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A method to control antiferromagnetism using voltage-induced strain was proposed and 

theoretically examined.  Voltage-induced magnetoelastic anisotropy was shown to provide 

sufficient torque to switch an antiferromagnetic domain 90°, either from out-of-plane to in-plane, 

or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic 

switching can occur in an 80 nm nanopatterned disk at frequencies approaching 1 THz, but that 

the switching speed heavily depends on the system’s mechanical design. Furthermore, the energy 

cost to induce magnetic switching was only 450 aJ, indicating that magnetoelastic control of 

antiferromagnetism is substantially more energy efficient than other approaches.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 There is a need to energy efficiently control magnetism at THz frequencies. 

Consequently, significant effort has been directed at controlling nanoscale magnetism by strain-

coupling the magnetic and electric order parameters of composites containing piezoelectric and 

magnetoelastic materials. Such systems are highly energy efficient, with a predicted ~10 aJ/state 

switch [1-2], but have a frequency response limited by the magnetoelastic film’s ferromagnetic 

resonance (usually ~1-10 GHz). Antiferromagnetic materials are attractive alternatives, because 

they exhibit resonances 2-3 orders of magnitude higher (~1 THz) [3-4], however, they are 

difficult to manipulate with external fields because the applied field needs to overcome the 

exchange anisotropy and induce a spin flop transition (which usually occurs for >1 Tesla). This 

paper proposes solving the 1 Tesla control problem by leveraging magnetoelastic coupling found 

in antiferromagnets like NiO [5-6], [36-39] or FeMn [7]. In particular, the uniaxial nature of the 

strain anisotropy enables rotation of the antiferromagnet phase without overcoming the 

antiferromagnetic exchange, and this lowers the required switching anisotropy by a factor of 10-

100 times. To further analyze dynamics in such systems, we present a numerical framework 

which solves the 10 coupled partial differential equations that govern spatiotemporal 

magnetoelastic response in antiferromagnet-piezoelectric composites, and demonstrate energy 

efficient, ultra-fast switching. This strain-mediated voltage control of magnetism offers a new 

pathway to drive dynamic processes, on-chip, within the THz bandgap between radio and optical 

frequencies for the first time. This advancement may enable a new generation of strain-coupled 

antiferromagnetic sensors, spin wave devices, and systems with tunable exchange-biasing. Our 

findings also provide a clear direction for future research efforts to find magnetoelastic 

antiferromagnets with low intrinsic anisotropy. 

Previous modeling efforts focused on predicting magnetoelastic dynamics in 

ferromagnets [8-10]. These models accounted for spatial non-uniformities in both strain and 

magnetization, thereby providing predictions that agreed with experimental data more closely 

than single-spin Stoner-Wohlfarth models or micromagnetic Landau-Lifshitz-Gilbert (LLG) 

models that assume uniform strain (i.e. mechanically decoupled models). Magnetoelastic models 

have been used to analyze voltage-controlled 180˚ switching in magnetic nanoelements with 

perpendicular magnetic anisotropy [11], in-plane magnetic switching driven by selective 

piezostraining using patterned electrodes [12-13], and 360˚ control of domain wall rotation in 

nickel ring structures [14] to name a few [15].  However, dynamic magnetoelastic models of 



antiferromagnets have received little attention, and most antiferromagnetic models focus only on 

the micromagnetic behavior rather than mechanical coupling effects [16-17]. In particular, 

micromagnetic modeling has been used to predict the behavior of exchange-biased multilayers, 

specifically using finite elements [18] and the Monte Carlo method [19-20].  In experimental 

work, only magnetoelectricity in single phase materials [21-23] and carrier-induced spin 

reorientation [24-25] have previously been used for antiferromagnetic domain control. In this 

Letter, continuum-level numerical modeling illustrates that magnetoelasticity can provide a high 

speed, low power alternative control method for microscale antiferromagnets. 

I. Model Development 

 In this section, we provide the equations governing the spatiotemporal evolution of an 

antiferromagnetic material in response to voltage-induced strain. This formalism assumes that 

any antiferromagnetic phase can be deconstructed into two constituent ferromagnetic sublattices 

which are antiferromagnetically exchange coupled and oppositely oriented in the absence of 

external stimuli. Each of these sublattices is further assumed to be locally magnetically saturated 

throughout the entire volume. The sublattice magnetic moments are described by the vector field 

components ( ) ( )i
sm t , where i = {1,2,3} indicates the direction in a Cartesian coordinate system, 

and s  = {1, 2} indicates the sublattice. The model also assumes magneto- and electrostatics, 

infinitesimal strains, and neglects thermal influences.  

          Under these conditions, the dynamics of each magnetic sublattice follow the LLG equation 

[26],   

                                           

( ) ( )
( ) ( )

s s
s s

eff
m mm H m
t dt

γ α
∂ ∂

= − × − ×
∂                                       (1) 

Where is the gyromagnetic ratio, is the effective magnetic field, is the sublattice 

magnetization direction, and is the Gilbert damping parameter.  is the driving term of the 

magnetic dynamics in Equation 1. It can vary in space and time, and is determined by taking the 

functional derivative of the total free energy density  
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where 0µ  is the vacuum permeability and  is the saturation magnetization. Equation 2 

indicates that effH  will contain a term for each magnetic anisotropy energy that contributes to 

totalE . In antiferromagnets with negligible magnetocrystalline anisotropy the relevant energy 

densities are 

 
(1) (2) (1 2) (1) (2)

total ex ex AFM me meE E E E E E−= + + + +   (3) 

where exE , AFME , and meE  denote the intralattice ferromagnetic exchange, the interlattice 

antiferromagnetic exchange, and magnetoelastic energy densities, respectively. This formulation 

of the energy densities assumes that all anisotropies besides those listed in Equation 3 are low 

relative to the strain-induced anisotropy. This assumption is reasonable as many magnetoelastic 

ferromagnets (Ni or FeGa), ferrimagnets (TbDyFe), and antiferromagnets (FeMn, MnNi, IrMn) 

[40-42] have low magnetocrystalline (MCA) or shape anisotropies relative to the strength of 

strain coupling. Including any of these smaller additional anisotropies like MCA or shape 

anisotropy would result in the formation of preferred axes of magnetic alignment (i.e. stable 

states), and modify the switching dynamics by creating energy wells which the strain-excitation 

must overcome. Since these changes may be complex, the model presented here addresses only 

amorphous antiferromagnets that are isotropic in-plane with stable states dictated by the 

exchange and magnetoelastic energies in Equation 3. The form of exE used here is common in 

the literature 
( )(s) 2 s

exE A m= ∇   [8][41], where is the exchange stiffness. The interlattice 

antiferromagnetic exchange is defined by an Ising-like term 
(1) (2)(1 2)

AFME Jm m− = − ⋅ , where J  is the 

antiferromagnetic exchange coupling coefficient. In most antiferromagnets J  is sufficiently 

large that 
(1) (2)m m− ≈ [27], which cancels the dipolar fields and leads to zero demagnetization 

energy. The two remaining terms, 
(1)
meE   and 

(2)
meE , are functions of both strain and 

( )sm   
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where 1B  and 2B are the first and second order magnetoelastic coefficients. 
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 Next, we present the effective fields used in the model, discuss the magnetomechanical 

coupling terms, and examine their connection to elastodynamic behavior. The two intralattice 

exchange fields are represented using the conventional ferromagnetic exchange term
( )( ) 1 2

02 ( ) ll
ex sH A M mµ −= ∇   [28]. In contrast, the antiferromagnetic exchange field 

(s)
AFMH  contains 

terms which allow the magnetization of one sublattice to influence the other. The ith component 

of these fields in each sublattice, respectively, are 
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To simultaneously solve the coupled magnetoelastic dynamics, two additional coupling terms are 

needed. One of these terms, 
( )l
meH , is an effective field that changes the sublattice magnetic state 

based on the total strain . The ith component of 
( )l
meH  is 

 

( ) ( ) ( )
1 2( )

0

1s total s total s
me ii i ij jsi

j is

H B m B m
M

ε ε
µ ≠

⎛ ⎞
⎡ ⎤ = − +⎜ ⎟⎣ ⎦

⎝ ⎠
∑

  (6) 

where summation occurs only in the second term. This paper focuses on systems with isotropic 

magnetostriction, a condition which requires 100 111 110λ λ λ= =  and 1 2B B= . Furthermore, the 

magnetostrictive coupling was assumed to affect each sublattice equally. This required 1) 

halving the magnitude of 
( )s
me i

H⎡ ⎤⎣ ⎦  in equation 6 in comparison to the form for ferromagnets, and 

2) defining 1 1
Fe MnB B=  and 2 2

Fe MnB B= . To maintain the self-consistency of the model, this 

reduction by half was also included in the magnetoelastic strain coupling term, 
MEε , which 

defines the strain caused by magnetic reorientation 
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where is the saturation magnetostriction. In the limiting case of equation 7, when an 

antiferromagnet is uniformly magnetized, 
(s) (s) 1i jm m →  and s

MEε λ→  along the axis of 

totalε

sλ



magnetization. This implies that saturation magnetostriction occurs when the two sublattices are 

coaxially aligned. Analogous behavior is observed in ferromagnets in the limit of magnetic 

saturation [26].  

 Equations 6-7 ensure that the mechanical and magnetic dynamics are coupled and can be 

solved simultaneously. However, calculation of  
totalε in equation 6 requires that the system’s 

elastodynamics be considered. The governing equation of linear elastodynamics is  

 

2

2 0u
t

ρ σ
∂

−∇⋅ =
∂   (8) 

 
: mechCσ ε=

  (9) 

 where ρ is the material density, u  is the displacement, σ  is the elastic stress, 
C

 is the stiffness, 

and 
mechε is the elastic strain. The driving term in equation 9 is the mechanical strain 

mechε , which 

is the difference between the total strain 
totalε and the magnetic strain 

MEε . In this paper, we also 

consider cases where the antiferromagnet is externally strained by a piezoelectric material, in 

which case  
mechε  becomes 

 
mech total piezo MEε ε ε ε= − −   (10) 

where 

piezoε
 is the piezostrain. The strains in equation 10 are directly related to the physical 

displacements through ( )1 ( )2
total Tu uε = ∇ + ∇

.  

 Equations 2-7 and 9-10 were inserted into equations 1 and 8, resulting in nine coupled 

partial differential equations that govern antiferromagnetic magnetoelastic dynamics. In the case 

where piezoelectricity was included, one more differential equation was added to calculate the 

electric field distribution inside the piezoelectric layer. The coupled PDEs were solved 

simultaneously using a weighted residuals method within a finite element framework. The finite 

element solver used implicit time stepping (
(max) 0.5stept =  ps) and a backward differentiation 



formula. In the antiferromagnetic volume, a cuboidal finite element mesh was used, with a 

maximum element size of 2.5 x 2.5 x 0.57 nm3. This element size was chosen to capture any 

magnetic non-uniformities within the antiferromagnet’s constituent ferromagnetic sublattices on 

the order of the exchange length, 
2 1/2

0 3.51 n(2 ) / ( m)ex ex sL A Mµ ≈= , while simultaneously 

capturing any strain variations due to effects like shear lag. 

 The model developed above was used to study the two cases shown in Figures 1(a)-(b). 

In the first case (Figure 1(a)), an antiferromagnetic disk with an 80 nm radius and 4 nm thickness 

was modeled with traction free boundary conditions ( 0t nσ= ⋅ = ) imposed at every surface. 

First, the disk’s antiferromagnetic state was initialized out-of-plane (along µ3e ) and relaxed for 50 

ps. Then, at t=0, a uniform strain field was applied everywhere in the volume, with 1000 µε of 

tension along µ2e and 400 µε of compression along µ1e . The average sublattice magnetic response 

was then recorded every 0.5 ps. Fourier analysis of the sublattice response to the broadband 

excitation allowed for identification of the antiferromagnetic resonance frequency.  

 In the second model (Figure 1(b)), an antiferromagnetic disk was attached to a thin 

piezoelectric film which, in turn, was attached to a thick substrate. The 400 x 400 x 100 nm3 

piezoelectric film was modeled with a mechanically clamped bottom surface ( 0u = ) and fixed 

in-plane boundaries ( $ 0u n⋅ = ) to replicate the presence of the thick substrate and infinite 

extension of the film in the µ1e - µ2e  plane. The top surface of the composite was maintained 

traction free. As in the previous model, the disk’s antiferromagnetic state was first initialized out-

of-plane and relaxed for 50 ps. After relaxation, electrical ground (V = 0) was applied to the 

piezoelectric layer’s bottom surface, while a voltage excitation, applied at either of the two 40 x 

40 nm surface electrodes, was ramped from 0 to -0.5 V over 1.5 ps (see Figure 2(b) inset). The 

resulting piezostrain drove magnetic precession in the disk, which was recorded every 0.5 ps. As 

with the previous model, these boundary conditions were chosen because they lead to high but 

realistic strains, like those required for switching in other magnetoelastic materials. 

 The material properties used for both studies were as follows (bulk values were used 

where values for microscale geometries were not available, as they are known to be similar [34-

36]). Since the material properties of magnetostrictive antiferromagnets are not well-studied, the 



following constants were obtained from the available literature, using known constants for the 

ferromagnetic sublattices where relevant: Aex (Fe) ≈ Aex (Mn) = 2.48 x 10 -12 J/m [29], Ms (Fe) ≈ Ms 

(Mn) = 5.66 x 105 A/m,  µε [7], [30], Young’s modulus  GPa [31],  

kg/m3, and Poisson’s ratio 0.3υ = . A Gilbert damping parameter of 0.02α =  was assigned to 

each ferromagnetic sublattice since this value is in the typical range for magnetoelastic 

ferromagnets [1, 42-43]. With these constants, the material modeled has a likeness to Fe50Mn50, 

whose antiferromagnetic exchange coupling coefficient, JAFM, is currently unmeasured. 

Consequently, the value of the ferromagnetic exchange coefficient of bulk single crystal Fe, 
63.97 10J = × J/m3, was used. In addition, a parametric sweep of α between 0.8 and 0.02 was 

used to confirm that value used for the Gilbert damping parameter did not significantly influence 

the threshold strain required for switching for realistic values of α (< 0.1). However, non-

physical, high α values (> 0.7) produced a strongly overdamped response that changed the 

antiferromagnet’s mechanical impedence and reduced strain transfer across the composite 

interface. For this reason, low α was used. With the material parameters used above, the 

magnetic and magnetostrictive predictions of the model cannot be quantitatively accurate for a 

particular material, but are intended to represent correct trends in the material behavior and 

exemplify proper modeling methods. The piezoelectric layer’s properties were those of 

transversely isotropic Pb[ZrxTi1-x]O3 (PZT). These were d13 = -6.62 C/m2, d33 = 23.24 C/m2, 

7500ρ =  kg/m3, E1 = 127 GPa, E2 = 82 GPa, G13 = 22.9 GPa, 11 22 3130ε ε= = , and 33 3400ε = .  

II. Results and Discussion 

 Figure 2(a) shows the results for the model geometry illustrated in Figure 1(a) after 

uniform strain was applied at t=0 ps. The components of the Fe sublattice magnetization, 
( )
1
Fem  

(dashed line), 
( )
2
Fem  (solid line), 

( )
3
Fem  (dot-dashed line), and the magnitude of the net moment, 

( ) (Mn)| | | |FeL m m= +   (dotted line), were plotted as a function of time. The ( )
2
Fem  trace indicates 

that the sublattice realigned to the µ2e -axis within 3.25 ps, and then oscillated about this new 

orientation for ~10 ps before stabilizing.  During the same time, 
( )
1
Fem and 

( )
3
Fem exhibited 

precessional decay at a lower frequency, proportional to the applied switching anisotropy. The 

degree of magnetic sublattice misalignment, | |L , grew initially during the switching event in a 

750sλ ≈ 77E = 7700ρ =



manner proportional to dm
dt

. This sublattice misalignment was caused by the uniaxial nature of 

the switching anisotropy, which applied oppositely-pointing torques to the two sublattices. In 

turn, this drove the sublattices to precess to the new easy axis with opposite chirality, thereby 

generating a net moment that reached a maximum of 7.3% of Ms at t=3.25 ps (as 
( )
2
Fem saturated). 

In the subsequent 10 ps, L oscillated with a periodicity that matched the ringing period observed 

in 
( )
2
Fem . The similarity between these periods suggests that the system relaxed through the 

pendulum-like motion of the two sublattices about one another at antiferromagnetic resonance. 

The Fast Fourier Transform (FFT) of | |L  is known to exhibit a peak at twice the 

antiferromagnetic resonance (AFMR). For the modeled system, this peak occurred at 0.708 THz 

(shown in the inset of Figure 2(a)), which corresponds with a model-predicted AFMR of 0.354 

THz. This simulated resonance is within about 28% of that predicted by theory [41]. The FFT 

also exhibited some high amplitude, low frequency content, which is attributed to the amplitude 

decay envelope of | |L .  

 Figure 2(b) shows the results for the voltage-actuated piezoelectric/antiferromagnetic 

composite model (from Figure 1(b)). In this model, voltage was applied at t=0 ps at the left-most 

electrode in Figure 1. The values of 
(Fe)m and | |L  were plotted together with the volume-

averaged biaxial strain state ( 22 11ε ε− ) in the antiferromagnetic disk (on the right ordinate axis). 

Prior to the application of voltage (i.e., during the magnetic relaxation period, t < 0), 

magnetoelastic torqueing occurred due to mechanical shear lag effects at the disk edges [8], 

producing a non-uniform initial sublattice magnetization state with the volume-averaged 

components 
(Fe)m = (0, 0, 0.78). Then voltage was applied at t=0, and it took 18.5 ps for the 

voltage-induced strain wave to propagate from the electrode to the edge of the antiferromagnetic 

disk, as indicated by the first peak in the 22 11ε ε− plot. It took an additional 84 ps (labeled MST 

in Fig. 2(b)) for the strain to propagate across the disk and cause 90˚ rotation of 
(Fe)m . This is 

seen by the peak of 
( )
2
Fem concurring with the second peak in 22 11ε ε− . Throughout the MST, 

( )
3
Fem  decayed towards zero, as expected, but did not settle completely due to the system’s 



continued strain oscillations. In contrast, 
( )
1
Fem  remained relatively constant near zero during 

switching, since the switching occurred primarily in the µ2e - µ3e  plane. With regards to | |L , it 

remained stable around < 2%  and, in contrast with the uniform strain model, it did not vary with 

dm
dt

 in the early part of the MST. These small values of  | |L indicate that the voltage-induced 

switching proceeded below the antiferromagnetic resonance (i.e., near adiabatically [32]), a 

phenomena also not observed in the uniformly strained model (Figure 2(a)).  Subsequent Fourier 

analysis of | |L indicated broadband low frequency response, which confirms the quasistatic 

nature of the switching. Further simulations showed that subsequent voltage application to the 

other top surface electrode in Figure 1(b) resulted in 90˚ in-plane switching from µ2e to µ1e  with 

the same frequency response observed during out-of-plane to in-plane switching.  

 The comparatively slow switching speed of the antiferromagnetic-piezoelectric 

composite is explained by observing the spin and strain states at two different times, as shown in 

Figure 3. In Figures 3(a)-(b), for t=71.5 ps and t=102.5 ps respectively, 3-dimensional plots of 

strain and magnetization are provided from a perspective view (top) and a cross-sectional view 

(bottom). In Figure 3(a), the strain wave during the MST, indicated by color gradient from red to 

blue (high strain is red, low strain is blue), had reached the middle the disk. At the same time, the 

magnetic moments in the strained portion of the disk had rotated in-plane, as shown by red (
(Fe)m

) and black (
(Mn)m ) arrows, whereas the moments in the unstrained portion of the disk did not 

move. By the end of the MST, Figure 3(b) shows that the strain had propagated through the 

entire disk and, correspondingly, the magnetization had rotated uniformly in-plane. Therefore, it 

is evident that the speed of antiferromagnetic reorientation is dictated by the speed at which 

strain can propagate through the disk.  

 While the uniform strain model suggests that near THz switching in an antiferromagnet is 

possible, the results from the composite model indicate that, for realistic strain-actuated 

structures, consideration must be given to the method of mechanical actuation. In particular, the 

two models presented here illustrate 1) that THz switching is possible, 2) that device design 

choices like the location of the actuating electrode can influence switching speed, and 3) that 

fully-coupled magnetomechanical models are necessary to predict the frequency response of 



strain-controlled antiferromagnets. The results presented here do not mandate that realistic 

devices be limited to frequencies far below antiferromagnetic resonance. For example, reducing 

an antiferromagnet’s dimension in the direction of mechanical wave propagation should increase 

operational frequency. Since an antiferromagnet’s thickness is commonly its shortest dimension, 

co-locating the actuating electrode underneath it may increase switching speed up to 20 x. 

 Furthermore, the energy required to operate at these frequencies can be low. The energy 

cost per state switch was calculated from the model by numerically integrating the applied 

charge density over the electrode surface and then using / 2switchE QV=  to find the energy stored 

capacitively in the piezoelectric layer.  We found that 450 aJ was sufficient to switch axis of 

antiferromagnetic alignment 90˚. This is 3 orders of magnitude more energy efficient than 

alternative magnetic control methods, like spin transfer torque, which requires 100 fJ/state switch 

[33].  

 In conclusion, a fully-coupled finite element model incorporating micromagnetics, 

elastodynamics, and piezoelectricity was developed to predict voltage-induced magnetoelastic 

switching behavior in antiferromagnets. Results demonstrated that the frequency of 

antiferromagnetic switching can approach THz, but the speed is influenced by the transient of the 

mechanical excitation. Furthermore, the energy cost associated with controlling 

antiferromagnetism using strain is extremely low (100’s of aJs). This combination of high speed 

and low power control may offer a new development avenue for next generation devices. 
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FIG. 1    The geometries used in the finite element calculation are shown. (a) The geometry for the first model is a disk 
of diameter 80 nm and thickness 4 nm. The antiferromagnetic state is initially aligned out-of-plane and, after 
magnetically relaxing for 50 ps, remains unmoved. Then, at t=0, the displacement field inside the disk is precisely 

controlled to yield a uniform biaxial strain of 1400 µε, with tension along µ2e  and compression along µ1e . (b) The 
geometry for the magnetomechanical model of the antiferromagnetic-piezoelectric composite is shown. In this 
structure, voltages can be applied at either of the two yellow electrodes (with electrical ground on the bottom planar 
electrode) to generate in-plane strains that can switch the antiferromagnetic state 90˚. The choice of electrode dictates 
the eventual in-plane direction of the switched antiferromagnet. 



 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2    The volume-averaged magnetization of the Fe sublattice is plotted in time domain for both 
models. (a) When uniform biaxial strain is instantaneously applied at t=0, the axis of antiferromagnetic 
alignment resonantly switches within 3.25 ps, and settles about 12 ps later. The peak in the FFT of | |L  at 
708 GHz corresponds with an antiferromagnetic resonance at half that value, i.e. at 354 GHz (b) When 
voltage is applied at t=0, antiferromagnetic switching occurs after about 100 ps. The switching process 
proceeds so far below resonance as to be quasistatic. The observed continuation of motion in m2 is owed 
to the continuing oscillation in biaxial strain (green line), which occurs because the exciting acoustic 
wave internally reflects within the antiferromagnetic disk. 



 

 

 

 

 

 

 

 

 

 

 

 

 

	

	

FIG. 3     The strain (3D color plot) and spin states (black and red arrows) of the antiferromagnetic disk in 
the composite are plotted two different times in the MST. (a)  At t=71.5 ps, the wavefront of the acoustic 
excitation has reached about half way across the disk, and the sublattice moments behind the wavefront 
have switched in-plane, whereas the moments ahead of the wavefront have not. (b) At t=102.5 ps, the 
strain has propagated across the disk and switched it completely.	
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