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Abstract 

Atomic force microscopy is an analytical characterization method that is able to image a sample’s 

surface topography at high resolution while simultaneously probing a variety of different sample 

properties. Such properties include tip-sample interactions, the local measurement of which has gained 

much popularity in recent years. To this end, either the oscillation frequency or the oscillation amplitude 

and phase of the vibrating force-sensing cantilever are recorded as a function of tip-sample distance and 

subsequently converted into quantitative values for the force or interaction potential. Here, we 

theoretically and experimentally show that the force law obtained from such data acquired under vacuum 

conditions using the most commonly applied methods may deviate more than previously assumed from 

the actual interaction when the oscillation amplitude of the probe is of the order of the decay length of 

the force near the surface, which may result in a non-negligible error if correct absolute values are of 

importance. Caused by approximations made in the development of the mathematical reconstruction 

procedures, the related inaccuracies can be effectively suppressed by using oscillation amplitudes 

sufficiently larger than the decay length. To facilitate efficient data acquisition, we propose a novel 

technique that includes modulating the drive amplitude at a constant height from the surface while 

monitoring the oscillation amplitude and phase. Ultimately, such amplitude sweep-based force 

spectroscopy enables shorter data acquisition times and increased accuracy for quantitative chemical 

characterization compared to standard approaches that vary the tip-sample distance. An additional 

advantage is that since no feedback loop is active while executing the amplitude sweep, the force can be 

consistently recovered deep into the repulsive regime. 
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1. Introduction 

With the advent of scanned probe methods, the mapping of interactions between surfaces and a 

sharp tip featuring the ability to be positioned accurately in the surface’s vicinity has become 

possible [1]. Among the plethora of interactions that have been gauged using scanned probe-

based setups, one of the most popular choices has been to explore forces. Initial realizations of 

the related atomic force microscope [2] relied on measuring the deflection of a soft cantilever 

that carried a local probe in the form of a sharp tip at its end; with knowledge of the cantilever’s 

spring constant, forces could be recovered while the degree of locality was determined by the 

dimensions of the tip’s apex and, after contact had been established, the size of the tip-sample 

contact area. Soft cantilevers, however, hamper the ability to position the probe precisely within 

the immediate three-dimensional (3D) space above the sample’s surface due to the so-called 

‘jump-in’, which refers to a sudden instability of the tip’s position that occurs at the exact 

distance where the gradient of the attractive surface forces becomes larger than the cantilever’s 

spring constant [3, 4]. To avoid the related issues in controlling the tip’s position near the 

surface, it has in particular for vacuum applications become customary to utilize cantilevers that 

feature spring constants much higher than the largest force gradient experienced during 

approach [5]. While this eliminates jump-ins and hence regains an ability to probe the entire 3D 

space above the surface, it also renders direct force quantification using Hooke’s law 

impracticable as the high spring constants reduce cantilever deflections to values that are too 

small to resolve with sufficient accuracy using current position-sensitive sensors.  

As a work-around, ‘dynamic’ operational schemes have been introduced for atomic 

force microscopy (AFM), where a disturbance of the otherwise harmonic oscillation of the 

cantilever that is driven at or near its resonance frequency is used to assess the tip-sample 

distance [6, 7]. Among the different possible approaches, two methods are most widespread: 

The amplitude-modulation (AM) technique, where the change of the oscillation amplitude A 

and/or the phase difference between oscillation and excitation φ while driving with a constant 

excitation signal are evaluated [8, 9], or the frequency modulation (FM) technique, which tracks 

the change of the resonance frequency Δf under the influence of the attractive (or repulsive) 

surface forces while keeping the oscillation amplitude stable [10]. While FM-AFM has 
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dominated atomic-resolution imaging in particular in ultra-high vacuum conditions [7], AM-

AFM has its most widespread use in ambient conditions and liquids.  

Force spectroscopy experiments are performed to quantify the tip-sample interaction 

potential as a function of distance (and, by calculating its derivative, ultimately the force) with 

up to picometer precision laterally with respect to the tip’s position relative the location of 

surface atoms, often with the intent to explore the surface’s chemical or electronic properties 

[11-13]. In addition, force spectroscopy experiments are also carried out to understand the 

observed contrast in AFM images [14-17]. Initially, due to the lack of appropriate mathematical 

models, recovering quantitative values from the measured signals was conducted indirectly: the 

recorded signals were compared with either the frequency shifts or oscillation 

amplitudes/phases calculated numerically when assuming specific model interaction laws, and 

the specifics of the interactions were iteratively adjusted until agreement with the measured data 

was reached [18-21]. Only after appropriate theoretical tools were developed at around the turn 

of the millennium, it was possible to obtain tip-sample interaction potentials and forces directly 

from the measured signals [22-30]. 

In this article, we show that the force laws calculated using the recovery methods most 

commonly applied under vacuum conditions differ more than previously described from the 

actual interaction laws when oscillation amplitudes A are used that are comparable to the decay 

length l of the force. These discrepancies arise because the method uses assumptions that show 

weaknesses particularly at A ≈ l. As a result, the effect of the related disturbances can be 

minimized by the use of oscillation amplitudes that are either much smaller or much larger than 

l. Our analysis suggests that under realistic conditions, large oscillation amplitudes are the better 

choice, while amplitudes comparable to l may still be preferable for imaging. For practical 

applications, amplitude sweep-based spectroscopy experiments, which are conducted by tuning 

the drive amplitude at a constant height from the sample, are suggested as an effective method 

to recover both the tip-sample force and potential efficiently and accurately deep into the 

repulsive regime.  
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2. Methods 
2.1 Computational Methods Employed in the Theoretical Analysis 

Following a commonly used approach for dynamic AFM simulations, we solved the equation of 

motion of a damped harmonic oscillator with external excitation and non-linear tip-sample 

interaction force [18, 31-33] ݉ݖሷሺݐሻ ൅ ଶగ௙బ௠ொ ሻݐሶሺݖ ൅ ܿ௭ሾݖሺݐሻ െ ݀ሿ ൌ ܽୢܿ௭ cosሺ2ୢ݂ߨ ሻݐ ൅ ,ሻݐሺݖ୲ୱሾܨ  ሻሿ  ,            (1)ݐሶሺݖ

where ݖሺݐሻ is the position of the tip as a function of time t (with z = d denoting the distance of 

the tip relative to the sample when the cantilever is undeflected); m, f0, Q, and cz  are the 

effective mass, the first eigenfrequency, the quality factor, and the spring constant of the 

oscillator, respectively. In this equation, the terms on the left reflect the standard terms for a 

damped harmonic oscillator, while the first term on the right represents the external excitation 

of the oscillator with excitation amplitude ad and excitation frequency fd. The second term on 

the right side finally symbolizes the non-linear tip sample interaction force Fts, which may 

depend both on the tip’s time-dependent position z as well as its instantaneous velocity ݖሶ . 
Neglecting a possible velocity dependence, we chose Fts in agreement with previous literature 

[32, 33] as a combination of a van der Waals-type sphere-over-flat interaction [34] for the 

attractive regime (z ≥ z0) and a contact force (z < z0) that follows Maugis’ approximation to the 

Derjaguin-Muller-Toporov model (DMT-M) [35-37], which is often referred to as Hertz-plus-

offset model [38]:

 
 

Fts(z) =
−
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   (2) 

where ܣH = 0.2 aJ is the Hamaker constant, R  = 10 nm the radius of the tip’s apex, z0 = 0.3 nm 

the distance at which the contact is established, and E* = ((1-νt
2)/Et+ (1-νs

2)/Es)-1 the combined 

elastic modulus of the tip and sample (with Et = 130 GPa as the Young’s modulus of the tip, Es 

= 1 GPa as the Young’s modulus of the sample, and νt = νs = 0.3 as the Poisson ratios of tip and 

sample, respectively). To describe the oscillator, we chose cz = 2000 kN and fd = f0 = 22,000 Hz; 
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these values reflect typical parameters for a tuning fork glued on a holder in qPlus 

configuration, which represents the currently most common oscillator choice for high-

resolution, vacuum-based AFM.  

Equation 1 was then solved by employing two different techniques. First, we 

numerically computed its solution with MATLAB using MATLAB’s ode45 function (‘E.O.M.’ 

solution; for details, see the Supplemental Material [39]). Second, we applied a previously 

derived analytical solution for the tip-sample motion, which is, however, defined for 

conservative tip-sample interactions only [33]. For control purposes, we also extended Equation 

2 by adding a dissipative component following a model introduced in Refs. [40, 41]  ୢܨ ୧ୱୱ ൌ ଴ܨ ൈ ݁ିሺଶ௭ሺ௧ሻሻݖሶሺݐሻ ,    (3) 

where ܨ଴ = 10-7 Ns/m, and subsequently solved the resulting differential equation numerically to 

investigate the effect of a non-conservative tip-sample interaction; results obtained from this 

approach are labeled in Figs. 1 and 2 as ‘E.O.M. (damping)’. For all three cases, we determined 

the oscillation amplitude A and phase φ as a function of z(t). Finally, Equation 4 details the 

numerical integration method we used for reconstructing the tip-sample interaction potential Uts 

from data obtained with AM-type force spectroscopy [30, 32, 42]: 

୲ܷୱሺܦሻ ൌ  2ܿ௭ ׬ ଵଶ ሾ௔ౚ஺ cos ߶ ൅ ௙బమି௙೏మ௙బమ ሿ ቈሺݖ െ ሻܦ ൅ ට ஺ଵ଺గ ݖ√ െ ܦ ൅ ஺య మ⁄ඥଶሺ௭ି஽ሻ቉ ஶ஽ݖ݀  . (4) 

Note that Uts is given as a function of nearest tip-sample distance D, which distinguishes itself 

from the distance d the tip has to the surface when the cantilever is undeflected by D = d – A. 

For comparison with FM-type force spectroscopy, we followed the approach introduced by 

Sader and Jarvis, which represents the most widely used reconstruction protocol for this case 

[24]. It results in the following equation:   

୲ܷୱሺܦሻ ൌ  2ܿ௭ ׬ ௙బି௙౨౛౩௙బ ቈሺݖ െ ሻܦ ൅ ට ஺ଵ଺గ ݖ√ െ ܦ ൅ ஺య మ⁄ඥଶሺ௭ି஽ሻ቉ ஶ஽ݖ݀  ,    (5) 

where fres(D) represents the cantilever’s distance-dependent resonance frequency (i.e., Δf = f0 – 

fres). From the similarity of Equations (4) and (5), we already see that the same underlying 

assumptions apply in their derivations, which will be discussed later in more detail. With the 



 6

knowledge of Uts(D), the tip-sample force Fts as a function of D can easily be recovered for both 

cases by calculating its negative gradient (Fts(D) = -∂Uts/∂D).  

2.2 Experimental Methods 

All experiments have been carried out under ultrahigh vacuum conditions at a base pressure of 2 

× 10-11 mbar and a temperature of 4 K using a homebuilt microscope, details of which can be 

found elsewhere [43]. As probe tips, mechanically cut Pt/Ir wires attached to the end of tuning 

forks arranged in qPlus configuration [44] following an optimized assembly process [45, 46] 

were used. For data acquisition, the microscope was operated using the so-called tuned-

oscillator atomic force microscopy (TO-AFM) mode [31], which in its essence is a variant of 

the AM control scheme. However, while conventional AM-AFM experiments cannot be 

conducted under vacuum conditions due to mechanical instabilities and long settling times [10, 

31], the purposeful tuning of the system’s effective quality factor Qeff and a complementary 

choice of the oscillation amplitude A in TO-AFM eliminates mechanical instabilities while 

drastically reducing settling times. Fine-tuning Qeff and A even allows to maximize the 

amplitude drop experienced within the strongly attractive force regime to optimize imaging 

conditions [31].  

 As a prototypical model surface, we used a Pt (111) single crystal, which was cleaned by 

repetitive sputtering (20 minutes at 1 × 10-6 mbar Ar background with 1 kV energy) and 

annealing (1000 K for 20 minutes) cycles. The topography of an area representative for all 

locations where spectroscopy experiments were performed is shown in the Supplement Figure 

S1 [39]. 

 

3. Results and Discussion 

3.1 Force Spectroscopy with Distance Sweep 

Thus far, force spectroscopy is overwhelmingly performed by moving the cantilever base 

relative to the sample surface while measuring the response of the cantilever to the change in 

tip-sample interaction potential the tip experiences as a consequence. Here, we refer to this 

general approach as ‘distance sweep’. To start our analysis, we focused first on assessing the 

accuracy of AM-based force spectroscopy for a tuning fork with tuned oscillation (Q = 300) 
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[31]. To this end, we calculated both the oscillation amplitude A and phase φ as a function of the 

nearest tip-sample distance D as described in Section 2.1 for eight different free oscillation 

amplitudes A0 and subsequently reconstructed the force by applying Eq. (4) followed by 

gradient formation. By comparing the results with the original model force Eq. (2), deviations 

due to deficiencies in the mathematical procedures can be revealed. From the respective Figure 

1, we extract the following two observations:  

1. The numerical solution of the equation of motion with and without dissipative term and 

analytical solution of Eq. (1) match for all calculated free oscillation amplitudes A0, which 

ran from 0.01 nm to 5.0 nm. This not only indicates that for the dissipative force law in 

Eq. (3) and the range of oscillation amplitudes A0 investigated, the effect of dissipation is 

negligible, but also that the analytical solution provides, despite approximations used in its 

derivation, an accurate and efficient pathway to calculate A and φ. Therefore, in the 

following we will exclusively use these analytical equations to obtain values of either A/φ 

or Δf to minimize computation time.  

 

Figure 1: Comparison between the original model force Fts(z) Eq. (2) (orange line) and the tip-
sample interaction force reconstructed from Eq. (4) using sets of A(D, A0) and φ(D, A0) 
calculated with the approaches described in Section 2.1 for eight different free oscillation 
amplitudes A0. The results show that the different solution methods for Eq. (1) give practically 
identical results: The black, red, and blue curves always lie right on top of each other so that 
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only the blue curve is visible even though all three curves have been plotted in each panel. The 
reconstructed force (orange curve), however, deviates noticeably from the actual force for 
oscillation amplitudes between 0.1 nm and 0.5 nm. 

 

2. While the agreement between reconstructed force and model force is high for free 

oscillation amplitudes of 1 nm or larger as well as for the smallest amplitude included 

(0.01 nm), intermediate values for A0 show notable deviations once the tip comes close to 

the surface (distances below ≈0.6 nm). These deviations manifest both in the position and 

depth of the force minimum as well as in marked differences in the slope of the force 

curve near its minimum.  

In a next step, we repeated the same procedure for FM-based force spectroscopy 

assuming a force sensor with a quality factor of Q = 10000, but otherwise exhibiting our 

standard values for cz and f0 (see section 2.1). To recover the tip-sample force from that data, we 

then used Eq. (5) as discussed earlier. While this shows slightly better agreement for oscillation 

amplitudes between 0.1 nm and 0.5 nm than in Fig. 1, in particular with respect to the location 

of the force minimum, it nevertheless exhibits the same trend: Good agreement for A0 = 1 nm 

and larger as well as for A0 = 0.01 nm, but noticeable inaccuracy in between.  

 

Figure 2: Analysis of the accuracy of force reconstruction using FM-based spectroscopy. To 
this end, the blue curve shows Fts(D, A0) recovered with Sader and Jarvis’ method Eq. (5) from 
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Δf(D, A0) values calculated using the analytical solution to Eq. (1) discussed in Section 2.1, 
while the orange curve represents the original model force for comparison. As in Fig. 1, 
noticeable discrepancies exist for oscillation amplitudes A0 in the range of 0.1 – 0.5 nm.  

 

Summarizing the findings of Figs. 1 and 2, we see that both AM- and FM-based force 

spectroscopy reproduces the original tip-sample model force well for free oscillation amplitudes 

A0 that are either much larger or much smaller than the decay length l of the attractive section of 

the force. Thereby, we define l as the distance where the force has diminished to 1/e (i.e., about 

37%) of its maximum value, which is roughly 0.22 nm for the model force Eq. (2). For A0 ≈ l, 

however, reconstruction yields a systematic underestimation of interaction strengths during the 

exact quantitative chemical characterization of specific lattice sites. This is particularly worth 

noting because setting A0 ≈ l otherwise results in favorable signal-to-noise values [5], which 

makes it a popular choice for imaging (e.g., Refs. [5, 12, 13]). To improve accuracy, our 

numerical analyses suggest that using oscillation amplitudes sufficiently larger than l is the best 

way forward since the alternate option, A0 << l, is likely to produce in comparison inferior 

signal-to-noise ratios due to the difficulty in precisely measuring small oscillations in realistic 

experimental setups such as tuning forks. For large A0, our results show that the reconstructed 

tip-sample interaction force laws converge with the model force for free oscillation amplitudes 

larger than 1 nm.  

Ultimately, the behavior described above can be tracked down to the influence of the 

nonlinear nature of the tip-sample interaction, which poses a variety of challenges for the 

correct recovery of the potential, and assumptions that have to be made. First, we recognize that 

both Eqs. (4) and (5) are simplifying the math involved by essentially representing a linear 

combination of two approximations: For A0 << l, it presumes that the force changes linearly 

with distance (“gradient approximation”, see, e.g., Refs. [10, 19, 47]), and for A0 >> l, it uses a 

solution obtained by perturbation theory [19, 25, 26, 47-50]. Both approximations have been 

shown to work very well in their respective limits. To describe the behavior in the transition 

regime (i.e., A0 ≈ l), Sader and Jarvis [24] introduced an additional interpolation term that was 

designed to be mathematically simple while still producing acceptable results and which is, due 

to its success, also used for deriving Eq. (4) (the ቀඥܣ ⁄ܦ ݖ√ െ  ቁ-term). In their analysis, Saderܦ

and Jarvis quantify the maximum discrepancy from the accurate value with ≈5 % for the 
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specific model force chosen in their paper, to occur at A0/z0 ≈ 0.3, where z0 represents again the 

location of the force minimum. With z0 = 0.3 nm as in Eq. (2), this predicts that most deviation 

should occur for A0 ≈ 0.1 nm, which agrees well with the results from Fig. 2. Similarly, Katan et 

al. [42] find the same upper limit of 5% for AM-based spectroscopy when operated with 

comparable quality factors (Q = 400 in their analysis). 

Upon closer scrutiny, however, we see that the maximum error found in Fig. 2b is ≈8 %, 

so significantly larger than the 5 % both studies report. This could have a variety of reasons, 

such as the fact that the force law Eq. (2) we are using differs somewhat from their model force. 

To check, we used the same force model as in Eq. (2), but divided it by four to simulate an 

interaction of lesser strength. When calculating the maximum deviation for A0 = 0.1 nm for this 

weaker potential in FM mode, we see that the error drops to about 6.1 %, thereby indicating that 

interactions with larger absolute strength are indeed expected to produce more discrepancies.  

While the interpolation inaccuracy discussed above may be the most significant single 

reason for the discrepancies, we nevertheless expect that other sources of uncertainty have an 

influence as well. This is particularly evident for AM operation, because both FM and AM use 

the same interpolation function, but FM seems to result in somewhat higher accuracy around A0 

≈ l. A possible contributor to this distinction may be that for FM, only the relative motion of the 

resonance curve’s highest point (i.e., its actual resonance frequency fres), which shifts under the 

influence of the surface potential, is tracked. AM operation, however, is locked onto a fixed 

driving frequency fd, which is why the shape of the resonance curve may start to play a role. 

Essentially, its originally perfectly Lorentzian shape will deform under the influence of an 

attractive potential in a way that even though TO-AFM avoids bifurcations, the shoulder of the 

resonance curve that includes frequencies f > fres (“high-frequency shoulder”) will be enhanced 

and the low-frequency shoulder depressed compared to an undisturbed Lorentzian-shaped 

resonance peak centered at fres as long as the tip-sample interaction is overall attractive [9, 33]. 

If one then sets fd = f0, where f0 is again the system’s first eigenfrequency, f0 > fres as soon as the 

tip starts to feel the surface, thus the amplitudes measured upon approach will decay with a 

lesser slope than if the resonance curve were to be purely Lorentzian. With the relative 

deviation increasing for decreasing A0, this effect induces little error for A0 >> l. In the limit of 

very small oscillation amplitudes [24, 48], however, the gradient approximation term of Eq. (4) 
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contributes most to the potential’s total value, which is determined by the slope of the amplitude 

decay with distance ∂A/∂D rather than the absolute values of A at a particular distance. Since 

∂A/∂D is almost unaffected by curve deformation, no significant deviations are found for A0 << 

l as well, and this effect again ends up being most significant for the intermediate regime A0 ≈ l, 

as observed.  

Before we leave this section, it may be useful to have a look at whether or not some of 

the inaccuracies pointed out above could be avoided by applying alternative approaches for 

force reconstruction. For example, Lee et al. [27] proposed a method to reconstruct tip-sample 

interaction forces that is based on using higher-order Bessel Functions. Even tough their 

technique can address both conservative and non-conservative forces, it requires multi-step 

integration, which makes the mathematics far more involved than the comparatively easy case 

of calculating Eqs. (4) or (5). For small oscillation amplitudes, e.g., Bessel functions of the third 

order are suggested, which necessitate the solution of a seventh-order equation. Another method 

has been suggested by Hu et al. [28], who use Chebyshev polynomials to reconstruct the tip-

sample interaction potential. Despite being mathematically complex, the authors themselves 

found relatively large deviations at small tip-sample separations. Finally, Platz et al. [29] 

introduced a method that is based on the real-time measurement of the cantilever oscillation. To 

achieve the necessary signal-to-noise ratio, they have to employ large oscillation amplitudes 

(~20 nm), which are, however, unsuitable for stably operating tuning forks in the attractive 

regime of the interaction potential under vacuum conditions (note that their method has been 

developed for potential reconstruction on polymers under ambient conditions). As a result, 

reconstructing tip-sample potential based on Eqs. (4) or (5) still appears as the most practical 

course of action.  

 

3.2 Force Spectroscopy with Amplitude Sweep  

As an alternative to distance sweep-based spectroscopy (or ‘z sweep’ spectroscopy, indicating 

that Uts(D) is recovered by gradually reducing d along the z axis), we propose in this section a 

new approach that keeps the cantilever holder at a fixed distance to the sample surface (i.e., d = 

const.) while ramping up the oscillation amplitude; in the following, we refer to this 

measurement scheme as ‘amplitude sweep’ spectroscopy. Even though A sweep spectroscopy 
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can, similar to the z sweep spectroscopy of section 3.1, be operated in FM or AM mode, we 

focus here exclusively on the case of an oscillation-tuned AM approach [31] since this driving 

scheme does, different from FM-based approaches [25], not require any feedback loop to 

actively adjusting parameters important for the measurement, e.g., to maintain the amplitude at 

its setpoint. Figure 3 shows the summary of a numerical analysis for this approach for nine 

different distances d that range from 2 nm to 10 nm; as in Fig. 1, we chose Q = 300 as a quality 

factor. For each of these nine cases, we calculated the phase φ(A, d) when progressively 

increasing the oscillation amplitude A from no oscillation (i.e., Amin = 0 nm) to Amax = d + 1 nm 

(Fig. 3a); with the values for A and φ at hand, we can then recover Uts(D) from Eq. (4) with D = 

d – A for any fixed d (Fig. 3b) and subsequently Fts by gradient formation (Fig. 3c). Thereby, 

choosing Amax = d + 1 nm sets the minimum distance reached in a sweep to D = -1 nm for all 

cases, which ensures that the potential minimum, located at z ≈ -0.57 nm, is within the z range 

covered. Note that as in Figs. 1 and 2, the location of the zero point on the z axis is determined 

by the definition of the model force law of section 2.1, and the surface elastically deforms under 

the tapping motion of the tip, governed by the Hertz-plus-offset term in Eq. (2), in order to 

reach distances smaller than z0 (including negative distances). The main findings are: (i) 

positioning the cantilever base at closer distances d produces larger phase shifts; (ii) recovered 

potentials Uts(D) are practically identical for all cases, with minor differences at large distances 

caused by a calibration problem (Uts is set to zero at the largest available tip-sample distance, 

which is shorter for smaller values of d); and (iii) after gradient formation, the model tip-sample 

force Eq. (2) is accurately recovered in all cases. 

 

Figure 3: Numerical calculations for the proposed amplitude sweep-based spectroscopy 
technique, where the drive amplitude is ramped up for nine different but otherwise fixed values 
of d. (a) Phase as a function of the nearest tip-sample distance D = d – A. (b) Tip-sample 
interaction potential Uts(D) computed by employing Eq. (4). (c) From the data in (b), the tip-
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sample force Fts is calculated with Fts(D) = -∂Uts/∂D. In panels (b) and (c), we also plotted the 
original model potential/force with dashed black lines. However, since both the tip-sample 
interaction potential and force are recovered with enhanced accuracy compared to the distance 
sweep-based spectroscopy techniques studied in Figs. 1 and 2 and all curves end up essentially 
lying on top of each other, the dashed black lines are effectively invisible. 

Comparing the A and z sweep spectroscopy approaches, we find that sweeping the 

amplitude rather than the distance has a number of advantages. Since the oscillation amplitude 

increases with decreasing tip-sample separation to more than 1 nm even for the smallest 

distance d chosen, the experiment is fully within the operational range for which excellent 

accuracy of the mathematical procedure used to reconstruct the tip-sample interaction potential 

was found, ultimately leading to the precise reproduction of the theoretical model force found in 

Fig. 3c. This situation is further illustrated in Fig. 4, which shows a comparison of theoretical 

and experimental data for both A and z sweep spectroscopy. From Fig. 4a, theory shows that 

performing A sweep spectroscopy replicates the model potential used for the calculations 

perfectly, while the z sweep spectroscopy simulation with a free oscillation amplitude of 

0.22 nm, typical for imaging purposes [5, 12, 13], results in the discrepancy expected from Fig. 

1c. The complementary experimental results of Fig. 4b then shows with the example of Pt(111) 

(see section 2.2) that A and z sweep spectroscopy deviate exactly as predicted, corroborating 

that our theoretical analysis is indeed reproducing the experimental behavior accurately. 

 

Figure 4: Comparison of theoretical and experimental results for z and A sweep spectroscopy. (a) Z 
sweep spectroscopy is simulated with a free oscillation amplitude of 0.22 nm for a tuning fork with 
tuned oscillation (cz = 2000 N/m, f0 = 22000 kHz, Q = 300; see Fig. 1), while A sweep spectroscopy is 
computed for the same tuning fork, but assuming an oscillation amplitude that is ramped up from Amin = 
0 nm to Amax = 2.2 nm with the tip’s equilibrium position (i.e., the position of the tip when the cantilever 
is undeflected) located at a constant distance of d = 2 nm. In addition, to adjust the strength of the 
interaction to the values found in the experiment panel (b), we divided Eq. (2) by four before integrating 
it to obtain the model potential shown with the dark blue solid curve. The results confirm that the 
interaction potential reconstructed from z sweep spectroscopy (red dotted line) deviates from this 
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modified model potential, while the data obtained with A sweep spectroscopy (light blue dashed line) 
exactly reproduces the originally inputted potential. (b) To assess the validity of the simulations, 
experiments were conducted for both z and A sweep spectroscopy with similar parameters as in (a): A0 = 
0.22 nm for z sweep spectroscopy and d = 1.07 nm for A sweep spectroscopy, ramping A up from Amin = 
0 nm to Amax = 1.27 nm within 2.5 seconds while collecting 64 data points. Thereby, we conducted z 
sweep spectroscopy both before and after recording two curves with A sweep spectroscopy to verify that 
the tip did not change during the experiments. During the experiments, the drive frequency of the tuning 
fork fd was set to its resonance frequency when the tip was far from the surface, which was found to be f0 
= 10841.2 Hz, while the quality factor was tuned to Qeff = 600 [31]. 

One can now argue that the same increase accuracy can easily be achieved with z sweep 

spectroscopy as well if one just runs the approach curves with amplitudes larger than 1 nm. 

Amplitude sweep-based spectroscopy has, however, further advantages that may make its 

application beneficial. For example, scanner nonlinearities and piezo creep effects are avoided, 

which enhances the lateral accuracy of spectroscopy experiments [51]. Also, we note that A 

sweep spectroscopy performed in ultra-high vacuum should be conducted with TO-AFM to 

decrease the cantilever’s effective quality factor Qeff to a value that provides the best 

combination of short settling times (‘time constants’) τ = Qeff/πf0 [10] and measurable effect of 

the surface potential on the phase φ(A, d) while eliminating mechanical instabilities during the 

cantilever’s approach to the surface [31]. Thanks to the shorter time constants, which reflect the 

time needed to meaningfully acquire an individual data point, faster data accusation times can 

be realized that have the prospect to enable three-dimensional (3D) imaging during an 

individual scan [13, 51, 52]. To achieve this goal, one can, e.g., ramp up the oscillation 

amplitude at each pixel during a constant-height scan to recover the tip-sample interaction; 

alternatively, one can image with set amplitude a of, e.g., 1 – 2 nm and record the decay of A 

[41]. A tuning fork with 22000 Hz resonance frequency operated at Qeff = 300 features a time 

constant of around 4 milliseconds, which adds up to ≈1 minute to acquire a single x-z plane with 

256 × 64 pixels or 4.5 hours to complete a full 3D set comprising 256 × 256 × 64 data points, 

which has to be compared with typically ten times as long acquisition periods for 3D force 

spectroscopy performed in ultrahigh vacuum [11, 13, 51, 53-55]. Finally, amplitude sweep 

spectroscopy experiments with TO-AFM are straightforward to control as they are entirely open 

loop, while FM-based distance sweep experiments require two feedback loops to be active: One 

that continuously adjusts the driving frequency to match the cantilever’s distant-dependent 

resonant frequency, a task typically performed by a phase-locked loop [56], and a second loop 

that maintains a constant oscillation amplitude. As a consequence, probing repulsive forces is 
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straightforward with oscillation-tuned A sweep spectroscopy but not for FM-based z sweep 

spectroscopy, which struggles due to the large tapping-induced perturbation that two interacting 

feedback loops attempt to address simultaneously. 

 

4. Summary and Conclusions  

Thanks to recent advances in three-dimensional imaging, chemical interactions at and near 

surfaces can be measured locally with pm, pN, and meV resolution in space, tip-sample force, 

and interaction potential. As a consequence, dynamic atomic force microscopy methods have 

increasingly been used as a quantitative imaging tool to probe local chemistry, an endeavor for 

which accurate force and potential energy measurements are essential. However, when using 

oscillation amplitudes of the order of the decay length l of the tip-sample interaction force, the 

non-linear nature of the force law is found to introduce a systematic error into the mathematical 

procedures used to reconstruct the tip-sample force due to a decreased accuracy of some of the 

approximations made when deriving the procedures. It is possible to decrease the effect of these 

systematic errors by using oscillation amplitudes sufficiently larger than l. Therefore, although 

oscillation amplitudes comparable to l should be used to achieve the best signal-to-noise ratio 

during imaging, choosing the ideal oscillation amplitude for force spectroscopy experiments is 

an optimization problem between the best signal-to-noise ratio and the accuracy of the obtained 

quantitative values after force reconstruction. To this end, amplitude sweep spectroscopy 

performed at a constant height from the surface promises a new pathway towards accurate, 

faster, and easier force spectroscopy experiments. 
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