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Recently, it was suggested that the polarization dependence of light absorption to a single-walled
carbon nanotube is altered by carrier doping. We specify theoretically the doping level at which the
polarization anisotropy is reversed by plasmon excitation. The plasmon energy is mainly determined
by the diameter of a nanotube, because pseudospin makes the energy independent of the details of
the band structure. We find that the effect of doping on the Coulomb interaction appears through
the screened exchange energy, which can be observed as changes in the absorption peak positions.
Our results strongly suggest the possibility that oriented nanotubes function as a polarization switch.

I. INTRODUCTION

A carbon nanotube (CNT) [1] absorbs light whose lin-
ear polarization is parallel to the tube’s axis (E‖), but not
when the polarization is perpendicular to it (E⊥). [2–4]
The optical anisotropy of a CNT enables oriented CNTs
to function as an optical polarizer. [5, 6] Recently, it was
theoretically predicted that the polarization dependence
is reversed by charge doping; [7] a doped CNT transmits
E‖ and absorbs E⊥ (see Fig. 1).
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FIG. 1. Optical anisotropy of oriented CNTs. Oriented
and undoped (doped) CNTs pass E⊥ (E‖) only. Thus, ori-
ented CNTs function as a polarization switch.

The absorption of E⊥ originates from the resonant ex-
citation of collective oscillations of electrons (plasmon),
which differs entirely from the excitation of individual
electrons or excitons by E‖ in an undoped CNT. [7, 8]
This theory of plasmon resonance accounts qualitatively
for the anomalous absorption peaks observed experimen-
tally in doped CNTs. [9–12] However, because the the-
oretical conclusion was derived using the Drude model
which only takes account of intra-band electronic transi-
tions, the exact doping and chirality [13] dependencies of
the absorption spectrum remain unknown.
In this paper we elucidate these dependencies by in-

vestigating the competition between intra and inter-band
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transitions with the Kubo formula. On the basis of pre-
dicted doping and chirality dependencies, we conclude
that doped CNTs absorb E⊥ over frequencies ranging
from infrared to visible. This expands the application
range of CNT polarizers and suggests the possibility that
the polarization direction of transmitted light is changed
by 90 degrees with doping rather than by spatial rotation.

This paper is organized as follows. In Sec. II, we ex-
plain the optical selection rule of CNTs. By calculating
the dynamical conductivity, we show that momentum
conservation and pseudospin play very essential role in
determining the possible transitions. In Sec. III, we ex-
amine absorption spectra for armchair and zigzag CNTs,
which are the main result of this paper. The effect of
Coulomb interaction on the absorption spectra is stud-
ied in Sec. IV. Our discussion is provided in Sec. V. The
calculation details which are necessary to reproduce the
results of Secs. II and III are given in Appendix.

II. SELECTION RULE

A. Parallel Polarization

The electronic transition caused by E‖ is a direct tran-
sition without a change in momentum of a photo-excited
electron. [2] In the band-diagram of a (10, 10) armchair
CNT shown in Fig. 2(a), each of the band curves plotted
as a function of the wavevector along the tube’s axis (k‖)
is an eigenstate of the momentum around it and speci-
fied by magnetic quantum number m. [14] The two bands
with linear dispersion that cross each other at E = 0
have vanishing m, while the other curve is degenerate
(±|m|) corresponding to the clockwise and anticlockwise
circumferential motions, and the magnitude |m| increases
with the energy |E|. Because the same m value appears
in the conduction and valence bands symmetrically with
respect to E = 0, there are two possible cases of direct
transition: transition between the valence and conduc-
tion bands (inter-band transition) or within either band
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(intra-band transition).

The doping dependence of the direct inter-band transi-
tion is roughly known from Fermi-Dirac statistics. When
the doping level is low, e.g. EF = 0 eV (undoped), the
direct inter-band transitions denoted by M11 and M22 in
Fig. 2(a) are both allowed by the Pauli exclusion prin-
ciple, [15, 16] while when the doping level is high, e.g.
EF = 1 eV, M11 is forbidden, although M22 is still al-
lowed. In Fig. 2(b), the calculated real part of the dy-
namical conductivity Re(σ‖) shows that the M11 peak
disappears when EF = 1 eV. Meanwhile, a Drude peak
corresponding to the direct intra-band transition denoted
by D in Fig. 2(a) develops in the zero-frequency limit of
Re(σ‖). The peak intensity increases with doping be-
cause the density of states at EF increases with doping.
The disappearance of the M11 peak and enhancement
of the Drude peak are evidence of high doping that is
provided by the absorption spectra of E‖.
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FIG. 2. Selection rule of armchair CNTs. (a) The direct
transitions caused by E‖ (∆m = 0) are denoted by arrows.
(b) Calculated real part of the dynamical conductivity along
E‖, Re(σ‖), is shown for different Fermi energy positions. The

vertical axis is given in units of e2/h, where e is electron
charge magnitude and h Planck constant. (c) The momentum
selection rule of E⊥ is ∆m = ±1. The inter-band transitions
with m = 0 → ±1 are denoted by A and these are allowed
(forbidden) for low (high) doping. When EF = 1 eV, the
intra-band transitions with m = +1 → +2 or −1 → −2 are
allowed and these are denoted by B. The transition C is
suppressed by pseudospin. (d) Re(σ⊥) is shown for different
Fermi energy positions.

B. Perpendicular Polarization

The electronic transition caused by E⊥ is the indi-
rect transition, and transitions with an m change of ±1,
∆m = ±1, are dominant over transitions with |∆m| ≥ 2.
This selection rule is a consequence of momentum con-
servation being applied to a case where, at the surface
of a CNT, the azimuthal component of E⊥ is approxi-
mately written as a sine (or cosine) function of the az-
imuthal angle (θ) of the cylinder. [2] More exactly, this is
a consequence of momentum conservation being used in
combination with the two facts that a plane wave is a su-
perposition of different magnetic quantum numbers and
that tube diameter dt of nanometer scale is much shorter
than the light wavelength of micrometer scale. [7, 17]
The proof goes as follows. When the light polarization is
set perpendicular (ex) to a tube’s axis (ez), an incident
plane wave of frequency ω and amplitude Ein is writ-
ten as Eine

i(ky−ωt)
ex. In a cylindrical coordinate system

(r, θ, z), the field is expressed as

E⊥(r, θ; t) = Eine
i(kr sin θ−ωt)





cos θ
− sin θ

0



 . (1)

By using the formula for the Bessel functions, eikr sin θ =
∑∞

m=−∞ Jm(kr)eimθ , we obtain the azimuthal compo-
nent as

Eθ =
∑

m

Ein

2i
(Jm+1(kr) − Jm−1(kr)) e

i(mθ−ωt). (2)

Because Jn(kr) ∝ (kr)n, |Eθ| is dominated by the modes
with m = ±1 when kr ≪ 1, which we assume throughout
this paper. [33] Applying the momentum selection rule
to the band-diagram in Fig. 2(c) we can expect that the
transitions denoted by A and B to develop the peaks
in Re(σ⊥) for an undoped and doped CNT, respectively,
and these are confirmed in Fig. 2(d).
The selection rule, ∆m = ±1, explained above is a re-

sult of the momentum conservation only, and the indirect
transitions are further restricted to the forward scatter-
ing by the symmetry that originates from the two sub-
lattices nature of the electronic wavefunction known as
pseudospin. [19] For example, it suppresses a transition
(of the backward scattering) denoted by C in Fig. 2(c)
to develop a strong peak in Re(σ⊥) like the M11 and
M22 peaks although it is a transition between band-edges
with a large density of states. A profound effect of pseu-
dospin on the selection rule is more clearly seen for a
doped semiconducting CNT. In the band-diagram of a
(16, 0) zigzag CNT shown in Fig. 3(a), each of the band
curves is specified by shifted magnetic quantum number
m = ±m0 + n where m0 is a nonzero integer (m0 = 11)
and n = 0,±1, · · · . When EF = 0.4 eV, the transition
denoted by C with ∆m = 1 is allowed by the momen-
tum selection rule, however, it is actually forbidden by
pseudospin. Meanwhile the transition denoted by B with
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∆m = −1 is fully allowed. This difference is peculiar be-
cause the transition energy of C is smaller than that of B.
It becomes clear that B (C) is forward (backward) scat-
tering by drawing the three-dimensional band-diagram in
the inset of Fig. 3(b). As a result of pseudospin the peak
position in Re(σ⊥) is approximately given by 0.8 eV. The
peak position of the doped zigzag CNT is similar to that
of the doped armchair CNT (B in Fig. 2(d)) regardless
of the difference of the band-diagrams of the zigzag and
armchair CNTs. It should be noted that the lack of the
transition C with ∆m = 1 does not mean that there is
an asymmetry between the clockwise and anticlockwise
circumferential motions of the electrons. Each band with
the index n is actually degenerate (±m0) corresponding
to the different valleys, and the subband with n in one
valley relates with the subband with −n in the other val-
ley. Thus the lack of the transitions with ∆m = 1 in one
valley means the transitions with ∆m = 1 in different
valley are allowed.
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FIG. 3. Selection rule of zigzag CNTs. (a) The inter-
band transitions denoted by A and A′ are allowed when EF =
0 eV. Because A and A′ are the forward scattering, a single
peak develops in Re(σ⊥) as shown in (b). When EF = 0.4
eV, the peak intensity halves because A′ is not allowed by
exclusion principle whereas A is still allowed. Besides, the
intra-band transition B is allowed by pseudospin. The three
dimensional band-diagram shows that the transitions A, A′,
and B are all the forward scattering, while C is the backward
scattering that is forbidden by pseudospin.

III. DEPOLARIZATION AND PLASMON

According to the selection rule only, we may expect the
peaks caused by E⊥, such as A in Fig. 2(d) and A + A′

in Fig. 3(b), to appear in the absorption spectra of un-
doped CNTs. [20] However, it is not. The calculated
absorption spectrum which is given by σ⊥ divided by the
relative permittivity ε⊥ as Re(σ⊥/ε⊥) (≡ Re(σ̃⊥)) does
not exhibit the corresponding peak when EF = 0 eV,
as shown in the inset of Fig. 4. This is widely known
as the depolarization effect. [2–4] As a result of the mo-
mentum transfer from E⊥ to an electron, a non-uniform

density distribution around the tube’s axis similar to an
electric dipole is introduced and induces a depolarization
field. [2] When the doping level is low, the depolarization
field almost cancels out the applied field, and the total
field defined by the sum of the applied and depolarization
fields, is suppressed. Even though the electronic transi-
tion is allowed by the selection rule, the electron does
not undergo a transition since the electric field by itself
almost disappears due to the depolarization effect.
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FIG. 4. Calculated absorption spectra for doped arm-
chair and zigzag CNTs. The absorption spectrum that
includes the depolarization effect is given by the real part of
the dynamical conductivity divided by the relative permittiv-
ity ε⊥, Re(σ⊥/ε⊥) (≡ Re(σ̃⊥)). The peak originates from a
resonant excitation of plasmon caused by doping. The inset
shows the depolarization effect in undoped CNTs.

The main point of this paper is that the efficacy of the
depolarization field depends strongly on doping. When
the doping level is as high as EF = 1 eV, absorption
peaks develop in the region h̄ω = 1.2 ≈ 1.3 eV as shown
in Fig. 4. It can be shown that these peaks originate from
the fact that the depolarization field is strongly enhanced
at the specific frequency. Even if an infinitely small elec-
tric field is applied to a doped CNT, the depolarization
field has a finite amplitude. This state is produced by the
self-sustaining collective motion of the electrons (plas-
mon or plasmon-polariton), which is in sharp contrast to
the single-particle excitation constituting the absorption
peaks of E‖. Meanwhile, the Drude peak is absent for
E⊥, which is also in contrast to the case of E‖.
The total electric field that the electrons in a CNT

really “see” is given by the applied field divided by the
relative permittivity E⊥/ε⊥. Mathematically, it is shown
that by solving Maxwell equations while taking account
of the boundary conditions at the tube’s surface, [7] ε⊥
is written as

ε⊥ = 1− σ⊥(EF )

iωǫdt
, (3)

where dt is the diameter of a CNT and ǫ is the permittiv-
ity of the surrounding medium. [2] To observe that the
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vanishing real part of ε⊥ is essential for the appearance
of plasmon, we plot the real and imaginary parts of ε⊥ as
a function of energy in Fig. 5(a) for undoped and doped
CNTs. Indeed, when EF = 1 eV, Re(ε⊥) vanishes at
an energy that corresponds to the absorption peak posi-
tion seen in Fig. 4, where a small magnitude of Im(ε⊥)
helps the total electric field to enhance in a resonant fash-
ion. Note that in the present calculations a surrounding
medium with ǫ = 2ǫ0 is assumed [12] where ǫ0 is the per-
mittivity of free space, and that a large value of ǫ/ǫ0 has
the advantage of decreasing the plasmon energy, because
Re(ε⊥) shifts upward in effect and zero of which shows a
redshift.
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FIG. 5. Permittivity of (10,10) armchair CNTs. (a)
Re(ε⊥) (Im(ε⊥)) when EF = 1 eV is shown by the solid
(dashed) curve. The results when EF = 0 eV are shown
as a reference. (b) The intra-band transitions caused by high
doping are essential in the appearance of a plasmon peak.
Meanwhile the contribution of inter-band transitions is not
negligibly small.

To understand the cause of the appearance of plasmons
in the doped CNTs more clearly, we consider the rela-
tive significance of the contributions made by intra and
inter-band transitions to Re(ε⊥). [17] By noting that in
Eq. (3) Re(ε⊥) is proportional to the imaginary part of
the dynamical conductivity, Im(σ⊥), we show each con-
tribution, Im(σintra

⊥ ) and Im(σinter
⊥ ), for the representa-

tive case of high doping level (EF = 1 eV) in Fig. 5(b).
Im(σinter

⊥ ) is a negative value for the frequency range

of interest. Thus, if we neglect the intra-band transi-
tions, Re(ε⊥) > 0 and the condition for plasmon exis-
tence is unsatisfied. When EF = 1 eV, the contribution
made by the intra-band transition (B) causes a peak in
Im(σintra

⊥ ) so that Re(ε⊥) exhibits a dip at h̄ω ≈ 0.8
eV. With increasing h̄ω from a dip, Im(σintra

⊥ ) decreases
and −Im(σinter

⊥ ) increases. As a result, Re(ε⊥) becomes
zero at around 1.2 eV and the sign of Re(ε⊥) changes at
the energy. It is interesting that when combined with the
intra-band transitions, the contribution of the inter-band
transitions to the dynamical conductivity is not negligi-
ble since it tends to redshift the plasmon energy when
EF = 1 eV.
Figure 6 shows the details of the EF dependence of the

absorption spectra of a (10, 10) armchair (dt = 1.35 nm)
and (16, 0) zigzag CNTs (dt = 1.25 nm). There are sev-
eral noticeable features should be mentioned. Firstly, the
plasmon peak starts to develop when the M11 (S22) peak
by E‖ starts to disappear for the armchair (zigzag) CNT.
Secondly, the plasmon peak intensity and frequency in-
crease as increasing EF . Thirdly, the doping dependence
of the plasmon frequency in the armchair CNT is simi-
lar to that in the zigzag CNT. This suggests that when
CNTs are intentionally doped, they will eventually have
a similar excitation structure regardless of the chirality.
Finally, the plasmon peak is present in the dispersion
region (or the vicinity thereof) where single particle ex-
citation is not allowed, indicating that a plasmon cannot
collapse into individual electron-hole pairs and the kine-
matic stability is guaranteed for the plasmon.

IV. COULOMB INTERACTION

In this section, we examine how the Coulomb inter-
action affects the results presented in the preceding sec-
tions. Because the Coulomb interaction weakens at high
doping or in a metallic CNT due to the screening effect,
we focus on a semiconducting CNT at low doping level.
The results shown in this section are obtained by ex-
tending the existing framework developed for calculating
exciton of an undoped CNT [22, 23] to a doped CNT.
The details will be presented elsewhere. [34]
The Coulomb interaction changes the absorption spec-

trum through two main effects: self-energy correction to
the band-diagram (band renormalization) and formation
of excitons. First we show the band renormalization.

A. Band Renormalization

The thick curved lines in Fig. 7 show the renormalized
band-diagram of a (16, 0) zigzag CNT, which is given
by adding the screened exchange energy (or self-energy)
to the original (bare) band-diagram denoted by the thin
curved lines. When EF = 0 eV, the self-energy makes the
band gap increase significantly. When EF = 0.5 eV, on
the other hand, the self-energy is modest; the band gap is
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FIG. 6. Doping dependencies of absorption spectra.
Red (blue) spectra show the absorption of E‖ (E⊥). From
the change in color of absorption peak, it is clear that the
polarization dependence of the peak is reversed by doping.
Doping with EF ≈ 1 eV creates a transient region where
the polarization anisotropy starts to be reversed. The green
dotted line shows the boundary of single particle excitation,
and the green area (h̄ω > 2h̄v/dt and h̄ω < 2|EF | − 2h̄v/dt
where v is the Fermi velocity) shows the region where single
particle excitation does not exist. [21]

almost identical to that of the bare band. This is due to
that the electron-hole pairs within the conduction band
screen more effectively the Coulomb interaction than the
inter-band electron-hole pairs. [21] Note also that the self-
energy for the states away from the Fermi level does not
vanish and this tends to blue-shift the plasmon peak.

B. Absorption Spectra

The exciton formation together with the band renor-
malization changes the absorption spectrum significantly.
When EF = 0 eV, the absorption peaks of E‖ are
governed by excitons as shown in Fig. 8. By compar-
ing the result with the spectrum calculated without the
Coulomb interaction, the sizable enhancement of oscilla-
tor strength is seen for each peak. Meanwhile, the correc-
tion to the absorption spectrum of E⊥ is minor: a small
peak due to the exciton formation is observed in Re(σ̃⊥).
These results are consistent with Refs. 22 and 23.
Figure 9(a) shows the behavior of the absorption peaks

of E‖ under doping. When EF = 0.5 eV, the S11 peak
disappears due to exclusion principle. The peak intensity
of S22 (S33) is suppressed by doping. [9] Further increase
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FIG. 7. Band renormalization of zigzag CNTs. Thick
(Thin) curved lines represent the renormalized (bare) band.
The self-energy of the lowest energy subbands is removed by
modest doping (EF = 0.5 eV) so that the band gap decreases.
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FIG. 8. Absorption spectra calculated with and with-
out Coulomb interaction. Re(σ̃‖) and Re(σ̃⊥) of (16,0)
undoped CNTs are shown.

of doping results in that the S22 and S33 peaks exhibit
red-shift due to the dissolution of the band renormal-
ization. The red-shift of the peaks serves as a unique
information of the self-energy because the peak positions
should not change when the self-energy correction is not
taken into account (see Fig. 6). As shown in Fig. 9(b),
the exciton peak of E⊥ disappears soon after EF reaches
the bottom of the first subband (EF = 0.5 eV), and the
plasmon peak develops when EF = 1 eV. Such transi-
tion from exciton to plasmon may be observed when the
broadening of the exciton of an undoped CNT is suffi-
ciently suppressed. [23]

V. DISCUSSION

We compare the present results with experimental
ones. Kazaoui et al. found a broad peak in the absorption
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FIG. 9. Doping dependence of absorption spectra with
Coulomb interaction. (a) When EF = 0.5 eV, the S11

peak is invisible due to the exclusion principle and the doping
dependence of the S22 peak exhibits a red-shift as indicated
by the horizontal arrow. (b) The small exciton peak when
EF = 0 eV is replaced by plasmon peak when EF = 1 eV.
This transition may be observed when the exciton peak is
observable. The arrow above the plasmon peak shows that
the plasmon energy increases with increasing doping.

by thin films of heavily doped single-walled CNTs. [9]
The pristine films consist of semiconducting and metallic
CNTs since S11 (0.68 eV), S22 (1.2 eV), andM11 (1.8 eV)
are all observed. The doping-induced peak appears when
S11, S22, and M11 disappear by doping, which is consis-
tent with our results. It was found that the peak energy
depends on doping level: 1.07 eV (1.3 eV) for CBr0.15
(CCs0.10), while the details about the dependence was
unknown. Igarashi et al. clarified that using electrochem-
ical doping the peak energy increased with increasing the
doping. [12] They showed further that semiconducting
and metallic single-walled CNTs cause independently the
absorption peak at approximately 1 eV. These are consis-
tent with our results. However, the calculated peak en-
ergy is slightly above (∼ 0.1 eV) the experimental result.
This discrepancy warrants further examination. Petit
et al. showed that doping thin films with naphthalene-
lithium did not cause the corresponding absorption peak

even though the doping level is high enough to make an
absorption peak. [15] This suggests an interesting pos-
sibility that the surrounding of CNTs is modulated by
the doping and that doping has an influence on the plas-
mon absorption (such as the peak energy and intensity)
through a mechanism beyond the description by static
dielectric constant.

When fully verifying the proposed theory, it is desir-
able to orient CNTs that are doped and separated into a
single chirality. In the past, the depolarization effect was
experimentally verified by absorption and Raman spec-
troscopy in which undoped CNTs are oriented by stretch-
ing the organic films on which they are dispersed [4]
or by controlling magnetic effects [25] or CNT growth
processes. [26] Although experiments have already been
performed on the doping dependence of light absorp-
tion for CNTs with a single chirality, [12] there is no
corresponding absorption measurements for oriented and
doped CNTs. Recently, He et al. developed a technology
for aligning CNTs spontaneously by improving vacuum
filtration, [27] and this approach can be used for the pur-
pose.

If doped CNTs can be oriented, they will provide an
opportunity for searching for novel phenomena even if
they are not separated into a single chirality. Because the
anisotropy of light absorption is related to the anisotropy
of the electron-phonon interaction, there is a strong pos-
sibility that characteristic signals of doping will be ex-
plored by the polarized Raman spectroscopy. [28] For ex-
ample, in doped metallic CNTs, phonon frequency hard-
ening have been observed in the manner that depends on
the phonon eigenvector. [29] A phenomenon similar to it
should be observed also for semiconducting CNTs.

The idea of the polarization reversal of light absorption
in doped CNTs can also be applied to doped graphene
nanoribbons, because it has been shown that the op-
tical selection rule of nanoribbons is similar to that of
CNTs. [19] However, a modification of Eq. (3) caused by
the edge is needed for nanoribbons and the coupling of
nanoribbons to the substrate must be taken into account.

Since the length of a CNT is finite in the axial direc-
tion, there is also a depolarization effect in the axial direc-
tion. [30] The optical selection rule of finite length CNTs
is obtained by extending the calculations on a nanorib-
bon. Indeed, due to the formation of a standing wave by
the ends of a CNT, it can be proved that there is a wave-
length shift of roughly the reciprocal of the axial length,
which can explain why the plasmon peak is formed in the
terahertz region of E‖. [30]
Here, we mention a subject closely related to the op-

tical properties of doped CNTs, that is, quantum wells.
The band-diagram of a CNT bears a similarity to that
of a quantum well and the concepts such as depolariza-
tion and exciton effects have been used to understand
the optical properties of quantum wells. The term “in-
tersubband transitions” is commonly used to describe
only the transitions within the conduction band of quan-
tum wells. [31] This is a reasonable assumption when
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the width of doped quantum wells is approximately 10
nm or longer. For CNTs with diameter of the order of
1 nm, however, the inter-band transitions have very im-
portant effects on absorption spectrum for both undoped
and doped cases. Note also that the pseudospin selection
rule is a fundamental new point of CNTs, not seen in
quantum wells.

Two degrees of freedom of the light polarization are
utilized in modern optical transmission technology to
double the amount of information transmitted simultane-
ously. For example, a light is propagated by associating
its parallel polarization with pictorial information and
perpendicular polarization with sound. Nano-scale ma-
terials that respond differently depending on polarization
direction are advantageous for information manipulation
in highly refined structures where light propagates, for
example as an extremely thin Polaroid film. The fact that
the polarization direction of light transmitted through
CNTs can be rotated by 90 degrees simply by doping
implies the possibility of performing further information
manipulation by electric means. From the viewpoint of
condensed matter physics, the doping-induced change in
the phase of the excited states from excitons to plasmons
is an intriguing topic. Our conclusion is thus to stimu-
late both fundamental research on CNTs and application
research related to optical devices.
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Appendix A: Method

We employed a tight-binding model with the hopping
integral γ = 2.6 eV and atomic distance acc = 1.42 Å,
to calculate the band diagram and wavefunction of the
π electrons in CNTs. [13] As a function of wavevector
k = (kx, ky), the model Hamiltonian is written in the
form of a 2× 2 matrix:

H(k) = −γ

(

0 f(k)
f(k)∗ 0

)

. (A1)

The off diagonal element f(k) is a complex number given
by

f(k) = eikyacc + 2e−i
kyacc

2 cos

(√
3kxacc
2

)

, (A2)

and f(k)∗ denotes the complex conjugate of f(k). By
expressing the energy eigenvalue equation H(k)|φs

k
〉 =

εs
k
|φs

k
〉 in terms of the magnitude and phase of f(k) as

f(k) = |f(k)|e−iΘ(k), we obtain the energy eigenvalue
and Bloch wavefunction as εs

k
= −sγ|f(k)| and

|φs
k〉 =

1√
2

(

e−iΘ(k)

s

)

, (A3)

respectively. The band index s = +1 (s = −1) cor-
responds to the valence (conduction) band. The low en-
ergy band diagram near the charge neutrally point εs

k
∼ 0

is given by a pair of double cones (known as the Dirac
cones).
Because the interaction between the electron and light

δH is given by the minimal substitution, ki → ki − e
h̄Ai,

the electric currents defined from δH = JiAi are

Ji = − e

h̄

∂H(k)

∂ki
(i = x, y). (A4)

Putting Eqs. (A1) and (A2) into Eq. (A4) we have the
following expressions of the current operators,

Jx = −ev
2√
3
sin

(√
3kxacc
2

)(

0 e−i
kyacc

2

e+i
kyacc

2 0

)

, (A5)

Jy = −ev
2

3





0 −i
(

eikyacc − e−i
kyacc

2 cos
(√

3kxacc

2

))

i
(

e−ikyacc − ei
kyacc

2 cos
(√

3kxacc

2

))

0



 , (A6)

where v ≡ 3γacc/2h̄ is the Fermi velocity of graphene.

The wavevectors are quantized by the periodic bound-
ary condition around and along the tube’s axis. [16] For
the case of armchair (n, n) CNTs, the quantized wavevec-

tors are specified by two integers m and j as

ky
3acc
2

n = mπ, (m = −n+ 1, . . . , n), (A7)

kx

√
3acc
2

2L = jπ, (j = −L, . . . , L). (A8)
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Note that 2
√
3accL is the CNT length, 3accn/π is the

diameter, and the surface area of a CNT (S) is 3accn ×
2
√
3accL. As a result of the longer axial length than

the diameter (L ≫ n), the band diagram of a CNT is
well described by the cross sections of the Dirac cone
(see Fig. 3(b)). We also note that the effect of orbital
hybridization between π and σ due to the curvature of
the azimuthal direction is negligible in this study. For the
case of zigzag (n, 0) CNTs, the quantized wavevectors are
specified by two integers m and j as

ky
3acc
2

2L = jπ, (j = −L, . . . , L), (A9)

kx

√
3acc
2

n = mπ, (m = −n+ 1, . . . , n). (A10)

Note that 6accL is the CNT length,
√
3accn/π is the di-

ameter, and the surface area of a CNT is the same as
(n, n) CNTs.
We calculated the dynamical conductivity in the

framework of the linear response theory,

σ∆m(ω,EF ) ≡ gspin
h̄

iS

∑

s′,s

∑

m,j

(

f s′

m+∆m,j(EF )− f s
m,j(EF )

) ∣

∣

∣〈φs′

m+∆m,j |Ji|φs
m,j〉

∣

∣

∣

2

(

εs
′

m+∆m,j − εsm,j

)(

εs
′

m+∆m,j − εsm,j + h̄ω + iδ
) ,

(A11)

where gspin = 2 is the spin degeneracy, f s
k
(EF ) =

1/(e(ε
s
k
−EF )/kT + 1) is the Fermi distribution function

at room temperature (kT = 1/38.6 eV), and δ (= h̄/τ)
is inversely proportional to the relaxation time of an ex-
cited electron. We fix δ = 50 meV (τ ≈ 13 fs) in all
calculations. For an armchair CNT, the current operator
Jx (Jy) couples to E‖ (E⊥). Due to the momentum se-
lection rule ∆m = 0 for E‖, the absorption JxEx is the
product of

σ0 (A12)

and E2
x, while for E⊥, the absorption JyEy is the product

of

1

2

(

σ+1

1− σ+1

iωǫdt

+
σ−1

1− σ−1

iωǫdt

)

(A13)

and E2
y . The factor one-half in Eq. (A13) originates from

the field decomposition of Ey into the pair ∆m = ±1.
Equations (A12) and (A13) are the exact definition of the
absorption plotted in the text as σ‖ and σ̃⊥, respectively.
Note also that σ+1 = σ−1(≡ σ⊥) holds in the absence of
the Aharonov-Bohm flux along the tubule axis.
It is instructive to evaluate the matrix element to show

that only the forward scattering is allowed by the selec-
tion rule of pseudospin. We take zigzag CNTs and focus
on the transitions between band edges (ky = 0). The

matrix element of Jx is known from Eqs. (A3) and (A5)
as

〈φs′

m′ |Jx|φs
m〉 ∝ 1 + ss′ei(Θ

′+Θ). (A14)

Thus, for the inter-band transitions (ss′ = −1), the tran-
sitions satisfying Θ′+Θ = π, which are the forward scat-
tering, have the largest matrix element squared. For the
intra-band transitions (ss′ = 1), the transitions satisfy-
ing Θ′ + Θ = 0, which are the forward scattering too,
are allowed. The intra-band backward scattering satis-
fies Θ′ +Θ = π and has vanishing matrix element. [21]
The polarization characteristics of the absorption spec-

trum has been investigated for incident light energies up
to 6 eV. [26] The absorption peaks observed at 4.5 and
5.25 eV were found to exhibit different polarization de-
pendencies. The behavior is also reproduced by our cal-
culation, that is, peaks caused by E‖ and E⊥ appear ap-
proximately at 5 and 6 eV, respectively. The discrepancy
between experiment and calculation may be attributed
to the fact that we have ignored the overlap between
the wavefunctions at nearest neighbor π electrons giv-
ing asymmetry in the conduction and valence bands. [13]
The qualitative agreement suggests the correctness of the
optical matrix elements used to evaluate the dynamical
conductivity. Note that the peak structure of Re(σ̃⊥)
at about 6 eV may be regarded as a plasmon resonance
because Im(σ⊥) has a peak structure at the energy and
Re(ε⊥) approaches zero. Note also that a realistic dop-
ing level does not change these high-energy peaks and
that the problem can be discussed simply in terms of the
photo-electron interaction and the density of the elec-
tronic state. [32]

 0
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FIG. 10. Absorption spectra of (10,10) armchair
CNTs. The depolarization effect of E⊥ suppresses a peak
to develop in Re(σ̃⊥) at low energy (h̄ω ≈ 1 eV). However,
Re(σ̃⊥) has the peaks at high energy around 6 eV.
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