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We present a graphene-based metasurface that can be actively tuned between different regimes
of operation, such as anomalous beam steering and focusing, cloaking and illusion optics, by ap-
plying electrostatic gating without modifying the geometry of the metasurface. The metasurface
is designed by placing graphene ribbons (GRs) on a dielectric cavity resonator, where interplay
between geometric plasmon resonances in the ribbons and Fabry-Perot resonances in the cavity is
used to achieve 2π phase shift. As a proof of the concept, we demonstrate that wavefront of the
field reflected from a triangular bump covered by the metasurface can be tuned by applying electric
bias so as to resemble that of bare plane and of a spherical object. Moreover, reflective focusing and
change of the reflection direction for the above-mentioned cases are also shown.

I. INTRODUCTION

Gradient metasurface is a planar arrangement of sub-
wavelength scatterers of different shapes and sizes de-
signed to structure wavefronts of reflected or transmit-
ted optical beams by means of spatially varying opti-
cal response[1–5]. Light interaction with the metasur-
faces defies conventional laws of geometrical optics, such
as the Snell’s law or the law of reflection, and reveals
a variety of non-trivial physical effects useful for prac-
tical applications. Particularly, efficient beam steering
of the incident light in reflection and/or transmission
modes was reported for metasurfaces operating both in
narrow [6, 7] and broad [8–11] frequency ranges. More-
over, pronounced polarization dependence of steering di-
rections and/or amplitudes of beams deflected by meta-
surfaces was demonstrated [12–18] thus paving the way
for creating ultrathin optical polarizers, quarter and half
wave plates[19–21]. Great deal of attention has also been
devoted to developing of viable alternatives to conven-
tional focusing devices in transmission [7, 22–25] (lenses)
and reflection [26–31] (parabolic reflectors) geometries.
In fact, reflectarrays allow for the implementation of
parabolic phase gradient along a planar surface thus
avoiding technologically complicated process of creating
parabolic surfaces for reflected light.

Recently it has been realized that metasurfaces can re-
place transformation optics[32–34] when it comes to im-
plementing efficient cloaking devices. The essence of op-
tical cloaking is to surround the object to be hidden by a
material with carefully designed spatially varying dielec-
tric permittivity (optical cloak) so that far-field radiation
pattern of the object-cloak system is as close as possible
to that of empty space. Efficient hiding of 2D and 3D
bumps by metasurface carpet cloaks was reported [35–
40]. The advantage of the metasurface based cloaking is
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that control of the polarization, phase and amplitude of
the wave reflected by a cloaked object can be achieved
[41] without modifying all the components of permittiv-
ity and permeability tensors which is required when using
the transformation optics approach.

The operational characteristics (angle of beam steer-
ing, focal distance, angular efficiency, losses etc.) of opti-
cal devices based on metasurfaces designed using conven-
tional dielectric or metal materials is typically predefined
by the metasurface geometry and cannot be changed on-
the-fly during the device operation. This might be a
significant limitation when tuning of device character-
istics is essential for the device operation, particularly,
tunable steering angle for optical switches. Attempts
to overcome this limitation using gate-tunable conduct-
ing oxides [42], temperature-tunable nematic liquid crys-
tals [43] or strain tunable elastic polymers [44] as meta-
surface building blocks were reported. Graphene plas-
monic resonators[45–51] provides viable alternative[52–
55] to design of active metasurface that can be tuned
by applying gate voltage. Dynamic tuning of Fermi en-
ergy in graphene plasmonic structures has been reported
for optical switching[56] and infrared beam steering via
acoustic modulation[57]. Active tuning of steering angle
using graphene based metasurfaces operating in reflec-
tion regime was reported[54, 58].

The gradient metasurfaces are typically designed in or-
der to perform a particular specialized task, such as tun-
ing, focusing or cloaking. In this paper, we demonstrate
that it is possible to design a versatile active metasurface
using gate-tunable graphene ribbons[59, 60] on an arbi-
trary substrate surface, which is capable of performing
each of the above-mentioned specialized tasks depending
on the electric bias profile across the surface of the meta-
surface, i.e. without changing the metasurface geometry.
Particularly, we demonstrate that far-field distribution of
the electric field of the wave reflected from a bump cov-
ered by such a metasurface can resemble either that of
bare plane (cloaking case) or that of an object of a dif-
ferent shape (illusion), depending on the applied bias. In
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FIG. 1. Illustration of the metasurface design and applica-
tions. (a) shows structure of the graphene ribbon array meta-
surface covering a non-planar surface. α and β are directions
of incident and reflected rays. (b)-(e) show depiction of differ-
ent reflection jobs discussed in the work. They are (b) cloak-
ing with specular reflection, (c) illusion optics, (d) cloaking
with anomalous reflection and (e) reflective focusing.

addition, we show that such wavefront engineering - as
anomalous reflection and focusing - can also be achieved
in conjunction with cloaking and illusion.

In what follows, we discuss general metasurface design
strategy in Section II, followed by theoretical and simu-
lation results for the above-mentioned functionalities in
Section III-V. Lastly, we end with some general discus-
sions on experimental realization and performance issues
of the device in Section VI.

II. DESIGN OF THE METASURFACE

Fig. 1a shows a schematic of the graphene based meta-
surface device. In general, the metasurface can be imple-
mented on a non-planarized surface. At the desired fre-
quencies, mid-infrared light incident on the metasurface
can be reflected in non-trivial fashion to achieve various
functionalities. For example, the light can be reflected

as if the surface is planar (see Fig. 1b) or disguised as
a different surface morphology (see Fig. 1c). The former
is often referred to as cloaking in the literature [61, 62],
while the latter as illusion optics[63]. The light can also
be anomalously reflected to far field as plane wave in pre-
determined direction (see Fig. 1d), or onto a focal point
at the near field (see Fig. 1e), all achieved on a non-planar
substrate.

The general implementation of these various reflection
modes can be achieved with the appropriate phase dis-
continuities, φ, at the graphene metasurface. The phase
discontinuity for any arbitrary reflection beam wavefront
can be derived from ray optics arguments. Let us con-
sider a general surface in 3D space, with coordinates of
a point P on the surface defined as

P = (u1, u2, u3), (1)

where u1 = x1, u2 = x2, u3 = g(X), X = (x1, x2) (see
Fig. 1a). The normal to the metasurface, ν(P ), is

ν(P ) =
(−∇g(X), 1)√
1 + |∇g(X)|2

. (2)

Suppose, α(P ) and β(P ) are unit direction vectors for
incident and reflected waves. In absence of any phase
discontinuity along the surface, we can write the vector
form of conventional Snell’s law as[64]

α(P )× ν(P ) = β(P )× ν(P ) (3)

which is equivalent to (α(P ) − β(P )) × ν(P ) = 0 i.e
α(P ) − β(P ) is parallel to ν(P ). Therefore, we can
write[64, 65]

α(P )− β(P ) = λν(P )

where λ is a scalar factor, λ ∈ R. When we have a phase
discontinuity, given by a function φ, defined in the neigh-
borhood of the surface, the generalized law of reflection
in vector form[65] is given by (Appendix: A)

α(P )− β(P ) =
∇φ(P )

k0
+ λν(P ), (4)

where k0 is the free space wave number. Based on the
desired operation, one would stipulate the required scat-
tering beams α and β, and starting from Eq. (4) we can
calculate the respective phase profiles φ. We defer these
calculations to sections III-V.

In practice, design of a phase control metasurface in-
volves two steps[66]. First, a phase profile or phase mask
for the desired wavefront modification is calculated and
then individual pixels of the phase profile, which locally
tailor the phase of the impinging wave, are designed. The
scattering phase is achieved with graphene ribbons[45–
48, 50], whose plasmon resonance is tunable with doping
or width. In this work, we fix the ribbon widths and vary
the doping to achieve the desired phase φ.

Fig. 1a provides an illustration of the graphene rib-
bon based metasurface on a dielectric layer. There is a
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metal mirror below the dielectric layer separated at quar-
ter wavelength distance from the graphene arrays. This
maximizes the field at the graphene surface, hence en-
hancing light-matter interactions[54]. To have total con-
trol over wavefront, the phase shift along the metasurface
needs to encompass the full 2π range. Graphene ribbon,
with its Lorentzian-like response, provides a phase shift of
only π. The interference between the graphene resonator
and the Fabry-Perot cavity provides the extra phase shift
to make the total range of phase variation very close to
2π[54]. From the phase profile function, φ(P ), which we
derive in Sections III-VI, we will be able to assign the
required phase to each respective ribbon.

In this work, graphene conductivity is described with
the finite temperature Drude formula which accounts for
the intraband optical processes,

σ (EF ) =
2e2

π~2
kBT. log

[
2 cosh

(
EF

2kBT

)]
i

ω + iτ−1
.

(5)
EF is the Fermi level of the ribbon, which is chosen ac-
cording to the desired scattering phase, ω is the angu-
lar frequency taken to be equal to a free space wave-
length of 22µm, τ is the graphene relaxation time, e
is the electronic charge, T = 300K is the temperature.
While choosing the value of relaxation time, the fact
that plasmon damping increases due to interaction with
optical phonons from graphene and substrate should be
considered[59]. In this work, we assume a free space
wavelength of 22µm, which is significantly lower than the
optical phonon energy (∼0.2eV) in graphene. Moreover,
we assume a substrate that does not have surface optical
phonons at the operating frequency, so the choice of re-
laxation time >0.1ps to ensure availability of 2π shift (see
Appendix B) is justified. For example, CaF2 is transpar-
ent in mid-infrared. We use a value of τ = 0.6ps[59]. For
the dielectric layer, we assume a lossless refractive index
of n=1.4 with thickness of 3.93µm corresponding to the
quarter wavelength condition.

Simulations are performed using Maxwell equation
solver COMSOL Multiphysics[67] RF Module. We model
each graphene ribbon in terms of its 2D current density.
For this, we need to translate the spatial phase profile
into corresponding conductivity profile. First, we de-
fine the position of each ribbon by the coordinates of
their centers. Then using the phase profiles φ derived
in Sections III-V, we get the discrete phase values for
the ribbons. Using these phase values, we can deter-
mine the corresponding Fermi energy (EF ) for individ-
ual ribbons. Then, we get the required conductivity by
putting the EF values in the Drude equation (Eq. (5)).
Finally in COMSOL, we put this spatial conductivity
profile defined for each ribbon as the conductivity of the
surface current densities. A fixed ribbon width of 500nm
and inter-ribbon distance of 750nm are used. EF is var-
ied between 0.15-0.8eV. Perfectly Matched Layer (PML)
conditions are used at the simulation domain boundaries
and the metal reflector is modeled with a Perfect Electric
Conductor (PEC).

III. CLOAKING: SPECULAR AND
ANOMALOUS REFLECTION

In this section we derive the phase function, φ(P ), re-
quired for cloaking with specular or anomalous reflected
beams. We assume that metasurface is parametrized by
(1),(2). Following (4), we seek φ such that the metasur-
face reflects all incident rays with direction α into rays
with direction β, where α and β are constant with re-
spect to P . Taking double cross product of Eq. (4) with
ν(P ) yields

0 = ν × ((α− β −∇φ/k0)× ν)

= (α− β −∇φ/k0)− (ν · (α− β −∇φ/k0)) ν. (6)

We seek φ such that ∇φ(P ) = (φu1
(P ), φu2

(P ), φu3
(P ))

is tangential to the surface, i.e. ν · ∇φ = 0. Here, and in
rest of the paper, the notation φui

(P ) means derivative
of φ(P ) with respect to ui. Therefore from (2),(6) we
obtain

∇φ(P ) = k0 (α− β − δ (−∇g(X), 1)) , (7)

where

δ =

(
(α− β) · (−∇g(X), 1)

1 + |∇g(X)|2

)
. (8)

Eq. (7) is a system of three differential equations for
unknown phase function, φ(P ), written in vector form
(see Appendix C for coordinate form), which can be re-
duced to two equations by taking into account that φ(P )
is in fact a function of two variables, x1, x2 (see (1)).
Using chain rule, we obtain

∂φ

∂xi
=

∂φ

∂ui
+

∂φ

∂u3

∂u3
∂xi

= k0 (αi − βi + (α3 − β3) gxi
(X)) , (9)

where i = 1, 2, gxi(X) = ∂g(X)/∂xi, and ∂φ/∂ui are
defined by (7). Integrating, we obtain the phase:

φ (X, g(X)) = k0 ((α1 − β1) x1 + (α2 − β2) x2

+ (α3 − β3) g(X)) + C, (10)

with C an arbitrary constant. For 2D geometry, i.e where
the equations are independent of x2, the last equation can
be written as

φ(x1) = k0 ((α1 − β1) x1 + (α3 − β3) g(x1)) + C. (11)

In terms of the incident angle θi and the reflec-
tion angle θr, we have α = (− sin θi,− cos θi), β =
(− sin θr, cos θr). So in terms of θi and θr, (11) becomes

φ(x1) = k0 ((sin θr − sin θi) x1

− (cos θr + cos θi) g(x1)) + C.
(12)

This is the general phase equation for cloaking. When
θr = θi, this gives the phase for cloaking with specular
reflection.
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FIG. 2. Simulation results for cloaking with specular reflec-
tion. The cloaked object is a triangle shaped bump. (a),(b)
and (c) show the scattered field plots for bare bump, ground
plane and cloaked bump, while (d) shows corresponding far-
field plots.

Fig. 2 shows simulation results for the specular cloak-
ing case. We have a triangular shaped bump with base
length 100µm and height 40µm as the object to be
cloaked. Results are shown for normal incidence of light.
Fig. 2a and 2b show scattered field (magnetic field Hy)
plots for the bare bump and bare ground plane respec-
tively. Next, the bump is cloaked by the metasurface de-
signed with the above mentioned φ and the scattered field
plot is shown in Fig. 2c. Accompanying angle resolved
far-field intensity plots are shown in log-scale in Fig. 2d.
As we can see, within the angular window of ±40◦, the
angular-resolved intensity spectrum for the cloaked bump
and bare ground plane far-field match very well. The
presence of side lobes in the far-field for the bare ground
plane can be attributed to the finiteness of simulation
domain. If we increase the size of the simulation domain,
both the main lobes and side lobes become narrower and
ideally, with infinitely large simulation domain, we can
expect only one narrow main lobe.

In similar fashion, we can also implement an extended
version of the cloak, but with non-specular reflection an-
gle. Fig. 3a demonstrates such implementation, designed
with a 30◦ angle of reflection off normal. In Fig. 3a and
3b, the scattered fields are shown for normal and 45◦ an-
gle of incidence, respectively. The white and black arrows
show the incident and reflected wave directions. There
are some distortions in the wavefronts predominantly due
to specular reflections from the ground plane. In addi-
tion, we can also notice specular reflection on the right
side of the bump. As we can see, the main beam is scat-
tered at 30◦ off normal per the design while power flow in
specular directions (0◦ and 45◦) are more than an order
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FIG. 3. Simulation results for cloaking with anomalous re-
flection. (a) and (b) show scattered field plots for normal and
45◦ incidence respectively. For both cases the angle of reflec-
tion is designed to be 30◦. Corresponding far-field plots are
shown in (c).

of magnitude smaller.

IV. ILLUSION OPTICS

Suppose that a surface Γ′ in 3D space is parameterized
by a function (X, f(X)) and no phase discontinuity is
given on Γ′. The reflection of the rays by such a surface
is governed by the standard Snell’s law of reflection,

β(P ′) = α− 2 (α · η(P ′)) η(P ′), (13)

where P ′ = (X, f(X)) is a point on Γ′, α, β(P ′) are the
unit direction vectors for incident and reflected waves,

and η(P ′) =
(−∇f(X), 1)√
1 + |∇f(X)|2

is the unit normal.

We consider another metasurface, Γ, parameterized by
(1), (2) and derive a phase discontinuity, φ(P ), such that
the metasurface (Γ, φ) does the same reflection job as
the surface Γ′. That is, at each point P the incident ray
with unit direction α is reflected into the ray with unit
direction β(P ′) given in (13) . From (4) we then seek φ
such that

α− β(P ′)− ∇φ(P )

k0
= λν(P ) (14)

As in Section III, making double cross product of this
equation with ν and assuming that ∇φ · ν = 0, yields

∇φ(P )

k0
= α− β(P ′)− ((α− β(P ′)) · ν(P )) ν(P )

= 2 (α · η(P ′)) {η(P ′)− (η(P ′) · ν(P )) ν(P )} , (15)
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FIG. 4. Simulation results for illusion optics. The cloaked
object is a triangle shaped bump and the illusion object is
a circular segment. (a),(b) and (c) show the scattered field
plots for bare bump, bare illusion object and cloaked bump,
while (d) shows corresponding far-field plots.

where we used (13) to obtain the second line. Equation
(15) is a vector form of a system of three differential
equations (see Appendix C for coordinate form), which
once again can be simplified using the chain rule

∂φ

∂xi
=

∂φ

∂ui
+

∂φ

∂u3

∂u3
∂xi

= 2k0 (α · η(P ′))
gx1(X)− fx1(X)√

1 + |∇f(X)|2
:= Ai(X),

(16)

where i = 1, 2. Integrating system of two differential
equations, (16), we obtain (see Appendix D for details):

φ (X, g(X)) =

∫ x1

a

A1(s, x2) ds+

∫ x2

b

A2(a, t) dt+ C.

(17)
For the case where the configuration is independent of
x2, formula (17) can be simplified to

φ(x1) = 2k0

∫ x1

a

(−α1 f
′(s) + α3) (g′(s)− f ′(s))

1 + f ′(s)2
ds+ C.

(18)
Which gives the phase required to be applied along a
surface g(x1) to mimic the reflection pattern of another
surface f(x1).

Fig. 4 shows the simulation results implementing the
above mentioned φ for illusion optics. We have the same
triangular bump as the object to be cloaked (i.e Γ′) and
a circular segment with chord length 100µm and height
40µm as the desired illusion object i.e Γ. Fig. 4a and 4b
show scattered field plots for the bare bump and illusion

object respectively. When the triangular bump is cloaked
by the designed metasurface, the scattering pattern be-
comes similar to that of the illusion object, which would
make the triangular bump appear as a circular bump
to an external observer. The field plot for the cloaked
object is shown in Fig. 4c. Angle resolved far-field inten-
sity plots are shown in Fig. 4d for comparison between
these three cases. There is good agreement between the
cloaked bump and illusion object in the far-field, espe-
cially within the angular window of ±50◦.

V. REFLECTIVE FOCUSING

In this section we consider focusing plane wave into
a point D(d1, d2, d3) using metasurface parametrized by
(1),(2) (see Fig. 1e). Assuming that α is the constant
unit incident vector, we rewrite (4) as

α− D − P
|D − P |

− ∇φ(P )

k0
= λν(P ),

where φ(P ) is the phase discontinuity along the metasur-
face, and (D − P )/|D − P | is the unit reflected vector.
Making the double cross product with ν yields

∇φ(P )

k0
= α− D − P

|D − P |
−
((

α− D − P
|D − P |

)
· ν
)

ν.

(19)

System of differential equations (19) (see Appendix C for
coordinate form) can be simplified by calculating deriva-
tives of phase function, φ(P ), with respect to x1, x2,
using the chain rule (see (9)),

∂φ

∂xi
= k0

(
αi −

di − xi
|D − P |

+

(
α3 −

d3 − g(X)

|D − P |

)
gxi(X)

)
= k0

(
∂

∂xi
|D − P |+ ∂

∂xi
(αi xi + α3 g(X))

)
with i = 1, 2. Therefore, we obtain the phase

φ(X, g(X)) = k0 (|D − P |+ α · (X, g(X))) + C.

For 2D geometry independent of x2, D = (xd, zd) and
α = (− sin θi,− cos θi), the phase equation reduces to

φ(x1) = k0

(√
(x1 − xd)

2
+ (g(x1)− zd)

2 − x1 sin θi

− g(x1) cos θi) + C.

(20)
In a similar way we can demonstrate (see Appendix E)

that the phase discontinuity

φ(x1) = k0

(√
(x1 − xs)2 + (g(x1)− zs)2

+

√
(x1 − xd)

2
+ (g(x1)− zd)

2

)
+ C

(21)
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FIG. 5. Simulation results for reflective focusing off arbitrary
surface. (a),(b) and (c) shows field intensity plots for focus-
ing of an incident plane wave to a focal distance of 150µm
from the ground plane. (a,b) show normal incidence while (c)
shows result for 30◦ incidence. In (a) and (c) the focal point
is located 150µm away in normal direction while in (b) the
focal point is at an angle of 30◦. (d) shows focusing of a point
dipole source.

should be imposed on the metasurface for focusing rays
radiated by a point source located at S = (xs, zs).

Simulation results for reflective focusing of incident
parallel beams (plane wave) and point dipole source are
shown in Fig. 5. In scattered field intensity plots of
Fig. 5a, 5b and 5c, we have incident parallel beams fo-
cused to a point at a distance of 150µm from the base
of the triangular bump (i.e ground plane). First we con-
sider normal incidence. Fig. 5a and Fig. 5b shows simu-
lation results for normal incidence. Lastly, we consider
oblique incidence with 30◦ angle in Fig. 5c. Direction of
incidence is shown by white arrows and position of the
focusing point is indicated by ‘×’. Flat gradient meta-
surfaces allow high numerical aperture (NA) diffraction
limited focusing without spherical abberation[2, 7]. The
size of the focal spot in Fig. 5a, b and c is comparable to
the free space wavelength of 22µm.

In Fig. 5d, an example of focusing of a point source is
shown. The source is at (-50,250)µm and focusing point
is at (50,150)µm. The point source is modeled by a elec-
tric point dipole in COMSOL with its dipole moment ori-
ented along x1-direction. As there is no straight forward
way to use a point source for scattered field calculation in
COMSOL, we simulate for the total field instead with a
point dipole acting as a point source. The plotted quan-
tity in Fig. 5d, is the total field intensity i.e both incident
and reflected fields are present. We can see higher inten-
sity of field around the designed focus point indicating
the focusing effect.

VI. DISCUSSION AND CONCLUSION

Concluding, we demonstrated versatility of graphene-
based metasurface that is capable of active switching
between regimes of operation such as anomalous beam
steering, focusing, cloaking and illusion optics simply by
changing electric bias applied to graphene constituents
of the metasurface without changing the metasurface ge-
ometry. These various functionalities are usually avail-
able in a disparate manner in the existing literature
and we showed in this work that they can be described
within a general framework for arbitrary surface mor-
phology. The proposed approach, in particular to the
context of graphene metasurface, makes perfect sense
since graphene can be electrically tunable to achieve arbi-
trary phase function and conform to any surface morphol-
ogy. As an example, we considered triangular bump cov-
ered by the graphene metasurface, made from graphene
ribbons on the dielectric resonator, and demonstrated
that, by applying an electric bias, the wavefront of the
wave reflected by the bump can be tuned to match that
of the bare plane (cloaking) or hemi-sphere (illusion op-
tics). Moreover, the possibility of anomalous steering and
focusing of the wave reflected by graphene metasurface
covered bump was shown. The slight distortion of the
metasurface far-field radiation pattern from that of the
bare plane or hemi-sphere can be attributed to the spec-
ular reflection from the parts of metasurface not-covered
by graphene ribbons, as well as to the fact that reflec-
tivity of graphene ribbon depends on the applied electric
bias. Finite size effects also show up in the field pro-
file due to finiteness of simulation domain, discretization
of metasurface and contribution from the apex of the
triangle[37, 68]. We expect that by optimizing the meta-
surface geometry these distortions can be reduced.

The device configuration considered here can be fab-
ricated with conventional film deposition and nanopat-
terning technologies. The transfer of graphene[69, 70]
onto bump structure and its patterning by electron beam
lithography would be straightforward as demonstrated
elsewhere[71, 72]. Nevertheless, there are a few issues
that need to be addressed in terms of practical imple-
mentation. First of all, we should select a proper ma-
terial for optical spacer, which is transparent over the
concerned frequency range and compatible with conven-
tional thin film deposition technologies. In addition, it is
important to have small roughness on the film surface for
the graphene transfer that follows. For mid-infrared ap-
plications, silicon oxide (SiO2)[73] and hexagonal boron
nitride (hBN)[74] have been popularly used as substrates
for graphene, although plasmon losses due to strong
plasmon-phonon coupling should be taken into consider-
ation to determine the operation wavelength. Diamond-
like carbon[59] and calcium fluoride (CaF2)[75] can be
good candidates as they do not have polar phonons in
this frequency range. The issue of graphene and sub-
strate losses are discussed in Appendix B. The insulating
property and dielectric strength of the material used for
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the optical spacer becomes one of the important design
parameters, from which the tunable range of graphene
conductivity is largely determined. Another important
aspect is addressing individual ribbons for separate dop-
ing. A recent work[76] demonstrates that embedded local
gating structures with graphene is experimentally fea-
sible. The large dielectric thickness arising from the
quarter wavelength requirement could potentially impede
electrical gating as a voltage of about 700V is required to
achieve EF = 0.3eV with dielectric thickness 3.93µm and
static dielectric constant of 6.8 (for CaF2). The dielec-
tric breakdown limit of CaF2 is 14.44MV/cm[77] which in
this case gives a breakdown voltage of ∼ 5600V. Despite
being below the breakdown limit, such high values of
gate voltages could be impractical from an experimental
point of view. We can employ several strategies to make
this more experimentally favorable. We can decrease the
operating wavelength and/or choose spacer layer with
higher dielectric constant, which will decrease the thick-
ness. Moreover, other techniques of doping graphene
such as chemical doping[78] or using ion-gel[79] can also
be explored.
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Appendix A: Generalized Snell’s Law in Vector
Form

Let rays of light be incident from point S = (s1, s2, s3),
at a point P (x1, x2, x3 = a) on a plane parallel to the
x1 − x2 plane, located at x3 = a. Incident rays are then
reflected to point D = (d1, d2, d3). The normal to P

is ν = k̂ ≡ (0, 0, 1). Therefore the incident unit vector

from S into a point P on Γ is α =

−→
SP

|
−→
SP |

and the reflected

unit vector from P into D is β =

−−→
PD

|
−−→
PD|

. Since the ray is

propagating in vacuum, from Fermat’s principle, the least
optical paths for the incident and reflected rays are given

by
∣∣∣−→SP ∣∣∣ and

∣∣∣−−→DP ∣∣∣ and the corresponding accumulated

phases are given by k0

∣∣∣−→SP ∣∣∣ and k0

∣∣∣−−→DP ∣∣∣ respectively;

where k0 is the free space wave number and |·| denotes the
Euclidean distance. We introduce a phase discontinuity
φ along Γ. According to principle of stationary phase[80,

81], we then seek to minimize the total phase k0

∣∣∣−→SP ∣∣∣+

k0

∣∣∣−−→DP ∣∣∣ − φ(P ) for P ≡ (x1, x2, a) in Γ. Therefore at

P

S D
ν

βα

Γ

FIG. 6. Ray diagram illustrating generalized Snell’s law, see
also Eq. (A1)

the extreme point on Γ, by differentiating the total phase
with respect to x1 and x2, we must have

k0
x1 − s1∣∣∣−→SP ∣∣∣ + k0

x1 − d1∣∣∣−−→DP ∣∣∣ =
∂φ

∂x1

k0
x2 − s2∣∣∣−→SP ∣∣∣ + k0

x2 − d2∣∣∣−−→DP ∣∣∣ =
∂φ

∂x2

which from the definitions above of α and β can be
rewritten as

(k0 α− k0 β) · î =
∂φ

∂x1
(k0 α− k0 β) · ĵ =

∂φ

∂x2
,

for x1, x2 and x3 = a. Since the normal ν = k̂, we there-
fore obtain the following expression of the generalized
reflection law:

k0 α− k0 β =
∂φ

∂x1
î+

∂φ

∂x2
ĵ + ξ ν.

Notice that when there is no phase discontinuity, i.e. φ =
0, we recover the standard reflection law in vector form.
If φ is defined in a small neighborhood of the plane Γ,
i.e. φ(x1, x2, x3) is defined for all x1, x2 and for x3 − a
very small, then we can write the formula

α− β =
∇φ
k0

+ λν (A1)

where λ is a scalar. Eq. (A1) is the vector form of gen-
eralized Snell’s law for reflection.

Appendix B: Effect of Loss on Phase

The attainable range of reflection phase is dependent
on absorptive losses in the device. The reason for losing
phase shift of 2π with increased losses can be explained
with arguments based on coupled mode theory (CMT).
The device structure of graphene-substrate-metal creates
an asymmetric Fabry-Perot resonator with a perfectly re-
flective mirror (metal) and a partially reflective mirror
(graphene-dielectric layer interface). This can be effec-
tively described as a one port single resonator, working
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FIG. 7. Effect of intrinsic losses on achievable phase range.
(a) shows complex plane plot of reflection coefficient for an
analytical model of the structure as described in [82] using
single port resonator model. When intrinsic losses exceed
external or radiative losses, phase of r cannot cover all four
quadrants (blue and red curves) of the complex plane and
2π phase shift is lost. (b) shows simulation results of EF vs.
Phase for the device for different relaxation times, τ . As τ
goes below 0.1ps, we see a drastic change in phase profile.

at a resonant frequency of ω0[83]. According to CMT,
when the resonator is excited by an external excitation
of frequency ω, the reflection coefficient is given by[82]

r =
γr − γa − i (ω − ω0)

γr + γa + i (ω − ω0)
.

Where γr = 1/τr is the rate of external or radiative
losses and γa = 1/τa is the rate of internal of absorp-
tive losses. Fig. 7a shows the plot of r in complex plane
for different ω0 with fixed ω. As can be seen on the
plot, when absorptive losses are smaller than radiative
losses (γr > γa), r covers all four quadrants in the com-
plex plane and reflection phase covers the whole −π to π
range. This situation is called underdamped. But when
absorptive loss surpasses radiative loss i.e γr < γa, the
phase of r can no longer go from −π to π and the system
is called overdamped.

In our device, by changing EF , the plasmon resonance
frequency is varied, as ω0 ∝

√
(EF ). The radiative losses

(γr) are constant as they are dependent on the dimen-
sions of the device. The absorptive losses (γa) are pro-
portional to inverse of relaxation time, 1/τ , and imagi-
nary part of refractive index of the dielectric cavity, k.

Hence when τ is decreased or k is increased, the sys-
tem moves from underdamped to overdamped and the
2π phase shift range is lost. In Fig. 7b, reflection phase is
plotted as a function of EF for different relaxation times
τ . The phase shift range becomes much smaller than 2π
when τ is decreased below 0.1ps. Similar behavior can
be seen when k is increased above 0.15. Both τ and k
are parameters related to total absorptive losses in the
device. A similar phase behavior was observed in [83] for
metal-insulator-metal (MIM) based metasurfaces.

Appendix C: Coordinate representation of the
vector equations for phase function

Coordinate form of the vector equation (8)

∂φ(P )

∂u1
= k0 (α1 − β1 + δ gx1

(X))

∂φ(P )

∂u2
= k0 (α2 − β2 + δ gx2

(X))

∂φ(P )

∂u3
= k0 (α3 − β3 − δ) .

Coordinate form of the vector equation (15)

∂φ(P )

∂u1
= 2k0 (α · η(P ′))

(
−fx1(X)√

1 + |∇f(X)|2

+ (η(P ′) · ν(P ))
gx1

(X)√
1 + |∇g(X)|2

)
∂φ(P )

∂u2
= 2k0 (α · η(P ′))

(
−fx2

(X)√
1 + |∇f(X)|2

+ (η(P ′) · ν(P ))
gx2

(X)√
1 + |∇g(X)|2

)
∂φ(P )

∂u3
= 2k0 (α · η(P ′))

(
1√

1 + |∇f(X)|2

− (η(P ′) · ν(P ))
1√

1 + |∇g(X)|2

)
.
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Coordinate form of the vector equation (19)

∂φ(P )

∂u1
= k0

(
α1 −

d1 − x1
|D − P |

+

((
α− D − P

|D − P |

)
· ν
)

gx1
(X)√

1 + |∇g(X)|2

)
∂φ(P )

∂u2
= k0

(
α2 −

d2 − x2
|D − P |

+

((
α− D − P

|D − P |

)
· ν
)

gx2
(X)√

1 + |∇g(X)|2

)
∂φ(P )

∂u3
= k0

(
α3 −

d3 − g(X)

|D − P |

−
((

α− D − P
|D − P |

)
· ν
)

1√
1 + |∇g(X)|2

)
.

Appendix D: Integrating of a system of differential
equations (16)

In this section we integrate a system of differential
equations, (16), obatined for the illusion optics case,

∂φ

∂x1
= 2k0 (α · η(P ′))

gx1(X)− fx1(X)√
1 + |∇f(X)|2

:= A1(X)

∂φ

∂x2
= 2k0 (α · η(P ′))

gx2
(X)− fx2

(X)√
1 + |∇f(X)|2

:= A2(X)

If φ and g are C2, then the mixed partials
∂2

∂x1∂x2
(φ(X, g(X))) and

∂2

∂x2∂x1
(φ(X, g(X))) must be

equal. Therefore to have a solution φ the following com-
patibility condition between α, f and g must hold:

∂

∂x2
A1(X) =

∂

∂x1
A2(X). (D1)

In fact, if (D1) holds we will obtain the phase φ by
integration as follows. To simplify the notation, set
h(X) = φ (X, g(X)), so we need to solve the system

∂h

∂x1
= A1,

∂h

∂x2
= A2.

Integrating the first equation with respect to x1 yields

h(x1, x2) =

∫ x1

a

A1(s, x2) ds+W (x2).

Differentiating the last equation with respect to x2 gives

∂h

∂x2
(x1, x2) =

∫ x1

a

∂A1

∂x2
(s, x2) ds+W ′(x2)

=

∫ x1

a

∂A2

∂x1
(s, x2) ds+W ′(x2) from (D1)

= A2(x1, x2)−A2(a, x2) +W ′(x2).

So W ′(x2) = A2(a, x2), and by integration W (x2) =∫ x2

b
A2(a, t) dt+ C. Therefore, we obtain

φ (X, g(X)) =

∫ x1

a

A1(s, x2) ds+

∫ x2

b

A2(a, t) dt+ C.

Appendix E: Focusing from point source to point

Here we devise a metasurface for reflective focusing due
to a point source. Let S(s1, s2, s3) and D(d1, d2, d3) be
two points above the surface parameterized by (1), (2).
We seek a phase discontinuity so that all rays incident
from S are reflected into D. Then the incident unit di-

rection equals
P − S
|P − S|

and the reflected unit direction

equals
D − P
|D − P |

. From (4) we then seek φ so that

P − S
|P − S|

− D − P
|D − P |

− ∇φ(P )

k0
= λν(P ).

Following similar steps as discussed in Section V,

∇φ(P )

k0
=

P − S
|P − S|

− D − P
|D − P |

−
((

P − S
|P − S|

− D − P
|D − P |

)
· ν
)

ν.

Writing in coordinates yields

φu1
= k0

(
x1 − s1
|P − S|

− d1 − x1
|D − P |

+

((
P − S
|P − S|

− D − P
|D − P |

)
· ν
)

gx1
(X)√

1 + |∇g(X)|2

)

φu2
= k0

(
x2 − s2
|P − S|

− d2 − x2
|D − P |

+

((
P − S
|P − S|

− D − P
|D − P |

)
· ν
)

gx2
(X)√

1 + |∇g(X)|2

)

φu3
= k0

(
g(X)− s3
|P − S|

− d3 − g(X)

|D − P |

−
((

P − S
|P − S|

− D − P
|D − P |

)
· ν
)

1√
1 + |∇g(X)|2

)
.

Hence by the chain rule

∂φ

∂xi
=
∂φ(u1, u2, u3)

∂ui
+
∂φ(u1, u2, u3)

∂u3

∂u3
∂xi

= k0

(
xi − si
|P − S|

− di − xi
|D − P |

+
g(X)− s3
|X −A|

gxi
(X)− d3 − g(X)

|D − P |
gxi

(X)

)
= k0

(
∂

∂xi
|P − S|+ ∂

∂xi
|D − P |

)
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with i = 1, 2. Therefore we obtain the phase as

φ = k0 (|P − S|+ |D − P |) + C.

For 2D geometry independent of x2, S = (xs, zs) and
D = (xd, zd), the phase equation reduces to

φ(x1) = k0

(√
(x1 − xs)2 + (g(x1)− zs)2

+

√
(x1 − xd)

2
+ (g(x1)− zd)

2

)
+ C. (E1)
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metascreens to enable a new degree of nanoscale light
management, Phil. Trans. R. Soc. A 373, 20140351
(2015).

[37] B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù,
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