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Abstract 

The rapid development of metasurfaces has enabled numerous intriguing applications with 

acoustically thin sheets. Here we report the theory and experimental realization of a non-resonant 

sound absorbing strategy using metasurfaces by harnessing multiple internal reflection. We 

theoretically and numerically show that the higher order diffraction of thin gradient-index 

metasurfaces is tied to multiple internal reflection inside the unit cells. Highly absorbing acoustic 

metasurfaces can be realized by enforcing multiple internal reflection together with a small 

amount of loss. A reflective gradient-index acoustic metasurface is designed based on the theory, 

and we further experimentally verify the performance using three-dimensional printed prototype.  

Measurements show over 99% energy absorption at the peak frequency and a 95% energy 

absorption bandwidth of around 600 Hz. The proposed mechanism provides an alternative route 

for sound absorption without the necessity of high absorption of the individual unit cells.  

 

 

 



I. INTRODUCTION 

Sound mitigation and noise reduction have long been active research areas in the field of 

acoustics because of their usefulness in everyday life [1,2]. Conventional passive sound 

absorbing strategies require porous materials or resonant structures to achieve high absorption. 

While sound absorbing materials exhibit strong absorption coefficient at certain frequencies, 

their ability to absorb sound waves relies on their intrinsic physical properties which are difficult 

to be engineered to meet specific requirements. Besides, it may be inconvenient to use porous 

medium at low frequencies since its thickness should be comparable to the wavelength of 

incoming acoustic waves. Engineered sound absorbing structures, on the other hand, can be a 

good candidate for noise reduction as their performance can be tailored to operate at target 

frequencies. However, traditional sound absorbing structures such as perforated panels [3] are 

usually bulky, as the thickness of the back cavity cannot be deeply subwavelength, and their 

bandwidth is typically narrow for resonance based structures. Active absorbers, while showing 

great potential on tunability and flexibility especially at low frequencies, require sophisticated 

electrical circuits which inevitably add system complexity and fabrication challenges [4–6].  

The recent emergence of acoustic metamaterials and metasurfaces have diversified the 

functionalities of sound manipulation and provides an efficient means for designing novel sound 

absorbing structures [7–9]. Various resonant structures have been reported for sound mitigation. 

For example, coupled Helmholtz resonators [10,11], co-planar chambers [12,13], labyrinthine 

metamaterials [14–16], gas inclusions [17] and membrane resonators [18,19] have been proposed 

to achieve high energy absorption at desired frequencies with subwavelength thickness. However, 

since these metasurface-based absorbers are based on local structural resonances, i.e., the 

acoustic energy is converted to other forms of energy near the resonance frequency, they are 



typically associated with inherently constrained limited bandwidth or poor uniformity. Moreover, 

their macroscopic performance relies strongly on the individual response of the unit cells within 

the structure. For instance, porous or fibrous materials like sponge and cotton are used in 

labyrinthine metamaterials to tailor their acoustical behavior for better performance for higher 

absorption [15,16]. These requirements make them inconvenient for integration into larger scales 

and inevitably hinder their real-world applications.  

A non-resonant metasurface, on the other hand, can potentially have wider bandwidth and 

better uniformity. More importantly, the acoustic response of individual unit cells does not need 

to be tuned to induce local resonance. Such metasurfaces are thus highly desired in the acoustic 

community for practical applications in various scenarios provided that internal physics can be 

controlled to maximize absorption in a relatively thin structure. Recently, a sound absorbing 

mechanism based on multiple internal reflection (MIR) is proposed within the context of 

gradient-index metasurfaces (GIM) [20,21]. The effect of MIR which is critical for the 

explanation of diffraction, however, is not discussed, and no explicit details are given on the 

design of an absorptive metasurface by maximizing the effect of MIR.   

In this paper, we fully analyze the diffraction of GIM and reveal the dominant role of 

MIR in the unit cells. We show that by specifically engineering the phase gradient of the 

metasurface, high acoustic absorption can be achieved in a non-resonant manner. The 

phenomenon is realized by tailoring the MIR process which effectively increases the time for 

acoustic waves trapped inside the metasurface before exiting. The importance of MIR in 

controlling acoustic wave behaviors in GIMs is manifested using an absorptive metasurface. 

Notably, the metasurface is realized with a finite thickness to increase the time interaction with 

the acoustic waves. The thickness, on the other hand, can be less than half of the wavelength 



( 0.4λ  in this study) which is thin enough to be characterized as a “metasurface”. Analytical 

calculations based on coupled mode theory are used to predict the behavior of the metasurface, 

and is further verified by numerical simulations with finite element analysis. Measurements of a 

three-dimensional (3D) printed prototype is further performed to validate our design strategy. 

The mechanism proposed in this paper may pave the way for new sound absorbing structures 

without dependence of local resonance. 

 

II. Theory 

A. Coupled Mode Theory 

To illustrate the concept, we first consider a GIM shown in Fig. 1. The GIM is backed with a 

rigid wall and functions as a reflective metasurface. Without loss of generality, the metasurface 

consists of N  unit cells per period and extends in the x direction. Each unit cell has a width d  

and thickness h , and the periodicity of the GIM is NdΓ = . The whole system is immersed in a 

background medium (air in this study) with density 0 1.2ρ =  kg/m3 and speed of sound 0 343c =  

m/s. The incident is a plane wave given by: 

 ( ) 0, yx ik yik x
ip x y p e e−=   (1) 

where 0p  is the amplitude of the incident wave, 0 sinx ik k θ=  and 0 cosy ik k θ=  are the wave 

numbers with iθ  being the incident angle, 0
2k π
λ

=  is the free space wave vector and λ  is the 

wavelength of the incident wave. 

 



 

Figure 1. Schematic diagram of a reflective GIM. The red and green arrows represent incident 

and scattered waves, respectively. The white arrows inside the GIM illustrates the MIR process. 

 

Using the coupled mode theory [21–23], the scattered field can be expressed as a 

summation of different diffraction orders given by Floquet harmonics: 

 ( ) , ,, y m x mik y ik x
r m

m
p x y r e e=∑   (2) 

 where 2 2
, 0 ,y m x mk k k= −  is the y component wave vector with ,

2
x m xk k m π= +

Γ
 being the 

transverse wave component, mr  is the normalized reflection coefficient associated with the mth 

diffractive order. Since the width of the unit cells is deeply subwavelength (i.e., d λ� ), they 

can be regarded as thin slits as they are separated by rigid walls and only the fundamental mode 

can be supported inside the slits. The pressure field inside metasurface can thus be expressed as: 

 ( ) ( ), ii ik y hik y
ms i ip x y a e b e− += +   (3) 

The subscript ms denotes metasurface, ia  and ib  are the coefficients of the forward and 

backward waves, 0i ik n k=  is the wave vector in the ith slit and in  is the corresponding refractive 

index. Since the acoustic pressure is zero at y h= −  because of the hard boundary, ib  is given by: 

 iik h
i ib a e−= −   (4) 



By enforcing the continuity of pressure and vertical velocity at 0y = , we obtain: 
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where 0,mδ  is the Kronecker delta, 
2i
didα = −  and 0i inρ ρ=  are the position and effective 

density of the ith unit cell with in  being the effective index, iik h
i eφ −=  is the phase change across 

each unit cell and ,sinc
2

x m
m

k d
g ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. By solving Eq. (4) through Eq. (6), the reflection 

coefficient associated with each diffractive order can be solved.  

We begin with a reflective GIM composed of 12 unit cells, the width d  and thickness h  

are 2.5 cm and 4 cm, respectively and the frequency of incident wave is 3100 Hz. Note that the 

phase gradient along the metasurface 1
2

x
φ πξ ∂= =

∂ Γ
 is equal to the diffraction caused by 

periodicity, the fundamental mode scattering (i.e., 1m = ) can thus be interpreted as a 

metasurface dictated by the generalized Snell’s law [24]. The critical angle for fundamental 

mode scattering can be easily obtained as ( )1
1 0sin 1 / 39.1c kθ ξ−= − = o . Two cases are analyzed, 

namely 1 25θ = o  and 2 45θ = o . In the first case, the incidence angle is below the critical angle and 

the fundamental mode dominates. In the second case, a higher-order mode ( 4m = − ) dominates 

because the fundamental mode becomes evanescent as ,1 0xk k> . The acoustic field is also 

calculated from numerical simulations based on COMSOL Multiphysics for comparison. The 

corresponding scattered acoustic fields are plotted in Fig. 2, with excellent agreement between 

the analytic results and numerical simulations. The small discrepancies in the near field may be 



caused by the radiation patterns of the individual cells, which is not accounted for in the theory. 

The amplitude and direction of each diffraction mode is well captured by the analytic model, 

proving the validity of the theoretical approach.  

    

 

Figure 2. Scattered acoustic field from a reflective GIM. Left: analytic field. Right: simulated 

field. The incident wave is omitted for better visualization. Higher orders of diffraction are 

observed when the incident angle is above the critical angle. 

 

Β. Multiple internal reflection in the unit cells 

Interestingly, it can be seen from Fig. 2 that when the incident angle is above the critical angle, 

negative refraction is induced and there is a sudden jump of the diffraction order from 1m =  to

4m = − . Note that propagation mode is allowed when , 0x mk k< , while multiple diffraction modes 

( 4 ~ 0m = − ) satisfy the relation, 4m = −  dominates and other modes are hardly visible in Fig. 2. 

This abrupt change of diffraction order has been reported previously [20,21,25], but the physical 



mechanism of this phenomenon and how the diffracted waves are formed have yet to be fully 

studied.  

We now begin with the analysis based on MIR. This will reveal the formation of each 

diffraction order and explain the reason for abrupt mode change above the critical angle. Recall 

that for the GIM under study, each period contains 12 individual unit cells. As the phase change 

within a period covers a complete 2π for a reflective GIM, the relative local phase accumulations 

(i.e., the exiting phase compared with the incoming phase) across each unit cell when the 

acoustic waves are directly reflected from the rigid backing are 2 3 10 11 12, , ,..., , ,
6 6 6 6 6 6
π π π π π π , 

respectively. In other words, for an incoming wave with wave vector xk , the reflection inside the 

slits will induce an extra momentum in the x direction, which is the same with the phase gradient 

1ξ  of the GIM. The outgoing wave will therefore exhibit an x component wave vector of 1xk ξ+ . 

By noting that ,
2

x m xk k m π= +
Γ

, it can be concluded that one reflection inside the unit cells 

corresponds to the case of 1m = , which is also the scenario dictated by the generalized Snell’s 

law. Similarly, for a MIR process of two times reflection inside the unit cells, i.e., the acoustic 

waves reflect twice at the boundaries at y h= − , the relative phase change across the cells 

becomes 2 3 10 11 12, , ,..., , ,
3 3 3 3 3 3
π π π π π π . The extra parallel momentum is 2

4
x
φ πξ ∂= =

∂ Γ
, by 

adding this momentum to xk , the outgoing wave vector can be obtained as ,2 2x xk k ξ= +  which 

corresponds to a diffractive order of 2m = . Likewise, diffraction with order 0m >  is formed as 

the waves are multiply reflected m  times inside the slits.       

For diffractive orders taking negative values or zero, i.e., 0m ≤ , the occurrence of MIR 

can be predicted based on the fact that a phase wrap of 2π is equivalent to 0. For example, for the 



local phase accumulations of one time reflection, a phase difference of -2π can be enforced such 

that the phase gradient becomes 22
x
φ π∂ = −

∂ Γ
, with phase difference between adjacent unit cells 

been interpreted as 11
6

π−  rather than 1
6

π . The diffractive order m  with this phase gradient is 

therefore 1
22 / 11π ξ− = −

Γ
. This indicates that for a direct reflection, the diffraction order can be 

regarded as either 1m = , or equivalently, 1m N= − , depending on the incident wave vector 

( 0xk kξ+ <  for propagating mode). Similarly, a diffraction order of m  ( m  is positive and 

m N< ) is also equivalent to m N− , since they share the same number of multiple reflections. 

Since N  reflections represents a phase wrap of 2π, any MIR greater than N times can be 

neglected as they can be reduced to 12N n−  ( n∈ Ζ ). For the case shown in Fig. 2 for 2 45θ = o , 

although multiple diffraction orders ( 4, 3, 2, 1,0m = − − − − ) can exist for propagating wave, the 

number of times needed for MIR, however, is different. From the above analysis, for non-

positive m , the corresponding occurrence of MIR is m N+ . This indicates a negative m  with 

greater absolute value corresponds to fewer multiple reflections, for which acoustic waves will 

be less retarded inside the metasurface and hence greater dominance. For example, eight 

reflections are needed to generate the 4m = −  mode, while for 0m = , twelve times of MIR must 

occur. This explains for incident angles above the critical angle, the diffractive order always 

jumps to the smallest negative value that is allowed, as that value takes least time of MIR for the 

formation of a propagating wave. This diffraction order can be calculated by solving the smallest 

possible propagating mode: 

 0

1

2roundup 1km
ξ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
  (7) 



Another quite interesting conclusion based on the MIR analysis is that the occurrence of 

MIR ( m N+ ) is dependent on the number of unit cells per period when m  is non-positive. This 

indicates that the occurrence of MIR can be increased by discretizing the metasurface with more 

unit cells within one period without changing phase gradient. In other words, a more finely 

resolved GIM would result in more multiple reflections inside the slits and more net time delay 

within the metasurface. To confirm this phenomenon, transient numerical simulations are 

conducted. Three reflective GIM with same phase gradient but different resolution are 

constructed, each containing 12, 20 and 24 unit cells per period, respectively. The unit cells are 

characterized by impedance-matched effective medium with varying refractive indices. At 0t =  

ms, a spatially modulated Gaussian beam is generated with an incident angle of 45º on the 

metasurface, which is greater than the critical angle. The duration of the incident signal is 2 ms 

and the time is recorded when the 4m = −  diffracted wave is fully formed and the results are 

shown in Fig. 3. It can be seen that more time is needed for the formation of the diffracted beam 

by increasing the number of unit cells in the GIM. This is consistent with the analysis as more 

MIR takes place inside the metasurface of higher resolution. 

 

 

Figure 3. Transient simulations for GIM with different resolution. The left, middle and right 

panels represent GIM with 12, 20, and 24 unit cells within one period, respectively. The dotted 

black boxes mark the incident and diffracted beams and the times when a snapshot of the fields 

is taken is given by the time in the individual panels. Top: the incident field indicating the GIM 



are illuminated at the same time. Bottom: the formation of similar scattered field pattern for 

4m = −  diffraction order, indicating different MIR process occurs within each GIM. 

 

Since more delay within the metasurface will result in higher absorption when loss is 

introduced [21], the MIR process is further verified by introducing loss in the metasurface. We 

first consider the case for a loss factor of 0.01γ = . The loss is modeled simply as an imaginary 

part of the wave vector inside the unit cells, i.e., ( )0 1i ik n k iγ= + . Figure 4(a) shows the scattered 

acoustic fields from the two GIM when loss is considered. The MIR is enforced and 4m = −  

order dominates the scattered field as expected. It is found that the amplitude for this diffraction 

order in the two GIM is different, which is in good agreement with the MIR analysis. 

Remarkably, a finer resolution of the GIM (24 units) yields a higher absorption coefficient, this 

is because by discretizing the metasurface into more unit cells, more occurrence of MIR is 

enforced and longer time is spent for acoustic waves before leaving the metasurface. In this way, 

higher absorption is achieved without increasing the loss factor of the individual cells. This is 

further proved by calculating the amplitude of the 4m = −  order diffraction by gradually 

changing the resolution of the GIM while keeping the same loss factor of the unit cells, as 

depicted in Fig. 4(b). It should also be pointed out that, since the theory and simulation presented 

here assume effective medium with matched impedance, it confirms that the strategy is different 

from previous absorptive metasurfaces which involve local resonances. 

 



 

Figure 4. (a) Scattered acoustic field from three reflective GIM with different resolution. Top: 

GIM with 12 unit cells per period with width 2.5 cm. Bottom: GIM with 24 unit cells per period 

with width 1.25 cm. The left and right panels depict the analytic field and simulated field, 

respectively. The scattered wave with diffraction order of 4m = −  is marked with the dotted box. 

The incident wave is omitted for better visualization. (b) Analytically and numerically calculated 

4m = −  order amplitude. The amplitude decreases with more unit cells in each period, showing 

that the amplitude of higher order diffraction is dependent on the resolution of the metasurface. 

 

III. Designing an absorbing metasurface based on multiple internal reflection 

A. Design 

The theory outlined in Section II provides the understanding and insight to enable the design of a 

highly absorptive metasurface by harnessing the MIR process. Since MIR dominates above the 

critical angle (otherwise the acoustic wave will induce a direct reflection 1m =  which is the 

generalized Snell’s law), the GIM will work as an absorber only for incidence angles for which 

the 1m =  diffractive order is nonpropagating. This is easiest for larger angles of incidence but 

can be circumvented by increasing the spatial phase gradient of the GIM. Note that the scattered 

waves obey the wave vector relation , 1x m xk k mξ= + , and the condition , 0x mk k≤  allows a 



propagating 1m =  diffractive order. For a large phase gradient, e.g., 1 02kξ > , only 0m =  

supports a radiating diffraction [23]. All other modes will result in , 0x mk k>  which represents 

non-radiating surface waves. Since N  time of MIR is needed to excite the 0m =  mode, this 

means that for an incoming wave with arbitrary direction, MIR will be induced before 

propagating waves leaves the metasurface. The outgoing transverse wave vector will be the same 

with the incident one as ,0x xk k= . A metasurface absorber can thus be achieved by further 

introducing a suitable amount of loss in the unit cells. 

We begin with a reflective GIM operating at 3100 Hz. The width a unit cell is chosen to 

be 7 mm in order to yield a fine resolution of the GIM and each period contains 8 unit cells. The 

periodicity Γ  is therefore 5.6 cm which is close to the theoretical limit of 5.53 cm to satisfy 

1 02kξ > . A hybrid structure consisting shunted Helmholtz resonators and a straight channel is 

used to control the local phase shift in a piecewise manner. Other structures that can modulate 

the reflective phase with appropriate inherent loss can also work in principle, such as space-

coiling metamaterials [26], spiral cells [25], helical structures [27], and so on. We choose the 

hybrid structure as it features thin width for finer resolution to induce more MIR inside the 

metasurface. The operation frequency is chosen to ensure a 2π  phase span for the given size of 

the unit cells and the geometry can be tuned to realize functionality at other frequencies. Similar 

structures have been reported to control the transmitted phase [21,28,29], and they are modified 

here for the sake of reflective phase control. The height of the Helmholtz resonators is adjusted 

to tune the reflected phase and the operation frequency is far below the resonance frequencies of 

the Helmholtz resonators. The geometry and reflected pressure fields of the unit cells without 

loss are illustrated in Fig. 5(a) and (b), where a linear phase change between adjacent unit cells 

can be observed. The thickness of the unit cells is 46 mm and is less than half of the working 



wavelength. These unit cells ensure accurate phase modulation and the neck of the Helmholtz 

resonators and thin straight channels can introduce thermoviscous dissipation that is required for 

sound absorption [21,30]. Although viscous and thermal losses have been proposed to obtain 

quasiperfect sound absorption near resonance [31–33], the mechanism proposed here is totally 

different since resonance is not mandatory and the metasurface is not operating near the 

resonance of the individual unit cells. Moreover, only a small loss factor is needed for 

satisfactory high absorption. The loss factor of the unit cells is estimated numerically using 

Thermoviscous Acoustics Module in COMSOL. The absorption caused by thermal and viscous 

dissipation is compared with an effective medium with identical sizes of the real structure. The 

loss factor of the unit cells can be obtained by choosing a suitable loss factor γ  in the effective 

medium such that the absorption in the two models are equal [21]. Figure 5(c) shows the 

retrieved loss factors of the cells within the frequency range of 2.5 kHz to 3.5 kHz. The 

structures maintain a moderate loss factor over the frequency band of interest with an average 

value of 0.043 at 3.1 kHz, which is sufficient to achieve high absorption. Since the GIM requires 

an accurate phase control to induce MIR, which further leads to high absorption, we further 

compute the bandwidth the of individual cells for phase modulation. The reflected phase as a 

function of frequency is plotted in Fig. 5(d), where a clear phase difference between adjacent 

unit cells can be observed. It should be pointed out that, MIR will be enforced as long as a linear 

phase change can be maintained. Although the unit cells are dispersive, the phase gradient is 

preserved within a bandwidth of around 600 Hz and therefore the metasurface is expected to 

have high absorption within this range.  

 



 

Figure 5. Design of the absorptive metasurface. (a) Geometry of a unit cell. (b) Simulated 

reflected acoustic fields for different unit cells by increasing the height of the Helmholtz 

resonators. The dotted line denotes equi-phase contour which shows an equally phase shift of π/4 

between adjacent unit cells. (c) Retrieved loss factors of the unit cells. At the designed frequency 

(3100 Hz), the average loss factor is 0.043. (d) Reflected phase map of the unit cells. 

 

Β. Simulation and experiment 

To illustrate the effect of loss, we first simulate the metasurface without loss and compare its 

reflection by adding a loss factor of 0.043. The corresponding scattered acoustic fields are 

depicted in Fig. 6. For the case without loss, the acoustic waves are reflected with identical x 

component wave vector compared to the incident one. When loss is introduced, the diffracted 

wave ( 0m = ) is severely suppressed because of the interplay of loss and MIR. It should be 

pointed out that a loss factor of 0.043 corresponds to an absorption coefficient of 0.2 for direct 

reflection of the unit cell. Clearly, such a low absorption efficiency cannot result in high 

absorption of the metasurface. Thanks to the MIR process, the retardation for acoustic waves 

inside the structure is effectively increased and eventually leads to the high absorption of the 

0m =  order diffraction.  

 



 

Figure 6. Simulated acoustic fields for oblique incidence with and without loss. Top: incident 

angle is 30º. Bottom: incident angle is 60º. Most of the acoustic energy is absorbed when a small 

amount of loss is introduced. 

 

Numerical simulations and measurements of a 3D printed prototype are conducted to test the 

performance of the absorptive metasurface. The sample is printed using acrylonitrile butadiene 

styrene (ABS) plastic with density 1230 kg/m3 and speed of sound 2230 m/s. The walls of the 

sample are considered to be acoustically rigid as their impedance is much larger than that of air. 

The fabricated sample consists of 12 periods and the overall length, thickness and height are 67.2 

cm, 4.6 cm and 4.0 cm, respectively, with its thickness about 0.4λ  at 3.1 kHz. A portion of the 

fabricated metasurface is illustrated in Fig. 7(a). The sample is secured in a two-dimensional (2D) 

waveguide whose height is 4.0 cm to ensure only zeroth order wave can propagate inside. A 

transducer array composed of 28 loudspeakers is used to generate broadband pulse to the sample. 

The incident and reflected acoustic signals are recorded simultaneously using a moving 

microphone within the scan area in front of the sample. The received signals are time gated to 

extract the incident and reflected wave packets. Inverse Fourier transform is then performed to 



extract frequency-dependent information. The acoustic pressure field for normal incidence is 

depicted in Fig. 7(a), which is in good agreement with simulation results. The amplitude of the 

reflected wave is much smaller than the incident one, as most of the energy is absorbed by the 

metasurface. The capability of the metasurface is further quantified by measuring and integrating 

the total scattered energy at 2.7λ  away from the sample. The comparison between simulations 

and experiments is shown in Fig. 7(b) at three discrete frequencies, namely 2900, 3100 and 3300 

Hz. The measurement is performed within an incident angle range from -40º to 40º as the size of 

the waveguide (1.2 m by 1.2 m) is limited and the full reflected wavefront cannot be captured at 

larger angles. The average energy absorption is more than 14 dB at these frequencies, which is 

consistent with the bandwidth of the individual cells given in Fig. 5(d). The sharp peaks at 

around ±35º is not observed in measurement due to fabrication tolerance (e.g., insufficient 

accuracy of the neck widths). A number of reasons may contribute to the discrepancies between 

the simulated and measured results. For example, the real loss of the metasurface in 

measurement can be dependent on the humidity of air, existence of dust, surface roughness of the 

3D printed samples, etc. The loss factor may also have large variations among the unit cells, 

which will lead to imperfect collective response of the metasurface. Nevertheless, we shall 

emphasize that the high energy absorption clearly demonstrates the wide-angle performance of 

the metasurface. Figure 7(c) presents the energy absorption rate of the metasurface as a function 

of frequency and incident angle. A peak energy absorption of 20 dB is achieved at a center 

frequency of around 3.2 kHz in measurement, which is slightly different from the designed one 

(3.1 kHz) and may be caused by fabrication defect. Over 95% energy absorption (corresponds to 

absorption rate of over 13 dB) is observed within a frequency band of around 600 Hz, ranging 

from -40º to 40º. The metasurface also has a moderate absorption coefficient within a wide 



window of incident angles, which confirms the validity of the design for wide-angle absorption, 

as MIR is enforced for all angles of incidence. Compared with resonance-based thin sound 

absorbers such as micro-perforated plates, the proposed reflective GIM yields broader bandwidth 

and better uniformity. 

  

 

Figure 7. Performance of the reflective GIM. (a) Measured incident and reflected acoustic fields 

30 cm away from the sample. The size of the scan area is 95cm by 20 cm. The inset shows a 

portion of the fabricated sample. (b) Simulated and measured energy absorption of the GIM at 

2900, 3100 and 3300 Hz. The lines represent numerical results and the markers denote measured 

data. (c) Measured absorbing performance of the GIM as a function of frequency and incident 

angle. The incident angle range of experimentally obtained energy absorption is -40º to 40º as 

part of the reflected beam exceeds the scan area and cannot be captured. 



 

IV. Conclusion 

To conclude, we have theoretically demonstrated the correlation of diffraction from a reflective 

GIM and the MIR process inside the unit cells. It is found that MIR plays an important role in the 

formation of different orders of diffraction when the incident angle is above the critical angle. A 

highly absorptive metasurface is designed based on the mechanism proposed in the paper. By 

harnessing the effect of MIR, high absorption is achieved without having to tailor the individual 

absorptive response of the unit cells [15,16]. It is shown that a loss factor of as low as 0.043 of 

the cells is able to absorb most of the incident energy. Since thin acoustic structures especially 

acoustic metasurfaces naturally embrace viscous and thermal losses [31,34], the requirement of a 

suitable amount of loss can be easily fulfilled. Experiments on a prototype demonstrate the 

effectiveness of the metasurface. The sound absorbing scheme proposed here relaxes the 

necessity of resonance structures which inherently limits the bandwidth and uniformity. To 

further increase the bandwidth of the metasurface, non-dispersive cells may be adopted [27] and 

the resonance of the Helmholtz resonators in the individual cells may also be considered for the 

absorption of other frequency contents. The analysis based on MIR can also be readily applied to 

metasurfaces working on transmitted scenario for other applications such as asymmetric 

transmission [21]. The theory can be possibly extended to other classical waves, such as 

electromagnetic waves to predict the behavior of GIM working under optical waves. It is hoped 

that this study could pave the way for the study of MIR and provide an alternative route to design 

non-resonant sound absorbing structures. 
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