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Abstract

We introduce a new resistance measurement method that is useful in characterizing materials

with both surface and bulk conduction, such as three-dimensional topological insulators. The

transport geometry for this new resistance measurement configuration consists of one current lead

as a closed loop that fully encloses the other current lead on the surface, and two voltage leads that

are both placed outside the loop. We show that in the limit where the transport is dominated by the

surface conductivity of the material, the four-terminal resistance measured from such a transport

geometry is proportional to σb/σ
2
s , where σb and σs are the bulk and surface conductivities of the

material, respectively. We call this new type of measurement inverted resistance measurement,

as the resistance scales inversely with the bulk resistivity. We discuss possible implementations

of this new method by performing numerical calculations on different geometries and introduce

strategies to extract the bulk and surface conductivities. We also demonstrate inverted resistance

measurements on SmB6, a topological Kondo insulator, using both single-sided and coaxially-

aligned double-sided Corbino disk transport geometries. Using this new method, we are able to

measure the bulk conductivity, even at low temperatures, where the bulk conduction is much

smaller than the surface conduction in this material.
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I. INTRODUCTION

Electrical transport measurements are useful for studying new quantum materials, as

they reveal critical information about low energy excitations of the quantum ground state.

Characterizing transport is also a crucial step toward realizing these quantum materials

in novel electronic devices. Typically, specific transport geometries are used for extracting

valuable information from the material. For example, the Hall bar geometry is used for mea-

suring the diagonal and off-diagonal (Hall) resistivity[1], and the Corbino disk geometry is

used for measuring the diagonal conductivity[2, 3]. In the case of two-dimensional materials

and thin conducting films, the diagonal and off-diagonal resistivity can also be extracted

from arbitrarily shaped samples by using the van der Pauw method, which works well as

long as the contacts at the edges are small enough[4]. When multiple conducting channels

are present in the sample, the measured conductivity is the sum of the conductivities of

each channel. In some cases, the carrier density and mobility of each channel can even be

individually determined using a method known as the mobility spectrum analysis[5].

In the case of isotropic three-dimensional crystals, its conductivity can be found using

four-terminal resistance measurements. The measured resistance is inversely proportional

to the conductivity of the material with a prefactor that depends on the geometry of the

sample and the position of the contacts. Except for special cases such as a long wire or

a thin film, this geometric prefactor can only be determined by numerical calculations.

Researchers, especially in the correlated electron community, sometimes perform transport

measurements on raw crystals that have irregular shapes. Commonly they do not supplement

the transport measurements with numerical calculations needed to determine the geometric

prefactor because of the complicated details of the geometry. Instead, they report the bulk

resistivity normalized to the room temperature resistivity, ρ(T )/ρ(300 K), because this can

be found easily by the measured resistance ratio R(T )/R(300 K). In most cases, the material

can be identified as either a conductor or an insulator by extrapolating ρ(T )/ρ(300 K) to

T = 0 K. When the material under investigation is purely a bulk conductor, the reporting

of the resistance ratio is a useful practice. On the other hand, as we will discuss below,

resistance ratios are meaningless when the material has both surface and bulk conduction.

In the last decade, a new class of three-dimensional materials has been discovered; these

are expected to have an insulating bulk and conducting surface states[6]. These materials
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are called three-dimensional topological insulators (3D TIs)[6, 7]. The surface conduction

in these materials arises from the non-trivial topology of the bulk band, and its existence

is robust. Electrical characterization of 3D TIs is challenging, as they are expected to have

both bulk and surface conduction at finite temperatures. Resistance measurements from

standard transport geometries do not provide information about the fraction of current flow

through surface and bulk of the material. Furthermore, in situations where the surface

conduction is significant, the bulk resistivity ratio, ρ(T )/ρ(300K), cannot be obtained from

R(T )/R(300K) because the prefactor now also changes with temperature. Therefore, the

resistance ratios in such materials should be used with caution.

For many of the weakly correlated 3D TIs, including Bi1−xSbx[8], Bi2Se3[9], and

Bi2Te3[10], bulk conduction by unintentional impurities is large enough to overwhelm the

surface conduction[11]. Because the electric current flows mostly through the bulk in this

case, the surface conduction is difficult to explore. To extract the surface conductivity in

these materials, one typically prepares ultrathin samples, since the effective conductivity

from the measured resistance is normally σeff ≈ σs + σbt (σb is the bulk conductivity, σs is

the surface conductivity, and t is the thickness of the sample). In principle, both σb and σs

can be determined if one performs transport measurements on multiple samples with a wide

range of thicknesses.

There are also materials in which, at low temperatures, the surface conduction dominates

the transport. A good example is samarium hexaboride (SmB6), which is under investigation

as the first correlated 3D TI material[12, 13]. The bulk gap of SmB6 is clean and results from

the hybridization between the d-electrons and the f -electrons at cryogenic temperatures[12,

14]. The bulk conducts only through thermal excitation, and therefore the conductivity of

the bulk decreases as the temperature decreases. As the temperature decreases further, the

material undergoes a bulk-to-surface crossover, and the current begins to flow more on the

surface than the bulk because the bulk conductivity is too small[15, 16]. Below this crossover

temperature, the bulk conductivity is challenging to obtain because the measured resistance

is mostly governed by the surface.

In this paper, we introduce a generic transport strategy, which we call the inverted resis-

tance measurement, to find the bulk conductivity contribution when the surface conduction

dominates the bulk. Next, we analyze specific transport geometries that are suitable for the

inverted resistance measurements. Finally, we demonstrate this new method experimentally
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on single crystals of SmB6 and show that the bulk conductivity can be extracted below a

crossover temperature where conduction is dominated by surface states.

II. FORMALISM FOR RESISTANCE

In this section, we introduce a general formalism for understanding resistance measure-

ments in an isotropic 3D material with both bulk and surface conduction, such as a 3D

topological insulator. In this formalism, any four-terminal resistance can be expressed in a

suitable dimensionless function that depends on the ratio of the bulk and surface conduc-

tivities. We further consider this dimensionless function in two extreme regimes, σbl � σs

and σbl � σs, using a series expansion, where l is the characteristic length parameter. We

will propose a generic transport geometry with a four-terminal resistance configuration that

allows us to access the bulk conductivity even while the surface dominates the conduction.

A. Perturbative Approach of Scalable Resistance

In general, any resistance measurement, say R, of a 3D material is a function of the bulk

(σb) and surface conductivity (σs) for a given transport geometry, i.e., R = R(σb, σs). The

bulk and surface conductivity have different units of 1/(Ω ·m) and 1/Ω, respectively. The

resistance can be rewritten in the following form:

R =
1

σs
f(x) and x =

σbl

σs
, (1)

where f(x) is a dimensionless function that depends on the current distribution for the trans-

port geometry, and l is some characteristic length that depends on the transport geometry.

The parameter, x, is also dimensionless, and it is defined by the ratio between σb and σs

multiplied by l. Resistance is determined by the spatial dependence of the current or electri-

cal potential of the transport geometry. This spatial dependence is uniquely determined by

the boundaries, i.e., bulk/surface interface, and therefore the ratio between the surface and

bulk conductivity determines f(x). When x remains constant, R scales with either 1/σb or

1/σs. In Eq. (1), we choose 1/σs so that the function f(x) becomes a dimensionless function.

We have now expressed the resistance in a form that depends on σs and x, instead of on

σb and σs. Expressing the resistance in the form of Eq. (1) is powerful when we consider a
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3D topological insulator in two extremes: the bulk-dominated regime (σbl � σs) and the

surface-dominated regime (σbl� σs). Both regimes can also be considered in the asymptotic

limits of the dimensionless function, f(x): the bulk-dominated regime can be studied in the

x→∞ limit, and the surface-dominated regime can be studied in the x→ 0 limit.

In the bulk-dominated regime, the case when current flows mostly in the bulk, we can

expand the function f(x) in powers of 1/x, f(x) = C−1(1/x) +C−2(1/x)2 + · · · , where C−1,

C−2, . . . are coefficients that depend on the geometry of the transport. The resistance is

therefore:

R =
C−1

σbl
+

C−2

(σbl)2
σs + · · · . (2)

The first order term in Eq. (2) only depends on the bulk properties, and this term usually

overwhelms the higher order terms in resistance measurements of conventional transport

geometries. The higher order terms, which contain σs, are therefore difficult to measure.

In the surface-dominated regime, the case when the current flows mostly on the surface,

we can use the following asymptotic form f(x) = C0 +C1x+C2x
2 + · · · , where C0, C1, C2,

. . . are coefficients. Thus, the resistance is:

R =
C0

σs
+
C1

σ2
s

σbl + · · · . (3)

In Eq. (3), the first order term depends only on surface properties, and this term usually

overwhelms the higher order terms in conventional transport measurements. Note that

the bulk conductivity only arises in higher order terms. Although measuring the higher

order terms is desirable for accessing the bulk conductivity, this is usually not possible in

conventional transport measurements since the first term dominates.

Note that both asymptotic equations, Eq. (2) and Eq. (3), fail to cover the range near

x ≈ 1, which is the bulk-to-surface crossover regime, where the bulk and surface conduction

are comparable. However, if the temperature dependence of σs is weak compared to σb, we

can make use of the standard two-channel model that experimentalists conventionally use to

cover this range. When the sample is sufficiently thin, the following relation holds for most

conventional resistance geometries: R ∝ 1/(σs + σbl). This relation is useful in connecting

the bulk and surface dominated regimes when extracting the bulk conductivity.
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FIG. 1: Schematic diagram of a generic inverted resistance measurement. In such a measurement,

R1,2;3,4, current lead 2 must fully enclose lead 1, and the voltage leads must be placed outside of

the loop defined by lead 2.

B. Inverted Resistance Measurement

In this subsection, we introduce a new non-local transport measurement that is extremely

powerful for characterizing a 3D TI with a small bulk conductivity. The bulk conductivity

can be extracted in the surface-dominated regime, σbt � σs (for convenience we choose

l = t, t is thickness), by totally suppressing the first order term (surface term) in Eq. (3).

This new transport measurement configuration consists of two current leads, one fully

enclosing the other as shown in Fig. (1). Since the current contact 2 forms a closed loop, it

separates the surface into two regions: I and II. Terminal 1 is in region I, terminal 2 is on

the loop, and the other two terminals are in region II. We consider a resistance measurement

in this transport geometry as the following: while passing current between terminal 1 and

2, the voltage is measured between terminals 3 and 4 (i.e., R1,2;3,4 = V3,4/I1,2). This defines

the inverted resistance measurement.

Let us first consider what happens if we employ this geometry to characterize a two-

dimensional electron gas or a thin film. When we connect leads 1 and 2 to the current source

as shown in Fig. (1), current will flow only in region I. Here, the metallic loop (contact 2)

would act like a two-dimensional Faraday cage blocking all the electric field from inside and

thus there would be no current flow or electric field in region II. If the voltage leads are

placed in region II, then V3,4 = 0. Because of this, such an inverted resistance measurement

is not useful as R1,2;3,4 would always be zero, regardless of the surface conductivity, and thus
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cannot be used to characterize a two-dimensional electron gas or thin film.

Because lead 2 acts as a Faraday cage only for the surface, if one employs this inverted

resistance measurement on a bulk conductor, current will flow everywhere in the sample.

Thus, one would expect a small but a measurable V3,4. However, this geometry would not

be used to measure bulk conductivity, since it would require numerical calculations of fringe

fields and would not offer any benefits over conventional transport measurements.

On the other hand, in the case of a 3D TI, where one needs to characterize both surface

and bulk conductivities, this type of inverted resistance measurement can provide informa-

tion that cannot be accessed by conventional resistance measurements. To illustrate the

power of this method when applied to a 3D TI, let us consider this measurement using the

formalism introduced in the previous subsection. If the bulk conductivity is sufficiently low

that the 3D TI is in the surface-dominated regime (σbl� σs), even for a sample with finite

thickness, R1,2;3,4 suppresses the leading order (surface term) term of Eq. (3), and therefore

the second term dominates (R ∝ σbt/σ
2
s). Notice that the second order term in Eq. (3) is

proportional to the bulk conductivity.

To justify why the first term vanishes, let us first consider the case when σb = 0. In

σb = 0, every term vanishes except the first term in Eq. (3). In Fig. (1), the loop (terminal

2) must capture the entire current from terminal 1, since the surface is the only current path

available. Inside region I, the electric potential drop is proportional to 1/σs, whereas the

entire region II must be equipotential to terminal 2 (V = 0 when grounded). Then, V3,4 = 0.

Therefore, we find that C0 = 0 in Eq. (3). When σb 6= 0, this resistance measurement, RInv

(inverted resistance) can be written as:

RInv = 0 +
C1

σ2
s

σbt+ · · · . (4)

Thus, we conclude that whenever a transport geometry on a 3D TI utilizes a closed loop on

the surface and the voltage is measured outside of that loop, then the highest order term

(surface term) in Eq. (3) is suppressed and the next leading order term, which contains the

bulk conductivity, dominates. Therefore, the inverted resistance measurement can be used

to access the bulk conductivity in situations where the surface conduction dominates the

bulk.

In this subsection, we have introduced the inverted resistance measurement, which pro-

vides the bulk conductivity information even in the presence of strong surface conduction.
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FIG. 2: A standard two-terminal Corbino disk on a sample. (a) Top view: the sample is shown

in gray and the highly conductive contacts are shown in yellow. (b) Side view: the current and

voltage amplifier that is needed to perform the resistance measurements are connected to terminals

1 and 2.

When we combine this inverted resistance measurement with conventional transport exper-

iments, we can extract bulk and surface conductivities. In the following section (Sec. III),

we introduce specific sample geometries and present the geometric factors that are found by

numerical calculations. We also introduce strategies to implement the inverted resistance

and the numerical results in experiment to extract the conductivities.

III. TRANSPORT GEOMETRIES FOR INVERTED RESISTANCE MEASURE-

MENTS

Before we introduce transport geometries that allow inverted resistance measurements,

we review a simple geometry, the Corbino disk, which employs a closed circular current loop

shown in Fig (2) (a). To remind the reader of the standard Corbino disk measurement, the

current flows from the center to the outer loop radially, and the voltages are measured either

at the two current terminals (two-terminal resistance) or at two points within the transport
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FIG. 3: Effective thickness, γ, in the two-channel model vs. real sample thickness, t, for a standard

Corbino disk. Both axes are divided by the inner radius (rin = 150 µm). The solid red line is

the numerical calculation in the surface-dominated regime when only the top surface contributes.

When the thickness is very large, γ/rin asymptotically approaches 0.627. The solid blue line is

the numerical calculation in the bulk-dominated regime. At large thickness, γ/rin asymptotically

approaches 0.566. The effective thickness approaches to the true thickness of the sample when the

sample thickness is sufficiently thin (γ = t).

region whose radii are rin (inner radius) and rout (outer radius) (four-terminal resistance).

The two-terminal Corbino resistance measurement configuration is shown in Fig (2) (b). In

a perfect 2D transport case, where current only flows on the surface (σb = 0 and σs 6= 0),

the functional form of this standard resistance is well known:

RCorbino =
1

2π
ln(

rout

rin

)
1

σs
. (5)

In the presence of both bulk and surface conduction (σb 6= 0 and σs 6= 0), the two-channel

model is a good approximation for the standard Corbino resistance:

RCorbino ≈
1

2π
ln(

rout

rin

)
1

σs + σbγ
, (6)

where γ is the effective thickness of the sample. γ depends on how the current flows in

the defined geometry. We study numerically how the effective thickness changes as function

of true sample thickness by performing finite element analysis calculations using Comsol

Multiphysics AC/DC module. The results from the bulk-dominated regime are shown in
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a solid blue line in Fig (3). In the thin sample limit, where the thickness of the sample is

much smaller than both the inner radius and the annular region (surface transport region)

of the Corbino disk (rin � t and rout− rin � t), γ approximates to the true thickness of the

sample, t. In the very thick limit (rin � t and rout − rin � t), γ is independent of t.

It is important to note that for a given sample, the effective thickness can be slightly

different in the bulk- or surface-dominated transport regimes. To illustrate this, we have

performed a series of numerical calculations by adding a surface channel with a broad range

of conductivity on the top surface of the sample. The result is shown in a solid red line,

which is similar, but not identical, to the results of the bulk-dominated regime. In the

very thick limit, the effective thickness is again independent of t, but with a value that is

about 10% larger than that of the bulk-dominated regime. We were also able to analyze a

Corbino disk geometry on an infinite thickness sample using analytical methods. We find the

asympototic value of effective thickness extracted from the numerical calculations agrees with

the analytical study in the infinite thickness limit; the analytical derivation is presented in

Appendix A. In the following subsections, continuing to use finite element analysis numerical

calculations, we will consider different extensions of Corbino disk geometries that are suitable

for the inverted resistance measurement.

A. Single-Sided Four-Terminal Corbino disk

In this subsection, we consider a transport geometry consisting of a Corbino disk with

two metallic rings in the annular region, as shown in Fig. (4). This transport geometry can

be realized by a single step of lithography. The top view of the sample, the surface where

the Corbino disk is patterned, is shown in Fig. (4) (a). On top of the sample surface (shown

in grey), the transport geometry pattern is defined by highly conductive metal contacts such

as gold (shown in yellow). In addition to the inner- (terminal 1) and outer- (terminal 4)

circular metallic regions, there are two metallic rings (terminals 2 and 3), each with width,

W . The side views of two different measurement configurations are shown in Fig. (4) (b)

and Fig. (4) (c). In the lateral configuration shown in Fig. (4) (b), the resistance is measured

by passing current between terminals 1 and 4 and measuring the voltage between terminals

2 and 3, i.e., RL = V2,3/I1,4. This measurement is equivalent to the standard measurement

of a conventional Corbino disk. In the inverted configuration shown in Fig. (4) (c), the
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FIG. 4: Four-terminal single-sided Corbino disk. The sample is shown in gray and the highly

conductive contacts are shown in yellow. (a) Top view. (b) Side view and resistance configuration of

the lateral configuration. (c) Side view and the resistance configuration of the inverted measurement

configuration. We choose the dimensions: r1 = 100 µm, r2 = 800 µm, rin = 200 µm, rout = 300

µm, and W = 75 µm.

resistance is measured by passing current between terminals 1 and 2 and measuring the

voltage between terminals 3 and 4, i.e., RInv = V3,4/I1,2. Recall that C0 = 0 in Eq. (4) in

this inverted resistance measurement, and therefore RInv = (C1t/σ
2
s)σb.

When the current flows only on the surface, the lateral resistance, RL, is identical to

Eq. (5). We rely on the numerical studies, using a finite element analysis software (Comsol

Multiphysics AC/DC module), for the case when the current also flows in the bulk (σb 6= 0

and σs 6= 0). The numerical calculations are performed for a 100 µm thick sample for both

resistance configurations (RL and RInv). The solution of electrical potential resulting from
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FIG. 5: The potential distributions of the single-sided four-terminal Corbino disk. The bulk and

surface are calculated in the surface-dominated transport regime (σs � σbt); t= 100 µm, σb=0.0013

1/(Ω·m), and σs = 0.005 1/Ω. The equipotential values are normalized by the potential at the

current source (V1). (a) Potential distribution in the bulk when the current is connected to the

lateral configuration. (b) Potential distribution on the surface as a function of radial position when

the current is connected to the lateral configuration. (c) Potential distribution in the bulk when

the current is connected to the inverted configuration. (d) Potential distribution on the surface

as a function of radial position when the current is connected to the inverted configuration. The

surface region in r < rin is plotted in a linear scale, and r > rin is plotted in a logarithmic scale.
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the current flow in the lateral configuration is shown for the bulk and surface in Fig. (5) (a)

and Fig. (5) (b), respectively. In Fig. (5) (a), the equipotential lines are coded in color. The

bulk current flows normal to those equipotential lines. In Fig. (5) (b), on the surface, the

potential drops from the source to the ground on the surface logarithmically, except for in

the metallic ring region, where the potential remains constant.

For the inverted resistance measurement, the electrical potential that is calculated nu-

merically is shown for the bulk and surface in Fig. (5) (c) and Fig. (5) (d), respectively. The

inverted resistance is expected to be much smaller than the lateral resistance as it results

from the fringe field created near the outer part of the enclosed loop. The fringe fields are

difficult to visualize in Fig. (5) (c). However, the effect from the fringes can be seen when

the potential on the surface is plotted on a logarithmic scale, as shown in Fig. (5) (d). The

plot indicates that the potential is gradually increasing as the distance from the terminal 2

ring increases.

We have performed these numerical calculations for different ratios of bulk to surface

conductivity. In Fig. (6), we plot the dimensionless function, f(x) = Rσs, for both the

inverted (RInvσs) and the lateral resistance (RLσs) as a function of x (= σbt/σs). Most

importantly, we find that RLσs ∝ 1/x when x → ∞, and RInvσs ∝ x when x → 0.

Therefore, in those two limits, the leading order terms in Eq. (2) and Eq. (4) dominate.

Furthermore, the flat line in RLσs when x → 0 agrees with Eq. (5) and the leading order

term of Eq. (3) (C0 = 0.0645 and C0 � C1, C2, . . . ).

By iterating the numerical calculations for different thicknesses, the transport coefficients,

C−1 and C1, are found as a function of thickness. Fig. (7) (a) shows the coefficient, C−1,

for the lateral measurement (RL) in the bulk-dominated regime (σbt � σs) plotted as a

function of dimensionless thickness (t/r1). Fig. (7) (b) shows the coefficient, C1, for the

inverted measurement (RInv) in the surface-dominated regime (σbt� σs). Note that at very

large thicknesses, C1 ∝ 1/t, and C−1 ∝ t, which means the resistances become independent

of thickness. In the following section (Sec. IV), we will demonstrate this transport geometry

on a SmB6 sample, and use the results in Fig. (7) to find the bulk conductivity. In the

following subsection, we consider a more advanced transport geometry design that results

in a larger C1 value and better confines the transport region.
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FIG. 6: Example of numerical results of a single-sided Corbino disk. RLσs (blue) and RInvσs (red)

as a function of x (= σbt/σs) when t = 1000 µm. The dotted lines represent the asymptotic values

from the first order term from Eq. (2), Eq. (3), and Eq. (4).

B. Double-Sided Two-Terminal Corbino disks

In the previous subsection, we have considered a transport geometry defined on a sin-

gle surface, and showed that the inverted resistance originates from the small fringe effects

created near the enclosed loop. In this subsection, we consider a more advanced transport

geometry, where we employ two coaxially aligned Corbino disks on opposite surfaces. We

show that in this case, there is an inverted resistance measurement configuration that mea-

sures the current reaching the opposite surface, and this contribution can be much larger

than the fringe effects on a single surface. Furthermore, since there are two Corbino disks

placed on opposite surfaces, this geometry would allow us to measure the conductivity of

both surfaces. This can also be a powerful geometry for characterizing a wide range of 3D

topological insulators, in which the contribution of conducting surface states has not been

studied yet.
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FIG. 7: The transport coefficients for the single-sided four-terminal Corbino disk geometry as a

function of sample thickness. (a) C−1 of the lateral resistance RL in the bulk-dominated regime

(σbt � σs). (b) C1 of the inverted resistance RInv in the surface-dominated regime (σs � σbt).

The thickness is dividing by r1 (= 100 µm). The dotted lines indicate the transport coefficients

when they are independent of thickness.

A schematic diagram of the coaxially-aligned double Corbino disk geometry is shown in

Fig. (8). This transport geometry can be realized by two steps of lithography performed

on opposite sides of the sample. One surface (since both surfaces are identical) of the

sample is shown in Fig. (8) (a). The disk shapes are defined by highly conductive metal

contacts (shown in yellow) used as terminals for resistance measurements. We note that the

measurement configurations that will be discussed in the following will include both two-
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FIG. 8: Double-sided two-terminal Corbino disk. The sample is shown in gray and the highly

conductive contacts are shown in yellow. (a) Top and bottom surface view. (b) Side view and the

lateral resistance configuration. (c) Side view and the radial resistance configuration. The blue

and red lines are jumper wires. (d) Side view and the vertical resistance configuration. (e) Side

view and the hybrid resistance configuration. The hybrid measurement is an inverted resistance

measurement in the surface-dominated regime (σs � σbt). We choose the Corbino dimensions as

r1 = 150 µm and r2 = 300 µm.
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and four-terminal resistance measurements.

The two-terminal resistance measurements where the current and voltage leads share

the same terminal should only be used when the contact resistances are negligible. One

example of the two-terminal resistance measurement is shown in Fig. (8) (b), where resistance

is measured between the inner-metallic circle (terminal 1) and the outer-metallic region

(terminal 2), or RL = V1,2/I1,2. When the current flows only on the surface (σb = 0 and

σs 6= 0), this is identical to Eq. (5): RL = RCorbino.

The two-terminal resistance can also be measured using both the top and bottom Corbino

disks in parallel using the radial configuration as shown in Fig. (8) (c). In the radial con-

figuration, terminals 1 (2) and 3 (4) are connected with a low resistance jumper wire shown

in blue (red). These jumper wire connections ensure that the top and bottom surfaces have

identical electric potential profiles. In addition, the wire that connects terminals 2 and 4

(shown in red) prevents the current from flowing on the side surfaces of the sample. When

σb = 0 and σs 6= 0, the radial resistance is equivalent to two resistors, corresponding to each

Corbino lateral resistance measurement, connected in parallel:

RR =
1

2
× 1

2π
ln(

rout

rin

)
1

σs
. (7)

Another two-terminal resistance measurement, which we will call the vertical configura-

tion, can be performed on such a device as shown in Fig. (8) (d). This configuration also

shorts terminals 2 and 4 with a low resistance jumper wire (shown in red), which eliminates

the current flow on the side surfaces. The vertical resistance is measured between the two

inner-metallic circles, or RV = V1,3/I1,3. In the bulk-dominated regime (σbt � σs), the

current chooses a vertical path through the bulk between the two circular plates 1 and 3.

In the surface-dominated regime (σbt � σs), the current flows first radially on the surface

through the top Corbino disk, then passes through the jumper wire, and finally converges

radially through the bottom Corbino disk. The approximate functional forms of resistance

can be found in those two limits. In the σbt � σs case, RV can be found by a derivation

analogous to finding the capacitance between two parallel plates. If the sample is thin, we

can assume the current density is in the vertical direction and uniform in the region of center

contacts, so the resistance is:

RV ≈
t

πr2
1

1

σb
, (8)

where t is the thickness of the sample. In the other extreme, σbt� σs, we can regard each
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Corbino disks as resistors that are connected in series:

RV = 2× 1

2π
ln(

rout

rin

)
1

σs
. (9)

Especially in the vertical measurement, because RV can be dramatically different in the two

extremes, σbt� σs and σbt� σs, and can be evaluated without numerical simulations, this

configuration can provide strong evidence for experiments that are in the stage of verifying

the existence of the surface states.

The last configuration that we consider is a four-terminal measurement, which we will call

it the hybrid resistance measurement, as shown in Fig. (8) (e). In the hybrid configuration,

the current flows between terminals 1 and 2, and the voltage is measured using terminals

3 and 4, which are on the opposite side, i.e., RH = V3,4/I1,2. Since current lead 2 fully

encloses lead 1, the hybrid resistance is an inverted resistance measurement. Because of

the proximity of the voltage and current contacts, the inverted resistance signal in this

double-sided device is expected to be much larger than that of the single-sided inverted

resistance measurement discussed previously. We have solved this geometry numerically

for different resistance configurations using finite element analysis (Comsol Multiphysics

AC/DC module). In Fig. (9), we plot the dimensionless resistance f (= Rσs) for all four

resistances as a function of x (= σbt/σs). Indeed, as we expect, our hybrid resistance results

in, RHσs ∝ x when x→ 0 in the inverted resistance measurement. In the opposite limit when

x→∞ , Rσs ∝ 1/x for all four resistances as expected. In particular, RV σs approaches to

Eq. (9). Furthermore, the asymptotic flat lines in RLσs, RRσs, and RV σs when x→ 0 agrees

with Eq. (5) (C0 = 0.0645), Eq. (7) (C0 = 0.032), and Eq. (9) (C0 = 0.129), respectively. We

have also solved C−1 and C1 iteratively for different thicknesses. In Fig. (10), we present our

results for C−1 and C1 as a function of dimensionless thickness (t/r1). In experiments, RL,

RR, and RV may suffer from the presence of contact resistances. To address this potential

problem, we present C−1 from the RH , which is a four-terminal measurement. Comparing

to Fig. (10) (a) and Fig (7) (a), when the sample is thin (t < r1), C1 from the hybrid

measurement is a few orders of magnitude larger than the inverted measurement from the

single-sided 4-terminal Corbino disk case. Therefore, this transport geometry can be better

in extracting a smaller bulk conductivity.

However, there can be a practical difficulty when preparing a double-sided transport

geometry: the two Corbino disks may be misaligned. This type of misalignment would be
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FIG. 9: Example of numerical results for a two-terminal double-sided Corbino disk. Numerical

result of RLσs (blue), RRσs (magenta), RV σs (green) and RInvσs (red) vs. x (= σbt/σs) when the

thickness is t = 100 µm. The dotted lines indicate the asymptotic values from the equations.

expected to change the values of C−1 and C1. To understand how the misalignment impacts

the resistance measurements, we have repeated the calculations for the case where there is

a 150 µm misalignment between the top and bottom Corbino disks. The coefficients C−1

and C1 calculated with such a misalignment are shown in green. Our numerical calculations

indicate that the hybrid resistance measurement is most vulnerable to misalignment. In the

following subsection, we consider a transport geometry that allows similar measurements,

but all four measurements are in a 4-terminal configuration.

C. Double-Sided Four-terminal Double Corbino Disk

The single-sided four-terminal Corbino disk geometry (in subsec. III A) has the limitation

in that the RInv may be too small to measure in the surface-dominated regime (σbt � σs).

The coaxially aligned double Corbino disk geometry (in subsec. III B) can give a larger mag-
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(b)

(c)

(a)

FIG. 10: The transport coefficients for the double-sided two-terminal Corbino disk geometry by

varying the sample thickness. The solid black line shows the transport coefficient when the two

Corbino disks are coaxially aligned, and the solid green line shows the transport coefficients when

the two Corbino disks are misaligned by 150 µm. The thickness is expressed in a dimensionless

form by dividing by rin (= 150 µm). (a) C−1 of the hybrid resistance, RH , in the bulk-dominated

regime (σbt� σs). (b) C−1 of the lateral resistance, RL, in the bulk-dominated regime (σbt� σs).

(c) C1 of the hybrid resistance, RH , in the surface-dominated regime (σs � σbt).
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nitude from the RH if the sample is thin, but the other three resistances (RL, RR, and RV )

may suffer from contact resistances in the bulk-dominated regime (σbt� σs). In this subsec-

tion, we consider a transport geometry that incorporates advantages of the two geometries,

so that both issues can be eliminated. The configuration consists of two coaxially aligned

four-terminal Corbino disks placed on both sides of the sample as illustrated in Fig. (11).

The advantages of having multiple leads on both sides should be clear: we now have more

than enough 4-terminal resistance configurations, including inverted measurements, that can

be used to extract the bulk conductivity. Even without using any jumper wires, such an

8-terminal transport geometry would allow us to perform a total of 70 independent inverted

resistance measurements. We will only discuss a few that are similar to what was discussed

in the previous sections. In addition, we will provide an example of how to apply a ratio

method to extract the two conductivities. A schematic diagram of the sample is shown in

Fig. (11) (a). The disk shapes are defined by highly conductive metal contacts (shown in

yellow). This type of sample can be realized by two separate steps of lithography. The

conductive metal regions are used as terminals for resistance measurements. We choose the

dimensions of the Corbino disks with two rings to be identical to the earlier Corbino disk

structure shown in Fig. (4). Therefore, the single-sided 4-terminal Corbino disk results can

be used for this geometry as well. Because of this, we will omit the resistance configurations

that uses contacts from a single side, and instead we will discuss three new measurement

configurations that require the contacts from both top and bottom surfaces.

We first discuss the radial measurement configuration (RR) shown in Fig. (11) (b). Ter-

minal pairs of (1, 5), (2, 6), and (3, 7) are connected with a low-resistance jumper wire

shown in blue. These jumper wire connections help to enhance the radial flow of current in

the bulk. In addition, the wire that connects terminals 4 and 8 (shown in red) prevents the

current from flowing on the side surfaces of the sample. When the current only flows on the

surface (σs 6= 0 and σb = 0), the radial resistance is:

RR =
1

2
RL =

1

2
× 1

2π
ln(

rout

rin

)
1

σb
, (10)

where RL is the lateral resistance that was introduced in Eq. (5).

Next, we consider the vertical configuration shown in Fig. (11) (c). Similar to the radial

configuration, terminals 4 and 8 are connected with a low resistance jumper wire shown in

red in order to eliminate the current flowing on the side surfaces. In the bulk-dominated
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FIG. 11: Four-terminal double-sided Corbino disk. The sample is shown in gray and the highly

conductive contacts are shown in yellow. (a) Top and bottom view of the sample. (b) Side view of

the sample and the radial configuration. (c) Side view of the sample and the vertical configuration.

We choose the Corbino disk dimensions identical to the single-sided four-terminal Corbino disk

shown in Fig. (4): r1 = 100 µm, r2 = 800 µm, rin = 200 µm, rout = 300 µm, W = 75 µm.

regime (σbt � σs), current flows mostly vertically through the bulk. The resistance is

thickness dependent and can be expressed in the form of RV σs ≈ C−1(σbt/σs)
−1, which

is the leading order term of Eq. (2). In the surface-dominated regime (σbt � σs), where

the current flows mostly on the surfaces, first the current flows radially outwards on the
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top surface, and then the current flows to the other surface through the jumper wire and

converges radially inwards. In this case, we can regard every possible conduction path of

the Corbino disks as a resistor and add them in series:

RV = 2× 1

2π
ln(

rout

rin

r2

r1

rin −W
rout +W

)
1

σs
. (11)

For the hybrid configuration, as shown in Fig. (11) (d), while terminals 4 and 8 are

connected with a low resistance jumper wire (shown in red) to ensure that the side surface

contribution is eliminated, the current leads are connected to terminals 1 and 4, and the

voltage leads are connected to terminals 6 and 7, i.e., RH = V6,7/I1,4. When the current

chooses its path mostly on the surface (σbt� σs), this is indeed the inverted measurement

in that the Corbino disk on the top surface corresponds to the enclosed loop that captures

the current flowing on the surface and the bottom Corbino disk corresponds to the voltage

measurement external to that loop and measures the current path contributing from the bulk.

Similar to the previous transport geometries discussed above, we calculated the relevant

transport coefficients for this sample geometry numerically using finite element analysis

(Comsol Multiphysics AC/DC module). We present C1 for the hybrid measurements and

C−1 for radial measurements as a function of thickness in Fig. (12). If the top and bottom

Corbino rings are significantly coaxially misaligned, we recommend using C−1 from the

lateral measurements (Fig. (7) (a)) instead of using C−1 from the radial measurement.

IV. EXPERIMENTAL REALIZATION OF THE TRANSPORT GEOMETRIES

In this section, we demonstrate the transport geometries introduced in Sec. III experi-

mentally on samarium hexaboride (SmB6). SmB6 is a cubic material, and it appears to be a

topological Kondo insulator with a truly insulating bulk and robust surface conduction on all

surfaces. For typical samples, the transport is dominated by bulk conduction above ∼4 K.

Previous transport experiments indicate that the bulk resistivity of SmB6 is activated in the

form of R ∝ exp( Ea/kBT ), with an activation energy, Ea, of about 3 – 4 meV. The activated

behavior of the bulk transport is difficult to study using standard transport experiments be-

low 4 K, because at that temperature, current starts to flow mostly through the surface.

In contrast, the inverted resistance measurements can be used to measure the bulk conduc-

tivity of SmB6 at temperatures below 4 K. We will use the single-sided 4-terminal Corbino
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(a)

(b)

FIG. 12: Transport coefficients for the four-terminal double Corbino disk geometry at different

thicknesses. (a) C−1 for the radial resistance, RR, in the bulk-dominated regime (σbt � σs). (b)

C−1 for the hybrid resistance, RH , in the surface-dominated regime (σbt � σs). The thickness is

expressed in a dimensionless form by dividing by r1 (= 100 µm).

disk that was introduced in subsection III A, and the double-sided 2-terminal Corbino disk

that was introduced in subsection III B to characterize bulk and surface transport in SmB6.

Consistent with our expectations, we were able to measure bulk conductivity below the

bulk-to-surface crossover temperature. A more detailed study of the underlying physics of

bulk transport in hexaborides in this new range of temperatures will be discussed in a later

study[17].
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A. Single-Sided Four-Terminal Corbino Disk on SmB6

We prepared a transport geometry on a polished SmB6 surface using the dimensions

shown in Fig. (4). The SmB6 crystal used in this study was grown in an aluminum flux.

The grown crystal was first thinned with a SiC polishing pad that has grit size of 15.3 µm.

It was then polished with a SiC polishing pad of 2.5 µm. Fine polishing was performed on

polishing cloth (TexMet C) using an aluminum oxide slurry with a particle size of 0.3 µm.

After cleaning the surface with diluted HCl, we performed photolithography on the polished

surface with a mask design of the 4-terminal Corbino disk pattern. We exposed the surface

where we wanted to evaporate a highly conductive metal, and covered it with photoresist

on the regions that we want to expose later. We then evaporated Ti/Au 20 Å/1500 Å,

and lifted off the photoresist in acetone. The sample was cleaned again with diluted HCl,

and then attached to a silicon piece with an insulating SiO2 layer using Torrseal. We used a

wire bonder to attach aluminum wires (1 mil) to the terminals. We performed low-frequency

resistance measurements at temperatures ranging from 16 to 1.7 K using the quantum design

PPMS system connected to an external lock-in amplifier (SR830).

The experimental results, plotted as resistance vs. temperature, are shown in Fig. (13) (a).

As temperature is decreased from 16 K, both the lateral resistance, RL (shown in blue),

and the inverted resistance, RInv (shown in red), increases. In this temperature range, the

sample is in the bulk-dominated regime (σbt � σs). Then around 3.5 K, RInv reaches a

peak and starts to decrease, while RL plateaus. The sample at this low temperature is in

the surface-dominated regime (σbt � σs). According to Eq. (5), the surface conductivity

is σs = 3.3 × 10−4 S. Meanwhile, RInv continuously drops toward 0 until it is too noisy to

measure. The resolution of our electronics allowed us to measure RInv down to ∼2.5 K.

To extract the bulk conductivity from the data in Fig. (13) (a), we use leading order terms

in the series expansion in the surface- and bulk-dominated regimes (Eq. (2) – Eq. (4)), and

the two-channel model (Eq. (6)). For each temperature range, we converted the resistance

measurements to bulk conductivity as described in the following.

High temperature range (bulk-dominated regime): At temperatures above ∼3.6 K, the

lateral resistance can be used to find the bulk conductivity. In this bulk-dominated regime

(σbl � σs), Eq. (2) can be used to understand the resistance behavior (we replaced l with

thickness, t). The contribution of the current that flows on the surface is extremely small,
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(a)

(b)

(c)

FIG. 13: Experimental results and bulk conductivity analysis on a single-sided 4-terminal Corbino

disk on a SmB6 sample with thickness, t = 300 µm. (a) Resistance vs. temperature of the lateral

and inverted measurements. (b) The bulk conductivity converted from the measured resistance.

The dotted lines indicate the bulk conductivity conversion applied beyond the appropriate regime.

(c) The result of the extracted bulk conductivity after adjustment of mismatch.
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so we keep only the first order term. With this first order term, and using C−1 found in

Fig. (7) (a), the bulk conductivity is:

σb(T ) =
C−1

t

1

RL(T )
. (12)

The result is shown in Fig. (13) (b) as a solid blue line.

Intermediate temperature range (bulk-to-surface crossover regime): In the temperature

range, 3.3 - 3.6 K, the sample undergoes a bulk-to-surface crossover, so the bulk and surface

conductions are comparable. This regime is where the expansion of the f(x), cannot be

expanded in series in either extremes of x because x ≈ 1. Instead, we make use of Eq. (6)

from the two-channel model to convert RL to bulk conductivity. This can be re-formulated

as:

σb(T ) =
1

γ
(

C0

RL(T )
− σs). (13)

The result is shown in Fig. (13) (b) as a solid green line. We have shown in Fig. (3) that

the calculated effective thickness is slightly different for the bulk-dominated and the surface-

dominated regimes. In this particular experiment, we estimate the effective thickness from

γ = C0t/C−1. It is fortunate that the temperature dependence of the surface conductivity

in SmB6 is weak enough that it can be approximated as constant.

We warn the reader that Eq. (13) should not be used alone in samples with a surface

conductivity that is strongly temperature dependent. For characterizing such a material, in

this intermediate temperature range, it is important to use multiple four-terminal resistance

measurements that put different emphasis on surface and bulk conductivity, Luckily the

double-sided Corbino geometry allows one to perform a vertical measurement (RV ), which

would put greater emphasis on bulk conductivity. Thus, the combination of lateral and

vertical measurements may provide a better strategy for extracting the bulk conductivity in

this temperature regime.

We expect that the process of extracting the conductivities from the measured resistances

would have been much more challenging if the surface conductivity was also strongly tem-

perature dependent. In such a case, the full numerical simulation must be done, and then

compared to the measured resistances.

According to Eq. (1), one can measure the resistance, R, easily, but not f(x) if σs has a

strong temperature dependence. One may implement an approach that would rely on the

ratios of the two different resistance measurements. For example, if we take the ratio of
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the conventional resistance, RC , to the inverted resistance, RInv, we can directly compare to

the ratios of the dimensionless functions, f(x), of the corresponding resistances, fC(x) and

fInv(x):
RC

RInv

=
fC
fInv

= h(x). (14)

where the fC(x) is the dimensionless resistance for RC , fInv(x) is the dimensionless resistance

for RInv, and we define the ratio as h(x). From Eq. (14), we can compare the experimental

data and numerical results directly, and find x. The surface conductivity can then be found

by:
RC

fC
=

1

σs
or

RInv

fInv

=
1

σs
. (15)

After σs is found, σb can be found from x that was found from Eq. (14):

σb =
σsx

t
. (16)

Low temperature range (surface-dominated regime): For temperatures below ∼3.3 K, the

sample is in the surface-dominated regime. The inverted resistance measurement can be used

at this temperature range to extract the bulk conductivity. In the surface-dominated regime,

the inverted resistance can be expressed by Eq. (4). C1 can be found from Fig. (7) (b), and

σs can be found from Eq. ( 5) and the plateau value of RL(T ). Then the bulk conductivity

is:

σb(T ) =
σs(T )2

t

RInv

C1

. (17)

The result is shown in Fig. (13) (b) as a solid red line.

Notice that there is a noticeable mismatch of about a factor of ∼3 between the two plots

(solid blue line and the solid red line) near the bulk-to-surface crossover in Fig. (13) (b).

We have also tested five other SmB6 samples, and found mismatch factors ranging from

0.85– 3.5. The mismatch indicates that the geometric coefficients (C−1, C1, etc.) do not

correspond to the actual sample geometry. There are numerous possibilities that may have

caused this mismatch. For SmB6, one should worry about the quality difference between

the top and bottom surface. This can greatly influence the inverted resistance measurement

since the RInv ∝ 1/σ2
s . Aluminum inclusions that are known to be possibly present in flux

grown samples can influence the current path in the bulk, and result in a different geometric

coefficient.

Even in the case where the top and bottom surfaces have identical transport properties

and the sample is free from inclusions, a slight difference of dimensions between the realized
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sample geometry and the numerically-simulated geometry can result in a large mismatch

as above, especially for the inverted resistance measurement. The inverted resistance mea-

surement depends greatly on the fringe currents in the bulk, and measurements that involve

these current paths are highly sensitive to the details of the geometry. For example, a

similar discrepancy also occurs in conventional transport geometries such as van der Pauw

measurements. In van der Pauw measurements performed on cleaved square samples, they

typically result in different 4-terminal resistance values depending on the direction of the

current paths as in vertical and horizontal resistance measurements. The significant differ-

ence of these two measurements arises from small deviations from a perfect square shape

of the sample. In fact, to obtain the true resistivity of the material, one needs to take the

average value of the two measurements.

The discrepancy of the bulk conductivity obtained from the inverted and lateral resistance

measurements is similar to the discrepancy that occurs from the horizontal and vertical

resistance measurements obtained from a van der Pauw measurement. Since the inverted

resistance measurement is much more vulnerable to imperfections of the sample geometry,

we recommend adjusting the C1 value in such a way that inverted measurement matches

the lateral measurement at around 3.3 K.

After adjusting and combining the three plots in Fig. (13) (b), we obtain the bulk conduc-

tivity that covers the entire temperature range shown in Fig. (13) (c). From this exercise, we

have demonstrated that the bulk conductivity can be found even in the surface-dominated

regime. Also, we have shown that the bulk conductivity of SmB6 continues to exhibit a

thermally excited behavior according to σb ∝ exp(−Ea/kBT ), where we find the activation

behavior of Ea = 3.84 meV.

B. Double-Sided Two-Terminal Corbino Disk on SmB6

In the previous subsection, we measured the inverted resistance, RInv, successfully down

to 2.5 K. According to Eq. (6), the magnitude of the RInv is inversely proportional to σ2
s .

For samples that have a higher surface conductivity, the magnitude of RInv will be smaller

in general, and therefore the measurement may fail at higher temperatures. To overcome

these limitations, we instead use a transport geometry that allows larger C1 values.

In this subsection, we demonstrate the bulk conductivity extraction from the coaxially
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aligned two-terminal double Corbino disk geometry that is shown in Fig. (8). We use SmB6

crystals from the same batch to make this double-sided sample. The top and bottom sur-

faces of the sample were first polished by using a SiC polishing pad of 15.3 µm. Then, the

surfaces were polished by finer grit sizes of SiC pads: 5.5 µm and 2.5 µm. The polishing was

finalized by using a polishing cloth (TexMet C) with 0.3 µm Al2O3 slurry. We performed

photolithography on each of the polished surfaces with a mask design with identical dimen-

sions to the two-terminal Corbino disks shown in Fig. (8) (a). We evaporate Ti/Au (20 Å

/1500 Å), and then lifted off the photoresist on the regions where we intend to expose the

surface. We attached the sample with GE varnish on a silicon piece with native oxide so

that both surfaces were exposed. We used copper wires (2 mils), and attached them with

silver paste.

The sample was characterized using standard low frequency lock-in measurements from

room temperature to cryogenic temperatures (300 K – 2.5 K). We measured the resistances

of the four different configurations shown in Fig. (8) (b) – (e) (RL, RR, RV , and RH). The

experimental results of resistance vs temperature for all four measurements are shown in

Fig. (14) (a). At temperatures below 3.6 K, in the surface-dominated regime, resistance

plateaus are observed in RL, RR, and RV . By comparing the magnitudes, the relations

RR = 1/2RL (Eq. (7)) and RV ≈ 2RL (Eq. (9) holds, which verifies the existence of the

conducting surface. From, RR, we find the surface conductivity, σs = 1.1 × 10−3 S. This

value is more than three times higher than the SmB6 sample in the previous demonstration

(σs = 3.3× 10−4 S). In the hybrid measurement, RH , drops toward 0 Ω as the temperature

is lowered below 3.6 K. Note in Fig. (14) (a), at temperatures above ∼10 K, RL, RR,

and RV are not parallel to RH . This is likely because RL, RR, and RV are two-terminal

resistance measurements and the contribution of the contact resistance becomes significant

when the bulk resistivity is low at high temperatures. Therefore, in contrast to the previous

demonstration, these three resistances above ∼10 K is unreliable for extracting the bulk

resistivity.

To extract the bulk conductivity from Fig (14) (a), we converted the resistance measure-

ments to bulk conductivity by the following, similar to the single-sided 4-terminal Corbino

disk case in the previous section.

High temperature range (bulk-dominated regime): At high temperatures, above 5.2 K,

the lateral resistance data is used to extract the bulk conductivity. Using C−1 found in
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(a)

(b)

(c)

FIG. 14: Experimental results and bulk conductivity analysis of the double-sided 2-terminal

Corbino disk on a SmB6 sample with thickness, t = 210 µm. (a) Resistance vs. temperature

of the lateral, vertical, radial, and the hybrid measurement (inverted measurement). (b) The bulk

conductivity converted from the measured resistance shown in (a). The dotted lines indicate the

bulk conductivity conversion applied beyond the appropriate regime. (c) The result of the bulk

conductivity after adjustment of mismatch.
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Fig. (10) (b) and Eq. (12), the bulk conductivity is found, as shown in the solid blue line in

Fig. (14) (b).

Intermediate temperature range (bulk-to-surface crossover regime): At intermediate tem-

peratures, ranging from 3.5 K – 5.2 K, we again use the lateral resistance measurement and

use Eq. (13) with γ = C0t/C−1, which was derived from the two-channel model. The result

is shown in the solid green line in Fig. (14) (b).

Low temperature range (surface-dominated regime): At low temperatures, below ∼3.5 K,

the sample is in the surface-dominated regime. Here, we use the hybrid resistance measure-

ment to find the bulk conductivity. Eq. (17) can be used to convert the hybrid resistance

to bulk conductivity. σs can be found from the pleateau value of RL, and C1 can be found

from Fig. (10). We used both the C1 values when the top and bottom Corbino disks are

perfectly aligned and when the two disks are misaligned by 150 µm. The black solid line is

the bulk conductivity when the two disks are perfectly aligned, the red solid line is the bulk

conductivity when the two are misaligned by 150 µm.

Similar to the previous example, there is a mismatch between the bulk conductivity

at low temperatures and the bulk conductivity at intermediate temperatures. The reason

for this mismatch is identical to the reason for the mismatch present in the single-sided

four-terminal demonstration in that the geometric coefficients may not correspond to the

actual sample geometry. In addition to the reasons mentioned in the previous subsection,

the misalignment of the top and bottom Corbino disks must also be considered. After

the fabrication process, we find an unintentional misalignment of ∼150 µm; however, even

if we consider this misalignment, the corrected bulk conductivity still does not account

the matching of the bulk conductivity found from the lateral resistance measurement at

intermediate temperatures.

Again, we adjust the bulk conductivity curve at low temperatures (solid red line) to

match the conductivity at intermediate temperatures (solid green line). The result of bulk

conductivity is shown in Fig. (14) (c). We note that in this particular sample the inverted

resistance measurements allowed us to measure bulk conductivity down to 2.5 K when 99.9%

of the current was flowing on the surface of the sample. We plan to present the bulk transport

properties of SmB6 and related materials and the implications of these measurements within

the context of topological Kondo insulators in a separate publication[17].
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V. CONCLUSION

We have introduced a new type of transport measurement, which we call the inverted

resistance measurement. Together with a conventional transport measurement, it allows us

to characterize materials that have both bulk and surface conduction, such as TIs. The

inverted resistance measurement is powerful in the regime where the surface conduction

dominates the bulk. The inverted resistance is proportional to σb/σ
2
s , and therefore the

bulk conductivity, σb, is accessible even in the regime where surface conduction is dominant,

making this measurement powerful. This inverted resistance measurement requires a loop as

a current lead that encloses the other current lead, and two voltage leads placed outside of

the current loop. We have analyzed different transport geometries that utilize this inverted

measurement. The most ideal transport geometry for this inverted measurement is when

two Corbino disks are coaxially aligned on two opposite surfaces. If the sample is thick, the

inverted measurement can also be performed using a single-sided four-terminal Corbino disk

geometry. We note that this type of measurement is not suitable for characterizing purely

2D systems or thin films as we expect the inverted resistance would be zero, regardless of

the conductivities of the material.

The geometric prefactors (C−1 and C1), which are used for converting from resistances

to conductivities, were found using finite element analysis simulations. Experimentally, we

have successfully realized the transport geometries on SmB6 samples, and measured the

resistances at different temperatures. SmB6 turns out to be an ideal material for test-

ing our transport method because the bulk has a thermally activated behavior and nearly

temperature-independent surface conductivity. By performing the experiments from 2 – 20

K, we extracted the bulk conductivity, which includes both the bulk-dominated and surface-

dominated regimes. We note that the numerically found geometric prefactors were used

to extract the bulk conductivity, and a noticeable discontinuity between the results from

the bulk-dominated regime and the surface-dominated regime existed, suggesting there is

likely a discrepancy in the dimensions between the ideally suggested transport geometry and

the realized samples. However, the activation energy, or the slope of the bulk conductivity

vs. 1/T , are consistent in the two regimes, suggesting that they can be patched together

by adjusting the prefactors. We recommend adjusting the prefactor corresponding for the

inverted resistance measurement. Using these methods, we have found the bulk conductiv-
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ity of SmB6, extending about two extra orders of magnitude compared to the conventional

resistance measurement.

We expect our newly proposed method of transport can be used in a broad range of

materials beyond SmB6. For these new materials, we hope that the community does not

rely on the conventional transport methods such as residual-resistance ratios that can be

problematic in the presence of two-channels, and instead, employ our transport methods.
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Appendix A: Analytical Approach to Two-Terminal Corbino Disk with Infinite

Thickness

In this appendix, we take a deeper look at the perturbative approach of the scalable

resistance that was introduced in Sec. III. We will consider the boundary conditions that

make the electrostatics unique when there are two conductive channels (bulk and surface).

Using these findings, we will calculate the geometric coefficient (C1) in the surface-dominated

regime in an analytic fashion in the case of a standard two-terminal Corbino disk with infinite

thickness.

1. Continuity Equation and Boundary Conditions in the Presence of Two Chan-

nels

Consider a conductor with isotropic bulk conductivity, σb, and surface conductivity, σs.

Within the linear response, the DC transport behavior can be characterized by the electric

potential, V (~r), which is a scalar function of real space coordinate, ~r. In the bulk of the
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material, V (~r) satisfies the Laplace equation:

∇2V (~r) = 0, (A1)

which implies that the bulk current density is proportional to the electric field in the following

manner: ~J = σb ~E = −σb∇V and ∇ · ~J = −σb∇2V = 0.

On the surface, at a surface area covered with a highly conductive metal, the electric

potential in this surface area is a constant:

V (~r) = constant. (A2)

At the surface area that is exposed, we have the following boundary conditions from the

continuity equation:

∇s ·~js = Jn, (A3)

where the left-hand side is the 2D divergence (∇s·) of the surface current density ~js, and

on the right-hand side, Jn is the current density flowing from the bulk to the surface in the

normal direction of the surface. Note that Jn has units of A/m2, whereas ~js has units of

A/m. Alternatively, Eq. (A3) can be expressed as:

∇2
‖V (~r) =

σb
σs

∂V

∂n
, (A4)

where ∇2
‖ is the 2D Laplacian on the surface and ∂V

∂n
is the first order derivative along the

normal direction of the surface. Here, σb has units of 1/(Ω·m), whereas σs has units of 1/Ω.

For any transport geometry, the boundary conditions discussed above are uniquely deter-

mined by the geometric shape of the sample, the locations and the sizes of the leads, and the

external electric potentials applied to each lead. With these boundary conditions, Eq. (A1),

has a unique solution. In other words, the spatial distribution of the current is uniquely

determined in the bulk and on the surfaces, and therefore directly dictates all measured

transport coefficients.

2. Two-Terminal Corbino Disk Geometry with Infinite Thickness

Here we consider the boundary conditions of a two-terminal Corbino disk, as shown in

Fig. (2), in the limit where the thickness of the sample is infinite.
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As discussed previously, the potential, V , follows Eq. (A1) in the bulk. We choose

cylindrical coordinates, V (r, φ, z). The coordinates are defined such that the top surface

that has a Corbino disk is located at z = 0, and the bulk occupies the entire z < 0 area.

For the boundary conditions, V = 0 when z = 0 and r > rout (location of ground), and

follow V = constant for r > rin (location of current source). Within the annulus region,

rin < r < rout, the following boundary condition holds:

∇2
‖V (~r) =

σb
σs

∂V

∂z
. (A5)

In addition, V never diverges even in the limit of r →∞ and z → −∞.

3. Perturbation Approach to Electric Potential

The partial differential equation and the boundary conditions above are governed by the

ratio between the bulk and the surface conductivity. We define a parameter, λ = σb/σs, and

expand V in power series:

V =
+∞∑
i=0

λiϕi, (A6)

where ϕi’s are expansion coefficients. Note that λ is not dimensionless, whereas x in Sec. II

was defined so that it is dimensionless for convenience.

With Eq. (A1), we find the following conditions of each ϕ that must hold for all i:

∇2ϕi = 0. (A7)

In the annular region on the surface, rin < r < rout and z = 0, ∇2
‖ϕ0 = 0 when i = 0. Also

ϕi = constant for r < rin, and ϕi = 0 for r > rout on the surface (z = 0). Therefore, we

have:

ϕ0(r, z = 0) =


1

2πσs
ln( rin

rout
) when r < rin

1
2πσs

ln( r
rout

) when rin < r < rout

0 when r > rout

(A8)

In the bulk, the solution of Eq. (A7) when i = 0 that is continuous to the surface conditions

above is:

ϕ0(r, z) =
1

2πσs

∫
dk
J0(krin)− J0(krout)

k
J0(kr)ekz, (A9)
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where J0 is a Bessel function of the first kind. Next, we find the relations for i > 0.

Plugging Eq. (A6) into Eq. (A4) and comparing the powers of λ, we have the following

recursion relation:

∇2
‖ϕi =

∂ϕi−1

∂z
(A10)

when i > 1. On the surface, z = 0, and in the annular region, rin < r < rout, is:

ϕi(r, z = 0) =− ln(
rout

r
)

∫ r

rin

dr0 r0
∂

∂z
ϕi−1(r0, z)|z=0

−
∫ rout

r

dr0 r0
∂

∂z
ϕi−1(r0, z)|z=0 ln(

rout

r0

).

(A11)

Thus, the boundary conditions for ϕi can be found from ϕi−1. With the boundary conditions,

the bulk solution of ϕi can be obtained by:

ϕi(r, z) =

∫ +∞

0

dk Ai(k)J0(kr)ekz, (A12)

where

Ai(k) = k

∫ +∞

0

dr rJ0(kr)ϕi(r, z = 0). (A13)

Then, from ϕi(r, z), we can use the same method shown above to obtain the boundary

conditions for ϕi+1(r, z), and the iteration can generate solutions to higher orders.

4. First Order Solution of Resistance

From Eq. (A9), we can compute the derivative of ϕ0 along the z direction:

∂ϕ0

∂z
|z=0 =


1

2πσs
[ 2
πrin

K( r
2

r2in
)− 2

πrout
K( r2

r2out
)] when r < rin

1
2πσs

[ 2
πr
K(

r2in
r2

)− 2
πrout

K( r2

r2out
)] when rin < r < rout

1
2πσs

[ 2
πr
K(

r2in
r2

)− 2
πr
K(

r2out
r2

)] when r > rout

, (A14)

where K(x) is the complete elliptic integral of the first kind. Using Eq. (A14) with Eq. (A11),

the first-order correction of the potential difference between the two leads (source and

ground) can be found as:

∆ϕ1 = ϕ1(rin, z = 0)− ϕ2(rin, z = 0) = − 1

π2σs
w(rin, rout) (A15)
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where

w(rin, rout) =
1

16Rout

[πr2
out4F3(

1

2
, 1, 1,

3

2
; 2, 2, 2; 1)

− πr2
in(4F3(1, 1,

3

2
,
3

2
; 2, 2, 2;

r2
in

r2
out

) + 4F3(
1

2
, 1, 1,

3

2
; 2, 2, 2;

r2
in

r2
out

))

− 16rout(2GRout − 3routE(
r2

in

r2
out

) + 2rin + rout)

+ 32(r2
in − r2

out)K(
r2

in

r2
out

)

+ 16 ln(
rout

rin

)((r2
in − r2

out)K(
r2

in

r2
out

) + r2
outE(

r2
in

r2
out

)− rinrout)

+ 16πr2
out ln(2)].

(A16)

Here, pFq(a; b; z) is the generalized hypergeometric function, K(x) is a complete elliptic

integral of the first kind, and G is the Catalan constant. In addition to the electrical

potential, there is also a correction to the current by the perturbation expansion. The

corrections to the current to first order is:

I1 = σb

∫ rin

0

2πrdr
∂ϕ0

∂z
|z=0. (A17)

Using Eq. (A14), we find:

I1 =
2I

π

σb
σs
ν(rin, rout), (A18)

where

ν(rin, rout) = rin −
r2

inK(
r2in
r2out

)

rout

+ routK(
r2
in

r2
out

)− routE(
r2
in

r2
out

). (A19)

Thus, the resistance including the first order correction is:

R =
V

I
≈

∆ϕ0 + σb
σs

∆ϕ1

I + I1

=
ln(rout/rin)

2πσs

1− 2
π

1
ln(rout/rin)

σb
σs
w(rin, rout)

1 + 2
π
σb
σs
ν(rin, rout)

(A20)

To the first order, this is equivalent to:

R ≈ ln(rout/rin)

2πσs

1

1 + σb
σs
γ(rin, rout)

, (A21)

or alternatively, defining α = rout/rin, γ can be expressed as:

γ(α) =− rin

ln(α)
[
4

π
+ α(

2

π
− 2 ln 2) +

4

π
Gα

− 6

π
αE(α−2) +

4

π
(α− 1/α)K(α−2)

− α

8
4F3(

1

2
, 1, 1,

3

2
; 2, 2, 2; 1) +

1

8α
4F3(

1

2
, 1, 1,

3

2
; 2, 2, 2;α−2)].

(A22)
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When α = 2, γ(2)/rin = 0.626792, which agrees with the numerical results in the infinite

thickness limit that is shown in Fig. (3).

Appendix B: Generalization to Anisotropic Bulk Conductivity

The work in this paper so far has been done under the assumption that the bulk con-

ductivity is isotropic. We know that many topological insulators are in fact anisotropic in

such a way that the material has a different conductivity in one specific crystal direction.

If we prepare a double-sided Corbino disk sample where the axis is aligned with that spe-

cific direction, then in principle, we can use the bulk conductivity measurement strategies

by theoretically mapping the anisotropic sample to an isotropic sample with a different

thickness.

For a material with anisotropic bulk conductivity, we define the direction that is tangential

to the surface as r, and normal to the surface as z. We also define σtn as the bulk conductivity

tangential to the surface, and σn as the bulk conductivity normal to the surface. Then, the

potential in the bulk is determined by

σtn
∂2V

∂r2
+ σn

∂2V

∂z2
= 0, (B1)

with the appropriate boundary conditions at the interface of bulk and surface. By redefining

the normal direction, z, to ζ =
√
σtn/σnz, we can re-write Eq. (B1) as:

∂2V

∂r2
+
∂2V

∂ζ2
= 0, (B2)

Thus, we have mapped our problem into an isotropic bulk conductivity case. When we map

the problem as above, the thickness of the sample, t, is also mapped to a different thickness,

τ , with the relation: τ =
√
σtn/σnt.

σtn can be found if we know the correct C1(τ) and C−1(τ) values. If τ is not found

correctly, σtn in the surface-dominated regime and the bulk-dominated regime will be mis-

matched. If we start with the bulk conductivity from C1(t) and C−1(t), which is mismatched

initially, and change those values to C1(τ) and C−1(τ), where the bulk conductivity in two

regimes are continuous, this corresponds to σtn. Finally, σtn and τ can be used to find the

bulk conductivity in the normal direction:

σtn = σn(
t

τ
)2. (B3)
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However, we should warn the reader that this strategy for anisotropic conductivities can

only be useful for samples that are prepared with extremely high precision. As we have

learned from our transport measurements on SmB6 samples, a mismatch between the bulk

conductivity extracted from bulk- and surface-dominated regimes using different 4-terminal

resistance measurements can easily occur because of small imperfections in the transport

geometries.
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