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ABSTRACT:  

Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical 

waves have enabled the design of a range of novel devices, such as waveguides, frequency 

modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly 

preferable. While numerous PnCs have been designed in recent decades, PnCs that possess 

simultaneous wide and robust band gaps (to randomness and deformations) have not yet been 

reported. Here, we demonstrate that by combining the band gap formation mechanisms of Bragg 

scattering and local resonances (the latter one is dominating), PnCs with wide and robust 

phononic band gaps can be established. The robustness of the phononic band gaps are then 

discussed from two aspects: robustness to geometric randomness (manufacture defects), and 

robustness to deformations (mechanical stimuli). Analytical formulations further predict the 

optimal design parameters and uncertainty analysis quantifies the randomness effect of each 

designing parameter. Moreover, we show that the deformation robustness originated from a local 

resonances dominant mechanism together with the suppression of structural instability. 

Importantly, the proposed PnCs require only a small number of layers of elements (3 unit cells) 

to obtain broad, robust and strong attenuation bands, which offer great potential in designing 

flexible and deformable phononic devices. 
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I. INTRODUCTION 

Phononic crystals (PnCs) are architected materials that offer exceptional control over 

phonons, sound and other mechanical waves [1]. The architected material design, for example, 

periodical distribution of the density and/or elastic constants is capable to generate phononic 

band gaps, within which waves of certain frequencies cannot propagate through. Such unique 

feature brings rich physical phenomena and enables a broad range of applications, including 

perfect mirrors [2], lenses [3,4], wave filters [5-7], waveguides [8-10], frequency modulators 

[11,12], acoustic cloaks [13-15], and thermal insulators [16,17].  

To date, various structures have been designed and shown to possess complete band gaps. 

One early reported design is a type of periodic composites, consisting of arrays of metal 

cylinders or spheres embedded in a polymer matrix [18]. By choosing materials with high 

mechanical impedance mismatch and adjusting the packing patterns, a maximum band gap 

relative width (defined as the width of the band gap normalized by the middle gap frequency 

ω ωΔ ) of 70% is achieved [19]. Following a similar design strategy, more complex material 

structures are proposed using two-phase materials of high impedance contrast, such as 3D bi-

continuous structures [20,21], brick and mortar structures [22,23], structures with additionally 

inserted cylinders [24,25], and structures with integrated local resonators [26-28]. On the other 

hand, numerical strategies such as topological optimization have been applied to optimize band 

gap width which expands the relative band gap width to around 100% [29-32]. However, the 

optimal structures either have too intricate interfacial shapes [30] or have tiny geometric features 
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[29], which are intrinsically geometry sensitive and pose a great challenge for manufacturability. 

Designing structures featuring a combination of wide band gaps and manufacturability are still 

challenging. 

While the aforementioned designs are based on multi-phase materials, single-phase 

material systems [33-35] have attracted attention more recently, as their monolithic structure can 

be fabricated more readily. By introducing architected porosity in solids, one can achieve 

complete band gaps, and in the meantime, reduce material weight. For instance, lattice materials 

with introduced chirality [36], self-similarity [37-39], cross-like holes [40,41], local curvature 

[42,43], and hierarchy [44] have been shown to open up band gaps or possess broader band gaps 

compared with conventional lattices. These designs give rise to band gaps by redistribution of 

the constitutive material which in turn changes wave interaction within the material. Yet, 

structural features, such as self-similarity or hierarchy themselves, do not work as fundamental 

mechanisms of band gaps formation. The two broadly accepted physical mechanisms at the 

origin of phononic band gaps are Bragg scattering [45] and local resonances [26]. In the former 

case, a stronger wave velocity mismatch contributes to the formation of broader band gaps due to 

stronger wave scattering at interfaces. However, phononic band gaps generated by Bragg 

scattering strongly depend on order and symmetry of the lattice as well as the shape of the 

scatters, thus not robust. In the latter case, band gaps form due to localized excitation at resonant 

frequencies, which are considered independent of periodicity [46], but the width of a local 

resonant gap is typically narrow [20,39,47]. That’s why regardless of numerous PnCs proposed 

in recent decades [33-37,39,44], none has been shown to possess simultaneously wide and robust 

band gaps. Interestingly, recent studies have achieved PnCs with broader band gaps by 
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combining these two mechanisms [20,48], which might provide one avenue of designing PnCs 

with simultaneously wide and robust band gaps.  

Though structural periodicity and lattice symmetry are critical to the generation of 

phononic band gaps, studies show that interesting applications (e.g., acoustic switches) arise by 

breaking the original lattice symmetry with applied loads [49-51]. Besides the tunability of the 

phononic crystals, in many applications (e.g., flexible phononic crystals), wide yet robust band 

gaps in regard of applied deformation or manufacturing defects are highly desirable. Very 

recently, topological metamaterials [52-55] have been shown to possess topologically protected 

band gaps that are robust against smooth deformations of the material.  Such a remarkable 

feature has inspired many researches in designing robust phononic crystals [55]. By contrast, 

non-topological materials are often considered sensitive to random changes in their 

microstructure [55]. Although PnCs with coated steel cylinders [46,56] and additional air 

cylinders [25] have demonstrated that non-topological materials are also possible to possess 

randomness robust band gaps, this topic remains largely unexplored.  

In this work, we propose a new type of PnCs with artificially engineered geometric 

features. Specifically, a cylindrical mass is introduced to each cell wall of a conventional 

hexagonal lattice. Through a combination of numerical simulations and analytical formulations, 

we demonstrated the existence of simultaneously wide and robust band gaps in the proposed 

PnCs. These two remarkable features are attributed to the coexisting of Bragg scattering and 

local resonances, while the latter is dominant. The proposed design concept is also applicable to 

3D PnCs exhibiting considerable band gap width. 
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II. DESIGN OF 2D PHONONIC CRYSTALS 

We begin by designing 2D PnCs with a hexagonal topology, because high symmetry is typically 

essential to generate Bragg-type phononic band gaps. Since most 2D hexagonal phononic 

crystals only exhibit small partial band gaps [44], we artificially introduce concentrated masses 

(cylinders with relatively large diameter) at the center-point of the hexagonal cell walls, aiming 

at achieving wide vibrational band gaps. Figure 1(a) shows a schematic of the designed 2D PnC, 

which is characterized by three geometric parameters: the hexagonal edge length a , the radius of 

the cylinder r , and the thickness of the ligament wall t .  

 

FIG. 1. Schematics and dispersion relation of the proposed 2D PnC. (a) The geometry of the 2D 

PnC with concentrated masses at the middle of each hexagonal edge. The unit cell is marked by 

the shaded region and magnified in plot (b), where t and a are the cell wall thickness and edge 

length of the basis honeycomb respectively; r is the radius of the introduced cylinder. (c) Blue 

triangle shows the first irreducible Brillouin zone of the 2D PnC. 1b
r

, 2b
r

 are the reciprocal 
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primitive vectors. (d) Dispersion relation and transmittance in ΓM direction of the 2D PnC with 

r/a=0.3, t/a=0.05, and a=5mm. The band gaps are marked by shaded areas, and the maximum 

band gap appears between the 9th and 10th band with a relative width ( ω ωΔ ) of 101.2%. 

III. WIDE BAND GAPS IN 2D PHONONIC CRYSTALS 

A. Numerical results 

To study the propagation of small amplitude elastic waves in the proposed 2D lattice, we 

perform eigenfrequency and frequency domain analyses with the finite element method using 

commercial software COMSOL Multiphysics. In brief, phononic dispersion relation is obtained 

by solving the eigenfrequencies of the unit cell [Fig. 1(b)] with periodic boundary conditions 

described by the Bloch-Floquet theorem in the first irreducible Brillouin zone [Fig. 1(c)] [57]. 

Moreover, frequency domain perturbation analysis is performed on finite-sized samples to obtain 

the transmittance (defined as the ratio between the output and the input acceleration signals, 

( ) ( )out inA f A f ). Quadratic triangular plain strain elements are used in the simulation and the 

material is modeled as a linear elastic material with Young's modulus E = 1750 MPa, Poisson's 

ratio ν = 0.4, and density ρ  =930 kg/m3. Unless otherwise specified, the geometric parameters 

are taken as r/a=0.3, t/a=0.05 with edge length a=5mm [58]. 

Figure 1(d) shows the phononic dispersion relation and associated transmittance of a PnC 

with r/a=0.3 and t/a=0.05.  Four complete band gaps are observed in the dispersion relation, with 

the maximum band gap appears between the 9th and 10th mode. The maximum relative gap width 

( ω ωΔ ) is 101.2%, which is relatively wide compared with those reported in other honeycomb-

based designs [36,37,44]. The transmittance calculated along the ΓM direction drops ∼90 dB in 

the frequency range f = 56 −170 kHz, which matches perfectly with the band gaps in the 
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dispersion relation. For comparison, we normalize the frequency by the equivalent longitudinal 

wave speed lc  (calculated from dispersion relation =lc kω ) and lattice length of the unit cell as 

= 3 laf cΩ . The normalized frequency plotted in Fig. 1(d) shows that the 9th band is near 

normalized frequency of =1Ω , indicating a band gap formation mechanism of Bragg scattering 

as will be discussed in the section III.C. 

The specimen sizes of the above phononic crystals are arbitrarily selected, we then 

examine the effect of geometric parameters on the evolution of band gaps. Figure 2(a) and Fig. 

2(b-d) show the 9th and 10th Bloch modes at the high symmetric point of the Brillouin zone (Γ ). 

Note that the 10th Bloch mode depends on the relative cylinder radius. Figure 2(e) and 2(f) show 

the evolution of band gaps as the cell wall thickness t a  ( r a  fixed at 0.3) and relative cylinder 

radius r a  ( t a fixed at 0.05) change, respectively. Results show that one wide band gap along 

with multiple relatively narrow band gaps exist for a wide range of geometric parameters, 

providing a relatively large design space of the proposed PnCs. 
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FIG. 2. Effect of geometric parameters on the band structure. Depending on the geometric 

parameters, one mode for the 9th Bloch mode (a), and three different modes for the 10th mode at 

(b) r a <0.23, (c) 0.23 < r a <0.33, and (d) r a >0.33 are found. Plotted alongside are the 

theoretical modeling of these modes. (e) and (f) show the evolution of the band gaps as functions 

of t a ( r a =0.3) and r a ( t a =0.05). The green areas show the numerical results, the black lines 

show the eigenfrequencies calculated with Eqs. (1) − (3), and the red dashed lines show the 

location with normalized frequency =1Ω .  

B. Analytical formulation and optimal design 
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To validate our numerical simulations and find optimal band gaps, theoretical models are 

proposed in this subsection to predict the frequencies of the band gap edges. Figure 2(a) shows 

that the 9th mode can be simplified as lumped masses vibrating on springs. This mode is 

universal and controls the lower bounding frequencies for all the geometric parameters 

considered in this paper. By contrast, three different modes exist for the 10th mode, depending on 

the cylinder radius. The mode at r/a <0.23 is simplified as a 2D beam bending with one end 

pinned and the other end fixed [Fig. 2(b)]. For 0.23 < r/a <0.33, the mode is characterized by a 

truss-beam system vibrating on an elastic support [Fig. 2(c)], while for larger radius r/a >0.33 the 

mode shape is controlled by the in-plane deformation of cylinders [Fig. 2(d)]. Using structural 

mechanics formulations [59,60], we derive the corresponding bounding eigenfrequencies as [58]: 

9 2

1 4
2 ( 2 )th

Etf
r a rπ ρπ

=
− ,       (1) 

( )
2

1
10 2

1 60.672
2 122th

Etf
a rπ ρ

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 ,       (2) 

( )
( )24 2

2
10 2

+48C 21 1
2 162

th

Et E a r
f

a r
π

π ρ
⎡ ⎤ −

= ⎢ ⎥
−⎢ ⎥⎣ ⎦

,   (3) 

where 9thf  is the 9th mode frequency, 1
10thf  and 2

10thf  are the 10th mode frequency for r/a <0.23 

and 0.23 < r/a <0.33 respectively, E and ρ  are Young’s modulus and density of the constituent 

material, and C ≈ 0.78 is the end constraint factor of the elastic support obtained by comparing 

with numerical results. The band gap location predicted with Eqs. (1)–(3) is plotted in Figs. 2(e) 

and 2(f) as a function of r a  ( t a  fixed at 0.05) and t a ( r a  fixed at 0.3). Compared with the 

numerical results, the theoretical equations exhibit excellent accuracy.  
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Moreover, the analytical models can be used to find the optimal geometric parameters of 

the PnCs with a maximum band gap. Figure 3(a) shows the relative band gap width between 9th 

and 10th band as a function of r a  and t a  calculated theoretically with

( )10 9 10 9=2 ( )th th th thf f f fω ωΔ − + . The map shows that the band gap opens at r a =0.15 and 

increases with r a . Interestingly, there exists an optimal cell wall thickness given a cylinder 

radius, which is marked by the dashed line in Fig. 3(a). With this map, a maximum relative band 

gap width of 126.94% is predicted at t a =0.03 and r a =0.33. Dispersion relation of this optimal 

geometry is numerically calculated, as shown in Fig. 3(b), where a relative gap width of 119.28% 

is observed. Note that the theoretical estimation is only applied to the range of r a <0.33, 

because eigenfrequencies outside this range are controlled by the cylinder deformation [Fig. 

2(d)], for which an explicit expression is not yet available. Notably, the gap width starts to 

decrease when cylinder in-plane deformation becomes dominant [verified in Fig. 2(g)]. Figure 

3(c) shows a PnC with relatively narrow cell wall ( t a =0.02 and r a =0.33), which has quite a 

different dispersion relation compared to Fig. 3(b). With a narrow cell wall, an extra band gap 

opens between the 10th and 11th band next to the original one, and these two side by side gaps 

gives a total relative width of 128.96%. 
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FIG. 3. (a) Theoretical prediction of the relative gap width between the 9th and 10th band. The 

dashed line shows the optimal relative cell wall thickness t a  at a given relative cylinder radius 

r a . The dispersion relations of the star (PnC with theoretically predicted maximum band gap 

width at t a =0.03 and r a =0.33) and diamond (PnC with relatively thin cell wall thickness t a

=0.02 and r a =0.33) shown in (a) are calculated numerically and the results are shown in (b) 

and (c) respectively. Theoretical predictions are marked by red dashed lines. 

C. Band gap formation mechanisms 

In this section we discuss the mechanism of forming wide band gaps. In the previous 

section, we’ve shown that the cylinders vibrate in the 9th mode with the narrow connectors acting 

as springs; while in the 10th mode, the cell walls vibrate with the cylinders nearly at rest. As a 

result, the vibration energy is localized in the local modes, preventing the propagation of the 

elastic waves. This is verified by the accuracy of Eqs. (1) – (3) in predicting the maximum band 

gap locations. For this reason, local resonances are commonly considered as the band gap 

formation mechanism of systems composed of large lumps and narrow connectors, as reported in 

[32,40,41].  

However, the dispersion relation of the proposed PnC shown in Fig. 1(d) does not match 

that of PnCs with purely local resonant band gaps [26,27,47,61]. Several key differences can be 

distinguished. First, the band edges are flat for purely local resonant PnCs, corresponding to zero 

group velocities [20]; while the lower edge of the proposed PnCs shows clear valleys. Second, 

purely local resonant band gaps are typically narrow (<20%) even with strong impedance 

mismatch [26,49], while the band gap of the proposed PnC is very wide (>100%). Third, purely 

local resonant band gaps are often formed at subwavelength scale [47]. These observations 



12 

 

suggest that the band gaps of the proposed PnCs are not produced purely by local resonances. 

The fact that the proposed PnC band gap is near a normalized frequency of =1Ω  suggests that 

the band gap might be related to the overlapping of local resonances and Bragg scattering, which 

has been reported in [20,48]. To further verify this, we plot the =1Ω curve in the parametric map 

of the band gap as functions of r/a and t/a, respectively [red dashed lines in Fig. 2(e) and 2(f)]. 

Results clearly show that the lower edge of the maximum band gap intimately follows the curves 

of =1Ω . This behavior of the band gap is a strong evidence that Bragg scattering also controls 

the lower edge of the maximum band gap (but not the upper one). 

Combining the above arguments, we conclude that both local resonances and Bragg 

scattering contribute to the band gap formation of the proposed PnC (overlapping). More 

specifically, local resonances affect both the upper edge and the lower edge of the band gap, 

while Bragg scattering only affects the lower edge, suggesting that local resonances are the 

dominant mechanism. This overlapping of local resonances and Bragg scattering is the 

fundamental reason for the observed wide band gaps and form the basis of designing wide and 

robust PnCs. 

IV. BAND GAP ROBUSTNESS IN 2D PHONONIC CRYSTALS 

In practical applications, defects in the PnC geometry, like inaccurate sizes and 

misalignments, cannot be avoided in the manufacturing process. These unexpected imperfections 

can potentially affect the operational frequency ranges of the PnCs. Besides, PnCs might also be 

deployed in applications where external stimuli cannot be avoided, such as on the surface of 

submarines and in vibrational conditions, where external load induced deformations will arise. 

Moreover, flexible phononic crystal designs require stable wave attenuation ability at moderate 
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deformations. These challenges motivate us to further examine the robustness of the wide band 

gaps to both geometric randomness and deformations.  

A. Robustness to geometric randomness 

In all previous reports on the effect of randomness on phononic crystals [26,46,56], only 

the distribution of local resonators is considered random, while each resonator is assumed to 

have ideal geometry and no randomness (so the resonant frequency is not affected at all).  Here, 

we perform a more extensive and rigorous examine on the effect of randomness on PnCs, where 

all geometric parameters are assumed to be random, including the cell wall thickness t, cylinder 

radius r, and hexagonal node locations. These parameters are assumed to follow normal 

distributions, and the intensity of randomness is controlled by the standard deviation (STD), or 

relative standard deviation (RSD defined as STD divided by the average value). The perturbation 

added to each node is a displacement vector N
r

, described by its amplitude N
r

 (follow a normal 

distribution) and direction angle (follow uniform distribution) [58]. Figure 4(a) shows one 

perturbed PnC generated using this method, with average geometric parameter 0a =5mm, 

0 0=0.05t a , 0 0=0.3r a , and random intensity characterized by STD of  t  as 00.1ts t= ,  r  as 

00.1rs r= , and N
r

 as 00.1s a=
N
r  (10% RSD of all parameters). The effect of randomness on 

band gap is then evaluated by comparing the wave transmittance curves of the unperturbed 

structure and three perturbed structures as shown in Fig. 4(b). Results show that strong wave 

attenuation is maintained within the band gap even at 10% RSD of t, r and N
r

. To clarify this, 

we plot the dynamic response of the PnC with and without perturbations in Fig. 4(c). The 

dynamic displacement fields show that at a frequency of 50kHz (outside of the band gap) waves 
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are transmitted regardless of the existence of randomness, while at a frequency of 100kHz 

(inside the band gap) the excitation is localized because there’s no transmission mode. It is worth 

noting that the dynamic response of the perturbed structure is not symmetric because of the 

randomness. And only the longitudinal wave transmittance in direction 2 is demonstrated, 

because either transverse wave or propagation in direction 1 gives similar results [58]. More 

simulations of randomness provided in [58] show that the attenuation is similarly retained with 

individual perturbation of t, r and N
r

, and with 15% RSD of combined t, r and N
r

, which 

strongly proves the robustness of the PnC towards possible geometric randomness. 

 

FIG. 4. Effect of geometric randomness on the transmittance.  (a) Left shows the unperturbed 

sample with 5×5 unit cells of size t a =0.05, r a =0.3, a=5mm, and right shows the sample with 

perturbation level of 00.1ts t= ,  00.1rs r= , 00.1s a=
N
r . (b) Comparison of transmittance 

between the unperturbed sample and three perturbed samples, the shaded area shows band gap of 
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the unperturbed PnC. Note only longitudinal waves transmitting in direction 2 are shown for 

simplicity. (c) Displacement fields of the unperturbed (top) and perturbed (bottom) structure at 

frequencies of 50kHz (left) and 100kHz (right). The deformations are magnified properly for 

easy viewing.  

Furthermore, one noticeable feature in Fig. 4(b) is that randomness tends to have a more 

significant influence on the upper bound than the lower one. To obtain a quantitative description 

of this observation, we apply an uncertainty analysis on bounding frequencies of the band gap. 

The effect of geometric randomness is modeled by propagation of uncertainty from t, r, a 

towards band frequencies f9th and f10th through Eqs. (1) - (3). Using the variance formula [62], the 

RSD of the bounding frequencies are derived as [58]: 

2
2 2 2

9 2

1 1 3 1
4 1 2 4(1 2 )

RSD
th RSD RSD RSD

rf t r a
r r

−⎛ ⎞= + +⎜ ⎟− −⎝ ⎠
   (4) 

2 2 2
10 1 2 2

16 4
(1 2) (1 2 )

RSD
th RSD RSD RSDf t r a

r r
= + +

− −，    (5) 

2 2 22 2 2 24 2
2 2 2* *

10 2 2
*

4 96 (1 2 ) 2 48 (1 2 )=
2 1 2 1 2

RSD
th RSD RSD RSD

C r t C r ttf t r a
t r r

π⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
，      (6) 

where RSDf  , RSDt , RSDr  and RSDa denote relative standard deviations of the frequency, cell wall 

thickness, cylinder radius and honeycomb edge length respectively; t t a=  and r r a=  are the 

relative thickness and radius respectively; 2 2 2
* 36 (1 2 )t t C rπ= + − is the equivalent relative 

thickness.  Using parameters of r =0.3, t =0.05, we have  

2 2 2
9 0.25 0.0625 0.625RSD

th RSD RSD RSDf t r a= + +  and 3 2 2 2
10 2 = 3.63 10 2.42 6.73RSD

th RSD RSD RSDf t r a−× + +， .  (7) 
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For 10% geometric RSD ( RSD RSD RSDt r a= = =0.1), we calculate 9
RSD
thf = 0.0968 and 10 2

RSD
thf ，=0.303, 

which shows that the RSD of the upper bounding frequency is magnified ~3 times, while RSD of 

the lower bounding frequency stays at the same level. This explains why stronger fluctuation is 

exhibited near the 10th band in the transmittance curve, while the 9th band is more stable under 

the same level of perturbation. Furthermore, Eqs. (4) - (6) also give quantitative results of how 

the randomness of node location, cylinder radius, and cell wall thickness affect the band gap, 

giving suggestions of which parameter are of major concern in manufacture. For instance, Eq. (7) 

shows that thickness has negligible influence on the maximum band gap, which is consistent 

with the results provided in Fig. S6. 

B. Robustness to deformation 

Besides the break of order and symmetry induced by geometric randomness, PnCs might 

also be subject to structural loads, which could induce certain deformations. Here we examine 

the band gap properties of the deformed PnCs, including uniaxial compression and simple shear 

deformation. Mechanical deformations are calculated prior to the wave transmission analysis by 

solving the stationary equilibrium equation and compatibility equation of solid mechanics with 

COMSOL Multiphysics. The compression and simple shear boundary conditions are applied 

with prescribed displacements that follow the periodic deformation condition [58,63,64]. It is 

worth noting that one remarkable feature of the proposed PnC is that a thickness of three 

elements gives wave attenuation over 60 dB within the band gap (Fig. S5 in [58]), similar to an 

early report [26]. For this reason, as well as to reduce the amount of computation, we 

demonstrate the effect of deformation on transmittance with a sample of 3×3 unit cells. Figure 5 

shows the transmittance of an unperturbed PnC and that are under compression ( 1ε =-0.2 and 2ε
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=-0.2) and simple shear ( 12γ =0.2). We find that the transmittance of the PnC under deformations 

exhibit similar attenuation compared with the PnC without deformation, quite different from the 

previously reported PnCs whose bandgap close after compression [27]. This is because the 

geometric pattern of the proposed structure is not changed after applying deformations, unlike 

the pattern transformation induced by instability [27,50]. For example, the original honeycomb 

exhibits a buckling mode when compressed in direction 2 [65], however, this mode is suppressed 

by the existence of cylinders in the proposed PnC. As such, each individual element works 

effectively as sites of local resonances and the PnC shows strong deformation robustness. 
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FIG. 5. Effect of deformation on the transmittance. (a) The first row shows the static stress field 

of an unperturbed sample with 3×3 unit cells under compression in direction 1 1 0.2ε = −   (left), 

direction 2 2 0.2ε = −  (middle), and simple shear 12 0.2γ =  (right). The second row shows the 

dynamic perturbation field of displacement under harmonic excitation at f = 50kHz (in material 

coordinate). (b) Transmittance comparison (longitudinal waves) between the undeformed and the 

deformed samples. The band gap of the undeformed PnC is highlighted by the green area. 

C. Robustness to combined randomness and deformation 

So far, the effect of randomness and deformation are considered separately, while in 

reality these two factors could simultaneously take place. Therefore, we further investigate the 

coupled effect of randomness and deformation by comparing the transmittance of a PnC with 

introduced randomness (10% RSD of t, r and N
r

) under compressive ( 1ε =-0.2, 2ε =-0.2), and 

simple shear ( 12γ =0.2) loads. Figure 6(a) shows the static stress field under deformation, and the 

dynamic displacement field at an input harmonic excitation of 100 kHz. The deformation is not 

as homogeneous as that for an unperturbed structure [Fig. 5(a)] due to structure randomness. But 

still, no pattern transformation is observed under combined randomness and deformations. As a 

result, the transmittance curves in Fig. 6(b) show strong attenuation within the band gap region, 

demonstrating the super robustness of the PnC even with only three layers of unit cells. 

In addition, the current PnC is designed on a hexagonal lattice basis, and it is worth pointing out 

that there are various 2D lattice structures to build on, e.g., triangular lattices and kagome lattices 

[66]. Such a broad range of choices provide a wide design space of the proposed designing 

methodology, from which PnCs with wide and robust band gaps can be envisioned.  
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FIG. 6. Combined effect of deformation and randomness. The perturbed sample (3×3 unit cells) 

is generated with t a =0.05, r a =0.3, a=5mm, and randomness intensity 10% RSD of t, r and 

N
r

. (a) The top row shows the static stress field of the perturbed sample under compression with 

1 0.2ε = −   (left), 2 0.2ε = −  (middle), and simple shear 12 0.2γ =  (right). The second row shows 

the dynamic displacement field under harmonic excitation at f=100kHz (in material coordinate). 

(b) Transmittance comparison (longitudinal waves) between the unperturbed sample with no 

deformation, perturbed sample with no deformation, and perturbed samples with applied 

deformations. The green area highlights the original phononic band gap. 
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V. DESIGN CONCEPT EXTENDED TO 3D 

While all the discussions so far are for 2D periodic materials, we now demonstrate that similar 

designs can be extended to 3D structures with various packing patterns. The 3D PnCs are 

designed based on spheres packed in simple-cubic (SC), body-centered cubic (BCC) and face-

centered cubic (FCC) lattices, with the nearest spheres connected by ligaments [Fig. 7(a)]. 

Because geometric round up between the ligaments and spheres is mechanically more preferable 

and is typically found in manufactured structures (e.g. lithography [67]), smooth connections 

between the spheres are assumed. As such, the ligaments are constructed by revolving arcs that 

tangentially connecting two spheres, which is totally defined by the minimum diameter d and 

length h. As a demonstration, we generate three PnCs with SC lattice, BCC lattice, and FCC 

lattice symmetries [68]. Here the geometric parameters are fixed at d=0.3r and h=0.5r. The 

resultant 3D unit cells and corresponding irreducible Brillouin zone can be found in [58]. Figure 

7(b)-(d) show the simulated dispersion relations, revealing that SC PnC exhibits the widest 

relative gap width of 100.03%, followed by 86.87% relative width of the BCC PnC, and 70.31% 

relative width of the FCC PnC. Like the 2D PnC, all the 3D PnCs show wide band gaps around 

normalized frequency =1Ω , indicating an overlapping of the Bragg type band gap and local 

resonant band gap. One difference of the 3D PnCs compared with 2D PnCs is the higher 

connectivity between spheres. For example, each sphere in SC lattice is connected to six nearest 

spheres, corresponding to a coordinate number Z=6. The coordinate numbers for BCC lattice and 

FCC lattice are 8 and 12 respectively. We notice that the Bloch modes of the 3D PnCs are 

strongly dependent on the coordinate number, which intrinsically dedicates to the connecting 

stiffness. Interestingly, all the lower bounding modes of the proposed 3D PnCs are in-plane 

rotations of the spheres [Figs. 7(b)-(d)]. By contrast, the upper bounding modes are more 
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complex, one observation is that all the modes are anti-symmetric. This observation indicates 

that the eigenfrequency difference between symmetric modes and anti-symmetric modes gives 

rise to the wide band gaps of the 3D PnCs (Fig. S9). 

The current results show the existence of wide band gaps in 3D PnCs, and since their geometries 

are analogy to the 2D structure and they share the same gap formation mechanism, thus we may 

expect similar robustness in the 3D PnCs (i.e., ligament buckling should be suppressed to 

perform deformation robustness). In addition, although one phase material is assumed in our 

design, new fabrication methods allow simultaneous fabrication of multiphase materials (e.g., 3D 

printing). With multiphase materials techniques, the ligaments could be replaced with softer 

materials, which is capable of further extending the band gap width as reported in [69]. 
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FIG. 7. Design concept extended to 3D PnCs. (a) Left shows a sample of 3D PnC with BCC 

symmetry. Upper right shows the unit cell of the sample, where blue spheres are connected by 

yellow ligaments. The ligaments are generated by revolving arcs tangentially connecting the 

spheres for smooth geometry (bottom right). The 3D geometries are defined by the minimum 

ligament diameter d, ligament height h and sphere radius r. (b)-(d) show the dispersion relations 

for the PnCs with BCC, SC and FCC symmetry and d=0.3r and h=0.5r. On the right of each 

figure shows the Bloch mode at Γ of the upper (point A) and lower boundary (point B) of the 

maximum band gaps. 

 

VI. CONCLUSIONS 

In summary, we have designed a new class of single phase lightweight PnCs by 

introducing cylindrical/spherical masses on lattice structures, and demonstrated the simultaneous 

wideness and robustness of the produced band gaps. While previous researches suggested that 

the wide band gaps of lump – narrow connector systems are formed purely from local resonances, 

we give strong evidence that Bragg scattering also plays an important role, revealing the band 

gap formation mechanism as overlapping Bragg scattering and local resonances. Analytical 

formulations derived from structural mechanics accurately predict the bandgap location and give 

the optimal design of the 2D PnC with maximum band gap. 

Robustness regarding manufacturing defects and deformations are considered in this 

work for future industrial applications of PnCs. In studying the manufacturing defect robustness, 

quantitative results of the randomness effect on PnCs band gaps with uncertainty analysis are 

obtained. Using numerical simulations, we showed that the band gaps of the proposed PnCs are 



23 

 

robust towards random perturbations, applied deformations, and a coupling of these two factors. 

Importantly, we show the deformation robustness originates from the local resonances dominant 

mechanism combined with the suppression of structure instability by the introduced cylinders. 

For porous PnCs, a local resonant mechanism alone does not guarantee a deformation robust 

band gap. The findings reported here not only provide a new routine to design lightweight PnCs 

with wide and robust band gaps, but also offer a wide range of potential applications such as thin 

layer materials for noise and vibration control, robust devices for wave modulation and 

mitigation, and flexible/deformable phononic devices. 
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