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Orientation effects on the specific resistance of copper grain boundaries are studied systematically
with two different atomistic tight binding methods. A methodology is developed to model the specific
resistance of grain boundaries in the ballistic limit using the Embedded Atom Model, tight binding
methods and non-equilibrum Green’s functions (NEGF). The methodology is validated against first
principles calculations for thin films with a single coincident grain boundary, with 6.4% deviation in
the specific resistance. A statistical ensemble of 600 large, random structures with grains is studied.
For structures with three grains, it is found that the distribution of specific resistances is close to
normal. Finally, a compact model for grain boundary specific resistance is constructed based on a
neural network.
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I. INTRODUCTION

Due to the aggressive downscaling of logic devices, interconnects have reached the nanoscale, making quantum
effects important. According to the roadmap provided by ITRS, interconnects are expected to reach sizes of 10
to 30 nm in the next decade [1]. Previous work by Graham et al. [2] demonstrates that surface scattering and
grain boundary (GB) scattering play major roles in the resistance of structures smaller than 50 nm. Earlier works
based on semi-empirical parameters have described polycrystalline films and surface scattering [3, 4] for macroscopic
systems, but the fact that those models require fitting parameters for each experimental setup limits the scope of
their applications. The ultra-scaled interconnects suggested by the roadmap require better descriptions of orientation
and confinement effects to correctly model scattering in wires. Recently, first-principles calculations have been used
to describe the resistance of a single grain boundary by making use of non-equilibrium Green’s function with Density
Functional Theory (DFT-NEGF) formalism [5]. The results demonstrate a strong correlation between resistance and
the geometry of the grain boundary , and show agreement with both experimental [6] and other theoretical work
[7–9]. However, the studied structures are limited to relatively small sizes containing single grain boundaries and less
than a few hundred atoms because of the computational burden required to perform DFT-NEGF calculations.
The purpose of this manuscript is to introduce an atomistic model that describes the specific resistance due to
grain boundary effects for realistic copper interconnects as projected by the ITRS roadmap [1] without depending
on any phenomenological parameter. Even though the atomistic model is much faster than an ab initio method,
parametric models have the advantage of easily providing a quantitative value of specific resistance. Therefore, a
compact model which reduces the computation time is generated by making use of a neural network that is based
on large statistical sample. The rest of the manuscript has been organized as follows. Section II presents the main
characteristics of the atomistic models and benchmarks tight binding parameters against first principles calculations
for a copper FCC structure. Section III constructs single grain boundaries based on coincident site lattice (CSL)
and validates their electronic properties against an ab initio method. Section IV describes grain boundary effects on
copper interconnects using a system of three grains of 10 nm length simulated with an atomistic method which is
benchmarked in the previous sections and quantifies the effect of misorientation. Section V proposes a compact model
based on three different algorithms and finds that a neural network approach best matches the results obtained from
the atomistic methods, allowing the results to be generalized to any grain boundary system configuration with a total
length of 30 nm. Section VI presents a summary of this work.

II. DESCRIPTION OF TIGHT BINDING MODELS

The two tight binding methods used in this study are an environmental orthogonal tight binding model (TB) [10]
and a non-orthogonal tight binding method based on the Extended Hückel (EH) model [11]. The TB model has an
orthogonal basis with an interaction radius up to the second nearest neighbor (2NN 0.4 nm). However, it requires a
large number of parameters to include strain effects (48 parameters for copper). In comparison, the EH model has
a non-orthogonal basis with a larger interaction radius up the third nearest neighbor (3NN 1.0 nm). It requires a
smaller number of parameters than the TB method (11 parameters for copper).

Existing parameters for the TB model [10] fail when used in highly distorted atomic systems such as GB. Due
to the exponential dependence of the inter-atomic coupling on the bond length, the inter-atomic matrix elements
corresponding to bond lengths with a 5% or greater distortion generate unphysical results. The problem is solved by
obtaining a new parametrization with additional constraints on the inter-atomic coupling. This new parameter set is
summarized in TABLE VI A in Appendix A. The parameters for the EH model are taken from literature [12]. Both
EH parameters and the new TB parameters show a good match for the Cu unit cell when compared against an ab
initio method as shown in Fig.1. The ab initio result, used as a reference, is obtained by density functional method
with a Perdew-Burke-Ernzerhof version of the generalized gradient approximation (GGA PBE) exchange- correlation
functional [13]. An energy cutoff of 150 Ry is used and the Brillouin zone is sampled with a 10×10×10 mesh. An
FCC copper lattice with a lattice constant of 0.361 nm, as reported experimentally [14], is considered.
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FIG. 1. Band structure for copper unit cell obtained by TB, EH and DFT methods. Ef indicates the Fermi energy.

III. SINGLE GRAIN BOUNDARIES CALCULATIONS

To validate the tight binding models, the effects of GB scattering were studied for a single coincident site lattice
(CSL) and random single (RS) grain boundaries. The CSL GB configurations are obtained by a rotation of one of
the grains until its lattice vector becomes coincident with the vector of the unrotated lattice [15] as shown in Fig. 2.

FIG. 2. Coincident site lattice GB are obtained by generating a superposition of two periodic lattices. One of the lattices was
rotated with respect to the other, generating coincident points between the lattices for each rotation angle.

Additionally, our semi-empirical methods were validated against highly distorted atomic systems as shown in Fig.3.
A fairly small number of atoms (< 400) is required to construct these systems, which allows the tight binding models
to be benchmarked against a first principles calculation as implemented in the ATK package [13]. CSLs are labeled
by ΣN , where N corresponds to the ratio of the CSL unit cell size to the standard unit cell size. In this work,
the CSL GB are generated with GBSTUDIO [16] and the RS grain boundaries are generated by Voronoi diagrams
[17]. Those structures are then relaxed using an ab initio method. The relaxation is carried out with GGA PBE
exchange-correlation functional. A Double Zeta polarized basis set is used for copper atoms with an energy cutoff of
150 Ry and the Brillouin zone sampled with a 4×4×1 mesh, until all atomic forces on each ion are less than 10−5

eV/Å. Once the ionic relaxation is completed, the transmission spectra for the CSL and RS structures are calculated
by the recursive Green’s function method [18] implemented in NEMO5 [19] in an energy range between -2 and 2 eV
around the Fermi level with a Brillouin zone sampled with a 30×30×1 mesh. The integrated transmission spectra
in the k space obtained by the tight binding methods are compared against the spectrum obtained by the ab initio
method with a similar basis set, energy cutoff and Brillouin mesh as is used in the ionic relaxation. The integrated
transmission over the k-space for CSL plotted in Fig. 4 shows that the EH method captures the main features of DFT
not only at the Fermi energy (Ef ), but also over a large energy window.
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FIG. 3. Schematic representation of random single grain boundaries. Structures a) and b) are obtained for copper atoms
growing in the direction 111 with rotation angles in the directions [1̄1̄2] and [11̄0] by a a rotation equal to 78.4◦ and 70.5◦

respectively.
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FIG. 4. Transmission spectra T (E) for two different CSL (Σ3 and Σ9) show that EH captures the main features of DFT.

On other hand, while the transmission spectrum calculated by TB also shows reasonable agreement with DFT
around the Fermi window, it fails to describe the ab initio transmission spectrum for energies away from the Ef .
In order to validate our tight binding models for more complex and disordered systems as described in Fig. 3, a
transmission spectrum was calculated for the RS structures as shown in Fig. 5. Similar to the transmission spectrum
obtained for CSL (see Fig. 4), EH again captures the main features of DFT while TB partially matches the results
close to the Fermi energy, but does not provide as good description of the electronic properties in a large energy
window.

FIG. 5. Transmission spectra T (E) for RS structures a) and b) sketched in Fig 3. The results show that tight binding models
described the electronic properties for complex and disordered systems, but as before EH captures the main features of DFT
while TB partially matches the results close to the Fermi energy

Subsequently, the resistance for the CSL and RS GBs in the ballistic limit is obtained based on the Landauer
formalism assuming a low bias condition [20] as:

G =
1

R
=

2 e2

h

∫
T (Ef ,k) d2k, (1)

where G is the conductance, R is the resistance, e is the elementary charge, h is Planck’s constant and T (Ef ,k)
is the transmission for a particular wave vector k at the Fermi energy. The Fermi levels in Figs. 1, 4 and 5 are
calculated at the leads of the device self consistently for DFT and non-self consistently for tight binding models. In
this last case, the Fermi level is obtained by integrating over the DOS from −∞ to Ef until this value becomes equal
to the total number of electrons at a zero temperature approximation [21]. Following Ref. [5] the specific resistances
of the CSL and RS grain boundaries are obtained by γR = (R−RB)A, where R is the resistance of the configuration
that contains the GB, RB is the resistance of the perfect bulk copper, and A is the grain cross section. The specific
resistances for those CSL configurations are calculated by TB and EH and compared to DFT as shown in Table I.
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Specific resistance CSL γR (10−12Ω cm2)
GB γDFT γEH γTB Experimental Other References
Σ3 0.156 0.173 0.158 0.170 [22] 0.202 [6]

0.155 [8]
0.158 [5]
0.148 [9]

Σ5 1.759 1.934 2.240 1.885 [6]
1.49 [5]

Σ9 1.82 1.72 2.14 1.75 [5]
Σ11 0.64 0.57 0.71 0.75 [5]
Σ13 2.01 1.72 2.09 2.41 [5]

Random 1 5.11 4.61 5.33
Random 2 6.54 5.92 6.60

TABLE I. Specific resistance for different CSL (ΣN) calculated by TB, EH and DFT.
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The results in Table I and Fig. 6 show less than 10.4 % difference in the specific resistance between EH and DFT,
and less than 11.2% between TB and DFT. Thus the atomistic methods (TB and EH) are able to describe copper
interconnects with reasonable accuracy. These methods are chosen to study GB systems with 103 to 104 atoms
because they require significantly fewer computer resources than the ab initio calculations [21].

FIG. 6. Resistivities for different CSLs, labeled by ΣN , calculated by TB and EH and compared with the DFT method.

Only non ab initio methods are capable of relaxing structures of this size (� 103 atoms), therefore a force field
potential method based on an Embedded Atom Model (EAM) is used. The relaxation is performed using LAMMPS
software package [23] with an EAM potential constructed by Y. Mishin et al. that is fitted to first principles calcula-
tions to correctly describe grain boundaries and point defects in copper [24].

The accuracy of this approach is determined by comparing the formation energy for CSL GBs obtained by ab initio
and the EAM method. The formation energy γE is defined as follows:

γE =
Eslab −NE0

A
, (2)

where Eslab is the total energy of a slab configuration that contain a CSL GB, N is the number of atoms in the CSL
GB, E0 is the energy of a single atom of bulk copper and A the cross sectional area. The ionic relaxation carried out
by ab initio methods used the plane wave DFT package (VASP) [25] and a PBE GGA exchange-correlation functional.
The plane wave energy cutoff is 500 eV and the Brillouin zone is sampled with a 4×4×1 mesh, until all atomic forces
on each ion are less than 10−5 eV/Å. Comparison of the relaxation energy, computed using the EAM potential, with
the DFT result (see Fig. 7), shows that the difference is less than 7% with for all CSL orientations except the Σ11,
which shows a larger error of 20 %. These results indicate that the EAM potential calculation is an acceptable method
to relax the grain boundary structures with the benefit of reduced computational burden, compared to DFT.

IV. SPECIFIC RESISTANCE FOR GRAINS OF 10 NM LENGTH

Based on the prediction of the ITRS roadmap that interconnects will reach 10 to 30 nm length in the coming years
[1], a set of copper thin films of 30 nm is constructed and modeled by tight binding methods as described in Section
II. The copper interconnects are formed by three grains of 10 nm length. Each grain is constructed with a super
cell growing in the [110] orientation with a lattice constant of 0.361 nm which has the highest conductance [10], as
reported experimentally [14]. In order to quantify the effect of GB orientation on the specific resistances for copper
interconnects, two different types of GBs are generated by Voronoi diagrams [17]. These GB types are based on the
rotation direction of the middle grain shown as “Tilt” and “Twist” GBs respectively, which generates two boundaries
as shown in Fig. 8 a) and b). Note that rotations about [110] axis are not studied in this work because it would



8

FIG. 7. Formation energy (γE) for different CSLs GB, labeled by ΣN , relaxed by DFT and EAM potential.

require the simulation of a structure with a very large cross section due to the periodic conditions in the transverse
direction which is beyond the authors’ computational capabilities.

In order to have a lower impact on the specific resistance due to the electrode setup, three grains are modeled in this
work. In both configurations, only the middle GB is initially rotated then a periodic boundary condition is applied
in the [001] direction for the ionic relaxation and the electronic transport calculation. Therefore, atomic surface
roughness is present in the structures as a result of the relaxation. Additionally it is assumed that each configuration
shown in the Fig. 8 a) and b) is connected to a pristine source and drain lead oriented in the [110] direction, whose
atoms are fixed during the ionic relaxation.

The “Tilt” GBs are generated by a rotation of the middle grain with respect to the [001] direction by an angle θ in
a range between 0 and 90 degrees. Each grain is formed by a super-cell of 10 nm length (L) in the transport direction
[110], 10 nm width (W ) in the [1̄01] direction and 0.361 nm thickness (T ) in the periodic direction [001] as shown in
Fig. 8 a) and c).

The “Twist” GBs are generated by a rotation of the middle grain with respect to the [1̄11] direction by an angle θ
in a range between 0 and 90 degrees. The rotation is applied in the same direction as the periodicity, therefore thicker
grains are constructed to ensure the grains overlap after rotation. In this configuration setup each grain is formed by
a super-cell of 10 nm length (L) in the transport direction [110], 3 nm width (W ) in the [1̄01] direction and 3 nm
thickness (T ) in the periodic direction [001] as shown in Fig. 8 b) and d).
It is important to clarify that after any rotation for “Tilt” or “Twist” GB the [110] direction is no longer the transport
direction for that grain. Similarly, the rotation angle corresponds to the initial value, but this value will be slightly
modified after relaxing the structure.
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FIG. 8. GB classification: a) “Tilt” GB are generated by a rotation in the [001] plane b) “Twist” GB generated by a rotation
in the [1̄01] plane where the grain boundary is always perpendicular to the transport direction. c) and d) figures represent the
top view of “Tilt” and “Twist” GB configurations.

The specific resistance for “Tilt” and “Twist” GBs for different orientations are obtained by a procedure similar
to that described in Section III as ρ = R × A, where R is obtained by Eq. (1) and each configuration is relaxed by
an EAM potential. Note that this value different with respect to the specific resistance calculated for CSL. because
this time it was not subtracted the bulk contribution that correspond to around 9.8 Ω cm2 × 10−8 as shown in the
Fig. 9 . In order to compare the specific resistance for “Tilt” and “Twist” GBs for different angles θ, the “Tilt” GBs
values are normalized such that “Tilt” and “Twist” GBs are calculated over the same cross sectional area. Those
values are plotted in Fig. 9. In both systems, specific resistance increases with an increase in the angle, until the angle
reaches 30 degrees, and then becomes almost constant, although the “Tilt” GB shows a reduction after 60 degrees.
The specific resistance dependence for “Twist” GBs shows more noise than for “Tilt” GBs, because “Twist” structure
has more points per unit area where the grain boundaries intersect (see Figs. 8c, d), which leads to a higher number
of dislocations.
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FIG. 9. a) “Tilt” and b) “Twist” GB specific resistance calculated by the TB and EH methods.

To further understand the relationship between specific resistance and the orientation angle for the “Tilt” grain
boundaries (see Fig. 8), local density of states (LDOS) at the Fermi energy are calculated by the TB method as
shown in Fig. 10. Five distinct regions can be observed in the LDOS for both configurations. The contacts (I and
V), which are coupled to the central regions (II-IV), are not relaxed as previously described. As expected, the LDOS
in these two areas is smooth and independent of the angle mismatch between the grains. In contrast, regions II,
III and IV show change with respect to the rotation angle. This result shows that the LDOS is perturbed not only
at the grain boundary, but rather over the entire grain. This contradicts the assumption of the Mayadas-Shatzkes
model [4, 26, 27], which treats the grain boundary effect as a local perturbation of the potential at the interface
between grains. The LDOS of each grain is affected by the rotation of the middle grain, even though regions II and
IV are not rotated.

As Fig. 9a) shows, the configuration with rotation angle equal to 18 degrees (which corresponds to Fig. 10a))
has smaller specific resistance than the configuration with a 54 degree angle (Fig. 10b)). There is a comparatively
lower LDOS in the central region of Fig. 10b), therefore electrons will have less states to move into, increasing the
specific resistance. Finally, the LDOS is higher at the surface where atoms have dangling bonds.
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FIG. 10. LDOS calculated with the EH basis for Tilt GBs rotated 18 (a) and 54 (b) degrees, respectively, about [001] axis.

As described in Section III, simulations performed with TB and EH exhibit the same specific resistance at the
Fermi energy for CSL and small random structures with an error around 11% compared to first principles calculations.
However, states beyond the Fermi level are not captured as well by the TB method. Therefore, in a much larger and
more disordered structure, TB results are expected to differ from EH results. However, surprisingly large values of
specific resistance are observed for the “Twist” GBs at 4 and 68 degrees (Fig. 9b). The authors suspect that the
peaks in the specific resistance for the TB model in the “Twist” configuration (Fig. 9b) are the result of an incomplete
description of the coupling elements of the Hamiltonian corresponding to the coupling between copper atoms at the
surface. In order to examine this issue, the number of atoms at the surface at a depth of 0.5 nm was calculated for
each orientation as shown in Fig 11 b). The results show that the two orientations that exhibit peaks in specific
resistance (4 and 68 degrees) show a large number of atoms at the surface (around 15 to 19 % more with respect to
the orientation at 2 degrees). It was also found that those configurations have a much larger mean distance to the
first nearest neighbor as shown in Fig. 9c). Those two orientations may contain a larger number of atoms that are
beyond the cut-off distance used by the TB model (0.4 nm [10]), and the missing couplings may cause a non-physical
increase in the specific resistance. Note that the TB model was purposely parametrized for a cut-off of 0.4 nm [10]; in
order to use a larger cut-off, the model must be re-parameterized. However, this will make its numerical load nearly
equivalent to the EH model which does not have such a problem because it has a much larger interaction radius.

In order to create a compact model to predict how specific resistance changes as a result of GB orientation, a set of
600 samples is generated with geometries similar to “Tilt” configuration. The “Tilt” configuration is chosen over the
“Twist” systems, because the “Twist” GBs require a much larger thickness, beyond our compute power (see Figs. 8
b and d).

Each GB is constructed with three grains and each of them is rotated with an angle (α, β, γ) in a range between 0
to 180 degrees parallel to the GB boundary. The dimensions of the GB are similar to those used for “Tilt” GB with
thickness, width and length equal to 0.5 nm, 3 nm and 10 nm respectively as shown in Fig. 12. A periodic boundary
condition in the [001] direction is imposed.

The specific resistance for these samples is calculated with the EH method because it is more reliable over angle
rotations than the TB method. Making use of the results obtained from these samples, a boxplot for α and γ in a
range between 0 to 180 degrees and a constant angle β is plotted in Fig. 13 which shows a symmetry in the specific
resistance in a range between 0 to 90 degrees and 90 to 180 degrees. This observation is confirmed by a statistic
nonparametric Kolmogorov-Smirnov test [28] which compares the distribution function for the group of samples in
a range between 0 to 90 degrees against those between 90 to 180 degrees and finds that both groups of samples are
drawn from an equivalent, continuous distribution. A p-value of 0.16 is obtained for the Kolmogorov-Smirnov test,
confirming that there is no difference between the specific resistance distributions for both cases with a confidence of
95%. The symmetry in the specific resistance is due to the fact that the crystal symmetry of copper is not totally
disrupted by the structural relaxation. The probability distribution for the three different angles (α, β and γ) in a
range between 90 to 180 degrees is plotted in Fig. 14.
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FIG. 11. a) Resistivity b) mean radius and c) number of atoms for “Twist” grain boundaries for different mis-orientation angles
between 2 to 88 degrees calculated with the TB model. The values 2 and 68 degrees circled on the plots above correspond to
the cases that present a large resistance. Those states exhibit a much larger mean first nearest neighbor distance and number
of atoms over the surface which are not correctly captured by our TB model that has a 2NN cut-off.

FIG. 12. GB configuration constructed with three grains, each one generated by rotating the lattice through angles α, β, γ,
respectively, around the [001] axis.
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FIG. 13. Resistivity distributions for α and γ between 0 to 180 degrees and a constant angle β. The boxplots represent the
resistance distribution, while those marked with a star represent outliers.

Per the Shapiro-Wilk test [28] with a p value of 0.15 and a 95% confidence, the specific resistance distribution
follows a normal distribution with a mean and standard deviation equal to 31.7 ×10−12 Ω cm2 and 2.8 ×10−12 Ω cm2.
The Q-Q plot in Fig. 14 b) shows that the specific resistance distribution is likely normal, although the left and right
tails do not follow a normal distribution.

FIG. 14. a) Probability distribution for a GB system rotated over three different angles α, β and γ in a range between 90 and
180 degrees. The shaded area represents the best approximation of a normal distribution for the 600 samples; b) Q-Q plot
which confirms the normal distribution.

V. GRAIN BOUNDARIES MODELED BY A NEURAL NETWORK

Atomistic models based on a tight binding approach can describe the effects of the GB orientation in the specific
resistance for copper interconnects with the same accuracy as DFT methods, but with a much lower computational
burden. However, the specific resistance calculated by atomistic models such as EH and TB for a combination
of three grains of 10 nm length in the transport direction are still not as fast as conventional models such as the
Fuchs-Sondheimer and Mayadas-Shatzkes models [3, 4] which describe surface roughness and grain boundary effects
respectively in copper interconnects. However these models require experimental input to fit some parameters which
limits the transferability for different configurations. Therefore, compact models based on the statistical results
obtained from an atomistic model described in Section IV are proposed to describe the scattering effects on grain
boundaries for a system of 3 grains of 10 nm length. Three different algorithms are used to construct the compact
models, including a polynomial fit, a nearest neighbor search model and a neural network as described in the following
subsections. The inputs for the compact models are the orientation angles α, β and γ and the output is the specific
resistance of the GB ρ(α, β, γ). The compact models are trained with a random selection of 80% of the 600 samples
plotted in the Fig. 14 and validated with the remaining 20% of the data.
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Polynomial Fit

A polynomial fit of second order is carried out based on a least squares adjustment, obtaining the following para-
metric relationship between the misorientation angles (α, β, γ) and the specific resistance:

ρ(α, β, γ) =21.95 + 10.59α− 2.76α3 + 10.54β (3)

− 6.15β2 + 13.41γ − 3.91βγ − 5.18γ2

The expected values obtained from the model are compared against the remaining 20% of the atomistic data as show
in the Fig. 15. The parametric fitting based on a polynomial approximation with eight relevant parameters displays
a poor match with the atomistic results with a 70% variability of the specific resistance for the training dataset and
a mean square error (MSE) equal to 13.94 ×10−12 Ω cm2 . This result shows that grain boundary effects cannot
be modeled as a simple additive effect between each orientation. Therefore, a more complicated dependency exists
between the specific resistance and the orientation angles.

FIG. 15. Evaluation of the specific resistance for the multivariate polynomial model using least squares adjustment for the
remaining 20% of ρ(α, β, γ) values for copper interconnects.

Nearest Neighbor Fitting

Since the polynomial fit provides a poor fitting for the specific resistance of a GB oriented by the angles (α, β, γ),
a non-parametric model is explored based on a “Nearest-Neighbor” search which uses the “dsearchn” triangulation
method to determine the number of nearest neighbors for each query-instance. Then, a linear interpolation between
the nearest neighbors is carried out to obtain the interpolated value as implemented in Matlab’s optimization package
[29]. The comparison between the expected and the predicted specific resistance obtained with the process described
before is plotted in Fig. 16. The mean square error obtained by this method is equal to 2.67 ×10−12 Ω cm2 which
is much lower than the error of the polynomial method. This method does not introduce any new parameters for
interpolation, but it is limited by the dimensionality of the parametric space [30–32]; systems with a larger number
of grains, than were considered in this study would have a comparatively larger MSE.

Neural Network Model

Finally, a compact model based on a Neural Network (NN) [33] algorithm is introduced. NN models have been
widely used to model complex problems; in the TB approach, NN algorithms have been used to describe potential
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FIG. 16. Evaluation of the specific resistance for the Nearest Neighbor model for the remaining 20% of ρ(α, β, γ) values for
copper interconnects.

minimization [34] and material parametrization [35]. In this work, a multilayer neural network (MLN) is applied with
a back-propagation algorithm [33] to quickly obtain the specific resistance of the GB. The neural network shown in
Fig. 17 is achieved after testing different types of neural networks and varying the number of hidden layers. The
final system is formed by an input layer, three hidden layers, and one output layer. The input layer p= (α, β, γ) is
represented by a row vector of dimension 3× 1. The hidden layer is composed of three inner layers i with 10, 6, and
3 neurons, respectively; the weight W i and bias bi vectors for a given layer i are shown in Fig. 17. The MLN is
implemented in the statistical software R making use of the package Neuralnet [36]. The value of the parameters W i

and bias bi are obtained by the gradient descent method [37] which minimizes the mean square error of the output
layer. In the NN, the functions f i represent logistic functions employed at each layer, except for the last layer f 4 to
which is applied a linear function.

FIG. 17. Schematic representation for the Multi-Layer Neural Network used to describe grain boundary specific resistance for
copper interconnects with three grains. The values W i and bi correspond to the weights and bias parameters, f i represents
logistic functions except for the last layer f 4 to which is applied a linear function and a i corresponds to the output at each
neuron i.

The mean square error (MSE) obtained by this model is equal to 1.44 ×10−12 Ω cm2. The results obtained for the
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testing data of the MLN are plotted in Fig. 18; the model shows good agreement for low values of specific resistance
and larger variability for GB with a specific resistance over the range 29.0 - 39.0×10−12 Ω cm2. Though, the NN
compact model requires many mores parameters (131 parameters for this case) compared to the polynomial compact
model and nearest neighbor interpolation, it still has the lowest MSE while substantially reducing the computational
burden in comparison to the full atomistic simulation.
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FIG. 18. Evaluation of the specific resistance for the Multi-Layer Neural Network model for the remaining 20% of ρ(α, β, γ)
values for copper interconnects.

As observed in the literature, neural networks are recommended for the construction of non-parametric models [38–
40] that can describe complex relations such as that between angle orientation and specific resistance. The NN
obtained in this work can exclusively model the specific resistance for systems with the geometric configurations
described in Fig. 12 (the NN is available from a Jupiter notebook [41] ). However, the NN sketched in Fig. 17 may
be used as an initial guess for more complicated configurations with different geometries and number of grains, which
cannot be described by non-parametric methods such as “nearest neighbor” or linear fitting.

VI. SUMMARY

In summary, the effect of orientation on grain boundary resistance for copper interconnects is studied using two
different atomistic tight binding methods (EH and TB). The transmission spectrum and specific resistance calculated
by these methods are benchmarked for coincident site lattice single GB (ΣN) against first principles calculations.
These results show that the EH method captures the main features of DFT in the Fermi window between -2 to 2 eV.
On other hand, the transmission spectrum calculated by TB also shows reasonable agreement with DFT around the
Fermi window, but fails to describe the ab initio transmission spectrum for energies away from the Fermi energy. Since
the computational requirements for tight binding methods are also much smaller than for first principle calculations,
the EH method is an effective way to describe the specific resistance of interconnects with lengths greater than 30
nm.

The LDOS obtained with the atomistic model shows that the perturbation in the LDOS is not at the grain bound-
ary, but rather over the entire grain. This contradicts the assumption of the Mayadas-Shatzkes model [4, 26, 27],
which models the grain boundary effect as a local perturbation of the potential at the interface between grains.

Orientation effects for “Tilt” and “Twist” GBs for copper interconnects of 30 nm length relaxed by a semi-classical
EAM potential are also benchmarked against first principles. Rotations perpendicular to the transport direction
have a larger effect on the specific resistance of the GB than rotations parallel to the transport direction. Statistical
analysis of GB specific resistance shows that the inversion symmetry of copper is still manifested for the considered
grain geometry.

Finally, statistical models based on three different algorithms are studied. The parametric model based on a
polynomial fit of the misorientation angles (α, β, γ) shows a poor match with the test results from the atomistic
model, confirming that a complex relationship exists between the specific resistance and the orientation angles. While
the nearest neighbor model displays a better fit with an error of 2.67 ×10−12 Ω cm2 , it can only support three degrees
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of freedom. Among the studied models, the compact model based on neural network is the best algorithm to describe
the specific resistance with a MSE lower than 1.44 ×10−12 Ω cm2. As mentioned before, the NN obtained in this work
is only validated for the systems analyzed in Fig. 12. However,the NN sketched in Fig. 17 may be used as an initial
guess for a system with more degrees of freedom, as well as configurations with different geometries or number of
grains.

In this manuscript, the ballistic resistance due to the grain boundary effect has been studied. While electron
phonon scattering are reported to play an important role in copper resistivity at room temperature and when the
grains are larger [2, 42], these effects have not been included in this work. Future work will use the neural network to
generate a compact model that includes electron-phonon scattering in addition to grain boundary effects to describe
the resistivity for copper interconnects.
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A. Appendix

Parameters for bulk copper with the environmental tight binding method (TB) are obtained by direct fitting bulk
band structure [10], but additional constraints on the inter-atomic coupling are included during the parametrization
process.

Parameter Name Value Parameter Name Value
V BO 3.6540 I D D ∆ -0.08
E S -4.5236 q D D σ 4.8355
E Px -0.1458 q D D Π 4.7528
E Py -0.1458 q D D ∆ 4.2950
E Pz -0.1458 I S S σ 0.4
E Dxy -4.3034 I S P σ 0.4457
E Dyz -4.3034 I S D σ -0.36819
E Dxz -4.3034 I P P σ 1.5605

E Dz2 -4.3034 I P D σ -0.2532

E Dx2 y2 -4.3034 I P P Π -0.1348
V S S σ -0.9588 I P D Π 0.0135
V S P σ 1.4063 q S S σ 2.20333
V S D σ -0.1841 q S P σ 2.6554
V P P σ 1.4025 q S D σ 0.2495
V P P Π -0.5730 q P P σ 1.5905
V P D σ -0.4607 q P P Π 2.9059
V P D Π 0.3373 q P D σ 3.8124
V D D σ -0.3709 q P D Π 3.9330
V D D Π 0.2760 p S S σ 1.3692
V D D ∆ -0.0735 p S P σ 2.8794
I D D σ -0.15 p S D σ 3.94296
I D D Π -0.2498 p P P σ 5.5023
p P P Π 0.536231 p P D σ -1.0
p P D Π -1.0 p D D σ -0.83723
p D D Π 0.66507 p D D ∆ 4.8475
R0 inter 0.25526 R0 intra 0.25526

TABLE II. TB parameters for Cu following the notation on ref [10]
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