜃) and 

𝑉LO ∝ 𝑒𝑖𝜔𝑡. The LO phase  is omitted since it contributes the same phase to both channels. The 

mixer then generates two output signals as follows. 

𝑉Ch1 ∝ Re(𝑉RF𝑉LO
∗ ) = cos 𝑘𝑥 + cos(𝑘𝑥 + 𝜃)    (3) 

𝑉Ch2 ∝ Im(𝑉RF𝑉LO
∗ ) = − sin 𝑘𝑥 + sin(𝑘𝑥 + 𝜃)    (4) 
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By tuning the phase difference   between the two counter-propagating SAWs, the signal levels of 

the two T-MIM channels can be varied. When  = 0, the sinusoidal spatial patterns are expected 

to appear only in Ch1 (𝑉Ch1 ∝ 2 cos 𝑘𝑥 , 𝑉Ch2 ∝ 0). The patterns should then be the same in both 

channels when  = 90 (𝑉Ch1 = 𝑉Ch2 ∝ cos 𝑘𝑥 − sin𝑘𝑥) and completely move to Ch2 when  = 

180 (𝑉Ch1 ∝ 0, 𝑉Ch2 ∝ −2 sin𝑘𝑥). As seen in Fig. 4b, the predicted evolution is again in excellent 

agreement with the measured T-MIM data. The results demonstrate that T-MIM can probe the 

acoustic standing waves in piezoelectric materials. 

 

FIG. 4. (a) Schematic diagram for the imaging of counter-propagating waves. Two signals (0 dBm in 

amplitude and phase offset by ) split from the same source are fed into the two IDTs. (b) T-MIM 

images at different ’s, showing the transition of signal strength from Ch1 to Ch2. 

 

Finally, we briefly discuss the visualization of SAW diffraction due to the presence of a small 

domain. LiNbO3 wafers poled to be a single ferroelectric domain are energetically unstable. Over 

an extended period, small domains with opposite polarization may spontaneously form to reduce 

the electrostatic energy. The domain inversion flips the sign of odd-rank tensors (polarization, 1st 

rank; piezoelectric tensor, 3rd rank), while leaving the even-rank tensors (permittivity, 2nd rank; 

elasticity tensor, 4th rank) unchanged31. As the acoustic impedance is mostly dependent on the 

density and elasticity of the material, the SAW displacement field is not strongly affected by the 
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domain structure. In contrast, the SAW electric field, which is the gradient of the SAW potential, 

changes sign across a domain wall due to the piezoelectric coupling. In our sample, a small domain 

with spontaneous polarization reversal is found near the left IDT (AFM image in Fig. 5a), as seen 

in the piezo-force microscopy (PFM) image in Fig. 5b. Since its dimension is comparable to the 

acoustic wavelength, wave diffraction is expected around the domain. In Fig. 5c, the T-MIM 

surface potential maps indeed display very strong distortion of the wave front in this region. The 

line profiles in Fig. 5d further verify that the T-MIM signals from both channels switch sign when 

passing through the small domain. The capability to resolve the spatial distribution of SAW 

potential is of particular interest to phononic meta-materials based on periodic ferroelectric domain 

structures6-11.  
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FIG. 5. (a) AFM image in an area with a spontaneously reversed domain. (b) Close-up view of the PFM 

phase image inside the dashed square of (a). The polarization reversal of the internal domain is evident 

from the 180-phase contrast. (c) T-MIM-Ch1/Ch2 images in the same area as (a). Strong distortion of 

the wave front is seen around the small domain. The scale bars are 5 m. (d) T-MIM line profiles in 

(c), showing the sign change of piezoelectric potential in the opposite domain. 

 

To summarize, we demonstrate the visualization of piezoelectric SAW potential on z-cut LiNbO3 

surface by transmission-mode microwave imaging. The traveling or standing SAW potential 

generated by IDTs is demodulated by the microwave electronics and mapped as stationary spatial 

patterns. The signals can be explained by the standard microwave analysis. The wave diffraction 

due to a spontaneously reversed domain is also seen in the T-MIM images. Our work paves the 

way to probe nanoscale acousto-electronic behaviors in SAW devices, quantum materials, and 

phononic crystals. 
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APPENDIX A: Microwave Circuit Analysis 

The quantitative analysis of the T-MIM circuit is provided here. The cantilever probe25 can be 

modeled as a lumped RLC element with Rtip = 4 , Ltip = 2 nH, and Ctip = 1 pF. At f = 1 GHz, the 

effective tip impedance |Ztip| ~ 150  is dominated by the capacitive reactance. As shown in Fig. 

A1a, an impedance-match network consisting of a quarter-wave cable (AstroLab, Astro-Boa-Flex 

III, ~ 5 cm) and a tuning stub (Micro-Coax, UT-085C-TP, ~ 5 cm) is needed to route the tip 

impedance to the 50 transmission line22. Fig. A1b shows the calculated return loss  of the Z-

match circuit, which agrees with the result measured by a vector network analyzer. Using the 

standard transmission-line analysis26, one can then compute the effective impedance viewed from 

the tip side, i.e., the input impedance Zin of the receiver. For the T-MIM experiment, a large |Zin| is 

desirable for signal pick-up. As shown in Fig. A1c, |Zin| reaches a maximum of ~ 1 k at the 

matching frequency, which is used as the operation frequency for both R-MIM and T-MIM. 
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The tip-sample coupling impedance Zt-s is estimated as follows. First, the relation between V1 and 

V2 (Fig. A1a) can be analyzed by considering the forward and backward propagating waves in the 

quarter-wave cable. On the other hand, these two voltages provide the link between the source 

signal Vs and the MIM output signal VMIM-out. 

𝑉1 = 𝑉s ∙ 𝑍in/(𝑍in + 𝑍′t−s) ≈ 𝑉s ∙ 𝑍in/𝑍′t−s    (A1) 

𝑉2 = 𝑉MIM−out/𝐺MIM       (A2) 

Here GMIM = 86 dB is calibrated for the T-MIM electronics. Based on our experimental data, a 

peak-to-peak SAW potential of 0.2 V (Appendix B) corresponds to a peak-to-peak T-MIM output 

signal of ~ 2 V (Fig. 3c). The computed tip-sample coupling impedance is plotted in Fig. A1d. The 

result shows that in this particular experiment, |Zt-s| is around 160 k, or an effective capacitance 

of 1 fF, at 1 GHz. Note that Zt-s strongly depends on the tip apex condition and the sample 

properties. A small Zt-s is desirable for efficient T-MIM detection, which, however, usually comes 

at a price of blunt tip and reduced spatial resolution.  
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FIG. A1. (a) Equivalent circuit of the T-MIM tip and the Z-match network. (b – d) Simulated return 

loss of the Z-match circuit, input impedance of the tip as a receiver, and tip-sample coupling impedance. 

The matching frequency with minimal || is used as the operation frequency for both R-MIM and T-

MIM modes. 

 

APPENDIX B: Finite-element Modeling 

The piezoelectric SAW potential can be numerically computed by the Structural Mechanics 

Module in commercial finite-element analysis (FEA) software COMSOL 4.4. Here we simulate a 

thin plate (1 m in thickness) with periodic boundary condition along the y-direction. The LiNbO3 

region, whose permittivity, piezoelectric coefficient, and elasticity tensor are taken from Ref. 31, 

is bounded by the perfectly matched layer (PML) to avoid wave reflection from the boundary. The 

IDT spacing is set to be 3.8 m. Alternating voltage (1 V in amplitude and 1 GHz in frequency) 

and ground (0 V) are applied on the IDT fingers to excite the x-propagating Rayleigh-type SAW 

on the z-cut LiNbO3 surface. Fig. B1a shows the simulated piezoelectric potential distribution in 

the sample, where the SAW is clearly seen. The surface potential from the simulation (Fig. B1b) 

indicates that the peak-to-peak SAW potential is 0.2 V, which is the source signal for the T-MIM 

measurement. Using this information in Eq. (A1), we are able to evaluate the tip-sample coupling 

impedance Zt-s, which is crucial to understand the signal level in our T-MIM experiment in a 

quantitative manner. 

 

FIG. B1. (a) Piezoelectric potential distribution simulated by finite-element modeling. The voltage on 

the IDT fingers in this snapshot is 1V/0V. (b) Simulated SAW potential as a function of the position. 
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