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Biodegradable polymers are naturally abundant in living matter and has led to great advances in
controlling environmental pollution due to synthetic polymer products, harnessing renewable energy
from biofuels and in the field of biomedicine. One of the most prevalent mechanisms of biodegra-
dation involves enzyme-catalysed depolymerization by biological agents. Despite numerous studies
dedicated to understanding polymer biodegradation in different environments, a simple model that
predicts the macroscopic behavior (mass and structural loss) in terms of micro-physical processes
(enzyme transport and reaction) is lacking. An interesting phenomena occurs when an enzyme
source(released by a biological agent) attacks a tight polymer mesh that restricts free diffusion. A
fuzzy interface separating the intact and fully degraded polymer propagates away from the source
and into the polymer as the enzymes diffuse and react in time. Understanding the characteristics
of this interface will provide crucial insight into the biodegradation process and potential ways to
precisely control it. In this work, we present centro-symmetric model of biodegradation by char-
acterizing the moving fuzzy interface in terms its speed and width. The model predicts that the
characteristics of this interface are governed by two time scales, namely the polymer degradation
and enzyme transport times, which in turn depend on four main polymer and enzyme properties. A
key finding of this work are simple scaling laws that can be used to guide biodegradation of polymers
in different applications.

Biodegradation of polymers is the process of break-
down of the polymeric network by biological agents into
components that naturally blend into the environment.
The biological agents can be macro-organisms that di-
gest the polymer through mechanical and chemical pro-
cesses or micro-organisms that degrade and consume the
polymer by secreting enzymes or other by-products like
acids [1, 2]. Enzymes are biological catalysts that have
the ability to cleave polymer chains. For instance, fungi
have been found to break down natural polymer networks
such as wood and tissues [3]. A notable example is the
wood-decay fungus that has the special ability to break
down lignin, cellulose, and hemicellulose three inert but
essential polymers in the plant cell wall [4]. Detailed
studies of the degradation process initiated by these fungi
have led to great progress in the bioenergy industry in
breaking down biomass, the largest source of renewable
energy, using enzyme technology [5]. Digestive processes
in most organisms are mediated by digestive enzymes
that degrade natural polymers like protein, abundantly
found in food sources [6]. Perhaps the most widely un-
derstood meaning of biodegradation is in relation to syn-
thetic polymers or plastics that raise serious environmen-
tal concerns. Many advances have been made in altering
the chemical composition of synthetic polymers to make
them more suitable for biodegradation in the natural en-
vironment [7]. Biodegradable polymers have also found
their way into biomedicine through implantable biomed-
ical devices [8, 9], hydrogel scaffolds for tissue regrowth
[10–12], and polymeric drug delivery vehicles [13–15].
Polymer degradation is generally measured macroscop-

ically in terms of the overall loss in polymer mass with
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time for different environmental conditions. At the mi-
croscopic scale however, multiple physical processes occur
simultaneously. The mechanism of enzymatic biodegra-
dation broadly includes, enzyme diffusion from a bio-
logical source and an enzyme-catalyzed reaction (aero-
bic or anaerobic) that causes depolymerization. Due to
restricted enzyme diffusion through the polymer mesh,
an interface between the depolymerized fluid and the in-
tact solid polymer is formed and set in motion as the
enzymatic reaction proceeds. This type of a moving in-
terface phenomenon has been widely observed with sur-
face erosion behavior in biodegradable polymers due to
water diffusion and progressive hydrolysis [16]. To bet-
ter understand the factors that influence the evolution
of polymer degradation, it is important to develop sim-
ple models and scaling laws based on multiple physical
processes that bridge micro and macrophysical behav-
ior. The focus of this work therefore, is developing a
centro-symmetric model of polymer biodegradation by
enzymes, based on a reaction-diffusion system. We also
aim to understand how the scaling of polymer structure
and enzyme size/activity affect the overall degradation
behavior, that we will see is suitably characterized by
the speed and width of the resulting moving interface.

Falling under the category of moving boundary prob-

lems, these phenomena are mathematically challenging
to model, often requiring numerical methods [17]. Un-
der suitable approximations, analytical solutions do ex-
ist for infinite and semi-infinite domains. For instance,
the classical example of the propagating melt-freeze in-
terface, or Stefan problems, has been extensively studied
for simple geometries in 1D [18]and isotropic spheres [19–
21] with analytical solutions. In another general class of
problems, Hermans [22] developed a closed form solu-
tion for systems where the diffusing molecules (ex. cop-
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per ions) get immobilized after reacting with another
medium (ex. cellulose xanthate) thereby propagating a
sharp moving interface. An excellent review on differ-
ent scenarios and strategies involving moving boundary
problems in the context of diffusion can be found in the
book by Crank [23]. In all the above examples, the inter-
face is clear and sharp in separating two different phases.
But, the system under investigation here often produces
a fuzzy interface such that the boundary between the de-
graded and non-degraded regions has a finite width where
both free enzymes and weak polymer cross-linking exist
[24, 25]. This type of interface has been modelled analyt-
ically in 1D for hydrolytic degradation of biodegradable
polymers characterized by erosion rate and width that
determine the nature of degradation(bulk or surface ero-
sion) [26]. Such a simple model however, has not been
developed for enzymatic biodegradation whose chemistry
and reaction kinetics vary with different enzymes [27]. In
this work, we therefore present a one-dimensional centro-
symmetric model of enzymatic biodegradation of solid
polymers characterized by the evolving cross-linking den-
sity of the network instead of polymer water solubility.
Let us consider an enzyme source in the shape of a

sphere encapsulated in a bio-degradable polymer (Fig.
1). The polymer is characterized by its cross-link den-

FIG. 1. Schematic illustrating the propagation of a fuzzy in-
terface due to enzyme diffusion and degradation reaction in
the biodegradable polymer. The evolution of polymer cross-
link density, ρ, (ρc corresponds to reverse gelation) and en-
zyme concentration, c, are illustrated. The highlighted pa-
rameters β, κ, c0 and Ds are the key features of the model.

sity, ρ, and mesh size, ξ, which is typically of the order
10-100 nm. Since the sizes of enzyme molecules are in
the same order of magnitude, it enables them to pene-
trate the mesh once released from the source. In this
work, we characterize the presence of enzymes by their
concentration, c(r, t) where r is the radial distance from
the center of the source (Fig. 1). As enzymes diffuse
through the polymer, they act as catalysts for polymer
degradation, hence reducing the cross-link density and
expanding the mesh until the so-called reverse gelation
point [28] is reached. This point occurs when ρ(r, t) = ρc
and marks the sudden drop in polymer network connec-
tivity and the transition to a fluid-like state. The critical
cross-link density, ρc, is usually identified by the ratio,
1/β of minimum network connections needed for struc-
tural integrity [25, 29], such that ρc = ρ0/β, given an
initial non-degraded cross-link density, ρ0. The coupled
reaction-diffusion process can be described by Fick’s law
of diffusion for the enzymes and enzyme-mediated poly-
mer degradation kinetics as

∂c

∂t
=

1

r2
∂

∂r

(

r2D
∂c

∂r

)

(1a)

∂ρ

∂t
= −κρc (1b)

where the equations are written in radial coordinates due
to the problem’s geometry. Here κ is the rate constant
for degradation and D denotes the enzyme diffusivity.
Importantly, the diffusivity is significantly affected by
degradation; before degrading, the polymer mesh resists
enzyme transport such that the diffusivity, Ds, is given
by Lustig and Peppas [30] as

Ds = Df

(

1− re
ξ

)

(2)

where re is hydrodynamic radius of the enzyme molecule,
ξ is mesh size of the polymer, and Df is the enzyme
diffusivity in a fluid given by the Einstein-Stokes equation
[31]. This model predicts a low diffusivity, Ds, when the
mesh size is small compared to the enzyme, re, and vice-
versa. Once reverse gelation is reached however, the mesh
size suddenly diverges and the diffusivity becomes Df .
Based on this analysis, we assume here that the enzyme
diffusivity in the degraded region (ρ < ρc) is considerably
higher than in the solid polymer, i.e. Df >> Ds.
As the enzymes travel away from the source,(seen here

as an enzyme reservoir with concentration c0), Eq. (1a)
suggests a concentration profile that gradually decreases
with distance, r, as shown in Fig. 1. From the degrada-
tion kinetics in Eq. (1b), we see that this causes faster
degradation closer to the source where the enzyme con-
centration is higher. Therefore, reverse gelation will first
be reached in the immediate region around the source,
at which point the polymer disintegrates into a fluid.
Similar to the approach in classical Stefan problems, the
spatial domain is now separated into two sub-domains;
one where reverse gelation has occurred (ρ(r, t) < ρc),
and the other where the polymer is still intact. Given
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the considerably high diffusivity, Df , in the first region,
the enzyme concentration here saturates to that of the
source, i.e. c(r, t) = c0. Due to centro-symmetry, this
results in a spherical interface that expands radially out-
ward separating the fully degraded and the structurally
intact polymer regions as shown in Fig. 1. Therefore, the
polymer cross-link density at the edge of this interface lo-
cated at r∗(t) is equal to ρc. Additionally, the mass of
enzymes flowing across the interface should be conserved.
Mathematically, these observations can be cast in terms
of so-called interface conditions of the form:

ρ
∣

∣

r∗
= ρc and −Df

∂c

∂r

∣

∣

∣

∣

r∗
−

= −Ds
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∣

∣

∣
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+

(3)

where the term −D∂c/∂r denotes the mass flux of en-
zymes. Assuming no permanent deficit at the reac-
tion site, the enzyme concentration profile is continuous
across the interface, i.e. c(r∗+, t) = c0.
Since the properties in the fully degraded region (r <

r∗) are trivial (c = c0, ρ < ρc), we bring our attention
to the solid polymer region whose inner boundary is r =
r∗(t), and outer boundary that is assumed sufficiently far
that the enzyme flux vanishes, i.e. −Ds∂c/∂r|r→∞ = 0.
Of interest in this problem is the speed, v = dr∗/dt, at
which the fluid-polymer interface travels away from the
source and the extent (or width) of the degradation re-
gion from this interface. For this, we aim to solve Eq. (1)
by first introducing a new variable C = cr, changing its
original form to the one-dimensional diffusion equation,
∂C/∂t = D∂2C/∂r2. Now, using the transformation,
R = r − r∗(t), to represent the solid polymer region, we
anticipate and assume a travelling wave type solution of
the form, C(R) = C0e

−kR, where C0 = c0r
∗ should sat-

isfy the continuity in the concentration profile and k is
a parameter to be determined. Substituting for c = C/r
in Eq. (1) and integrating Eq. (1b) subject to interface
and boundary conditions, we obtain the following solu-
tions (see supplemental information [32] for more details)

c(R) =

{

c0 R ≤ 0
c0 r

∗/r e−kR R ≥ 0
(4a)

ln(ρ/ρc) = ln β

(

1− 1 + kr∗

1 + kr
e−kR

)

R ≥ 0 (4b)

where R ≥ 0 represents the intact polymer region and
k2 = κc0/(Ds ln β). The value of k was obtained from
the condition that at large distances ahead of the in-
terface, the enzymes have not diffused yet leaving the
solid polymer intact with its initial cross-link density, i.e.
ρ(R → ∞) = βρc. As is the case with most travelling
wave solutions, there is a transient state due to sudden
initiation of interface movement when reverse gelation is
first reached in the immediate region of the source. This
transient state attenuates in time and so we focus here
only on the solution of the travelling wave.
Based on the above expression for k, that indeed ap-

pears extensively in Eq. (4), we identify two time scales,
τd and τt, that characterize the polymer degradation and

enzyme transport respectively

τd =
ln β

κc0
and τt =

L2

Ds

(5)

The degradation time, τd, is the time required to com-
pletely degrade the polymer when subjected to an en-
zyme concentration, c = c0. The transport time, τt, is
interpreted as the time needed by the enzymes to diffuse
a distance L through the solid polymer. The competition
between transport and degradation is then characterized
by the index

γ =

√

τt
τd

=

√

L2

Ds

κc0
ln β

(6)

When γ > 1, enzyme diffusion is the rate limiting pro-
cess, and the system is reaction-dominated. In con-
trast, when γ < 1, degradation becomes the rate limiting
process.[33]
Let us now define the interface width, w, as the dis-

tance between the interface position (ρ(r∗, t) = ρc),
and the point at which the polymer is 99% intact, i.e.
ρ(r∗ + w, t) = 0.99βρc. The interface width provides
crucial information regarding the nature of degradation
ranging from surface erosion for small widths to bulk
degradation for large widths. Substituting Eq.(4a) in Eq.
(1a) to obtain speed and using the definition of interface
width on Eq. (4b), we find that they must satisfy the
equations

v = vd

(

r̄γ

1 + r̄γ

)

(7a)

(

1 +
w̄γ

1 + r̄γ

)

ew̄γ = Kln β (7b)

where K = −1/ln(0.99), vd = L/
√
τdτt, r̄ = r∗/L and

w̄ = w/L. As the interface moves away from the source
(r̄ → ∞), the speed and width of the interface reach their
asymptotic values given by:

v = vd = L

√

Ds

L2

κc0
ln β

(8a)

w̄ =
1

γ
ln (Kln β) =

√

Ds

L2

ln β

κc0
ln (K ln β) (8b)

This provides important scaling relationships between
interface characteristics and the four parameters β, κ, c0,
andDs. We further note that Eqs. (8a) and (8b) describe
the speed and width of a planar interface propagating in
one dimension (see supplementary information for spe-
cific details). Eq. (8b) shows that the interface width, w,
is inversely proportional to the index γ. In other words,
diffusion-dominated systems (γ < 1) are characterized by
wider transitions from fluid to intact solid polymer (Fig.
2a). By contrast, reaction-dominated systems (γ > 1)
display sharper transitions (Fig. 2b). Interestingly, Eq.
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FIG. 2. Spatio-temporal degradation and enzyme profiles
illustrated with (a) τt = 1 s, β = 2, c0 = 1 M and
κ = 0.07 M−1s−1, which gives γ = 0.32, (b) Sharper in-
terface with same speed as 2a using τt = 10 s, c0 = 2M and
κ = 0.35 s−1 which gives γ = 3.16, and (c) Faster interface
with same width as 2b using β = 1.4 and τt = 5 s. The dis-
tance, x = r − r′, is normalized to the length scale, L = re,
where r′ is the radial distance above which the difference from
asymptotic value is negligible.

(8) suggests that it is possible to carefully tune the four
parameters of the model, in order to individually control
the interface width and speed (Fig. 2). For instance we
show in Fig. 2a and 2b that, the interface width can
be controlled independent of its speed by appropriately
tuning Ds, κ, and c0. Similarly, Figs. 2b and 2c show
that it is possible to control the interface speed alone by
tuning Ds and β.

A good summary of these relationships can be obtained
by plotting the interface characteristics, w and v, in terms
of the time scales, τt and τd (Fig. 3). Tuning τd is com-
paratively more flexible than τt, as τd depends on three
parameters (see Eq. (5)), while τt is predominantly gov-
erned by the polymer mesh size, ξ. Thus, using the plots
in Fig. 3, one can navigate through interface design space

in order to satisfy application-specific requirements. For
example, in tissue engineering, spherical cartilage cells
are expected to degrade the surrounding polymeric scaf-
fold to allow growth of new tissue [10, 34]. In this sce-
nario, it is crucial to achieve precise control of the inter-
face characteristics as cartilage cells behave differently
depending on the donor. A sharp degradation front and
optimal speed are in fact key to preserving the overall
mechanical integrity of the tissue [25, 35, 36]. In the case
of enzymatic hydrolysis of biomass, enzyme transport is
restricted by a tight cellulose mesh leading to slow sur-
face erosion. Since fast degradation is preferable in this
case [37], decreasing τd by increasing enzyme source con-
centration c0, or the reaction rate constant, κ, using dif-
ferent enzyme types [38] are helpful (see Fig. 3). An
effective strategy to control τt is by mediating polymer
mesh size via swelling [39, 40]. This is common in hydro-
gels used for tissue regeneration [41, 42], tissue expansion
for plastic surgeries [43], and in biomass containing cel-
lulose [44]. The enzyme size can also be tuned to control
τt and has been explored to achieve faster biomass degra-
dation [45]. In addition to engineering and medical ap-
plications, natural processes involving biodegration can
also be understood based on the above scaling laws. For
example, wood-rot fungi penetrate and spread by releas-
ing a plethora of enzymes that cause degradation of the
natural polymers contained in the plant cell wall. When
some host plants are more resistant (low κ) to the attack
from the fungus, it responds by releasing more enzymes
(higher c0) to increase the interface speed [46, 47]. Enzy-
matic biodegradation in the digestive tract of insects is
another example where valuable insights into the physical
processes are possible [48].
To summarize, we developed an analytical model of

enzymatic polymer biodegradation in terms of a moving
interface that propagates radially outward, characterized
by its width and speed. We found the interface charac-
teristics to depend on two competing time scales namely
the enzyme transport and degradation times. These
time scales are governed by the polymer mesh size,
enzyme source concentration, the enzymatic reaction
rate constant, and the polymer network connectivity.
Simple scaling laws were derived that can be used
to better understand natural processes and tune the
interface for engineering and biomedical applications.
This will also contribute towards a more fundamental
and physical understanding of enzymatic biodegradation
in polymers at the micro-scale and provide valuable
insights regarding their spatio-temporal macroscopic
behavior.
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FIG. 3. Plots of interface speed, v and width, w, w.r.t degradation time, τd, and enzyme transport time, τt. The speed and
width corresponding to Figs. 2 a,b and c are marked with bubbles. The trends in τd and τt due to network connectivity, β,
reaction rate constant, κ, enzyme source concentration, c0, and enzyme diffusivity in the polymer mesh, Ds, are shown.
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