
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Torque Differential Magnetometry Using the qPlus Mode of
a Quartz Tuning Fork

Lu Chen, Fan Yu, Ziji Xiang, Tomoya Asaba, Colin Tinsman, Benjamin Lawson, Paul M.
Sass, Weida Wu, B. L. Kang, Xianhui Chen, and Lu Li

Phys. Rev. Applied 9, 024005 — Published  7 February 2018
DOI: 10.1103/PhysRevApplied.9.024005

http://dx.doi.org/10.1103/PhysRevApplied.9.024005


Torque Differential Magnetometry Using the qPlus-Mode of a Quartz Tuning Fork

Lu Chen1,∗ Fan Yu1, Ziji Xiang1, Tomoya Asaba1, Colin Tinsman1, Benjamin

Lawson1, Paul. M. Sass2, Weida Wu2, B. L. Kang3, Xianhui Chen3, and Lu Li1†
1Department of Physics, University of Michigan,

Ann Arbor, 450 Church Street, Ann Arbor, MI, 48108
2Department of Physics and Astronomy, Rutgers University,
136 Frelinghuysen Road, Piscataway, NJ 08854- 8019 and

3Hefei National Laboratory for Physical Science at Microscale and Department of Physics,
University of Science and Technology of China, Hefei 230026, China.

(Dated: December 18, 2017)

Quartz tuning fork is the key component of high-resolution atomic force microscope. Because
of its high quality factor, quartz tuning fork can also be used for high sensitivity magnetometry.
Herein, we developed a highly sensitive torque differential magnetometry using the qPlus-mode of
a quartz tuning forks. The tuning fork is driven by an AC voltage and its deflection is measured
by the resultant AC current. We observed a sharp resonance of the quartz tuning fork at low
temperature down to 1.6 K. We calibrated our torque differential magnetometry by measuring
the angular dependence of the hysteresis loop in single crystalline Fe0.25TaS2. Furthermore, we
demonstrated the high sensitivity of the torque differential magnetometry by measuring the quantum
oscillations of bismuth single crystal. The extracted Fermi surface cross sections are consistent with
those of bismuth crystals.

I. INTRODUCTION

Quartz resonators have been widely used as fre-
quency standards in wrist watches due to its low internal
dissipation and insensitivity to accelerations [1]. Among
them, quartz tuning forks(QTF) are the most useful be-
cause of the surprisingly high quality factor (Q-factor)
and low frequency variation at room temperature. Fur-
thermore, the relatively high spring constant keff provides
additional advantages like smaller oscillation amplitude
[2] and larger linear operation range [3].

QTFs were introduced into scanning near-field
acoustic microscopy as a new method for imaging the
topography of nonconducting surfaces by Günther et al
[4]. Later on, QTFs were used to fulfill tip-sample dis-
tance control in near-field optical microscopes [5]. Shear
force detection was used in these microscopes and was
explicitly investigated by Karrai and Tiemann [6]. Im-
plementation of a tuning fork sensor suitable for high-
resolution atomic force microscopy(AFM) imaging was
achieved by involving phase lock loop(PLL) control [7].
By attaching a magnetic tip on a QTF, magnetic force
microscopy can bring a spatial resolution of several tens
of nanometers [8, 9]. Giessibl et al. also demonstrated
a new configuration of QTF based AFM (called qPlus
sensor) which maintains both high scanning speed and
atomic resolution [10].

Apart from the application in scanning probe mi-
croscopy, QTFs have a potential for the high-sensitivity
magnetometry due to high quality factor Q (∼104) and
high sensitivity [11]. Cantilever-based torque magnetom-
etry with resolution better than 104µB was widely used
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to study small magnetization signal in magnetic thin lay-
ers [12] and individual nanotubes [13]. In these experi-
ments, the read out of the magnetization signal usually
involves mechanical oscillator drive and optical detection
of cantilever deflection, often resulting in a cumbersome
setup that is sensitive to the environment. It’s necessary
to develop an easy-to-set-up and highly sensitive magne-
tometry.

In the QTF-based torque magnetometry, magneti-
zation coming from the sample generates a torque which
changes the effective spring constant keff of the QTF.
This change leads to a change in the resonance frequency.
Thus it can be read out by its electrical response, such
as current. Furthermore, cooling down to cryogenic tem-
perature can effectively maximize the signal-to-noise ra-
tio of the QTF[14][15]. This can, therefore, be a platform
for a potentially easy-to-set-up sensitive magnetometry.
However, QTF based torque magnetometry has not been
widely studied and lacks thorough understanding. A ma-
jor reason is that the quality factor is very sensitive to
the mass of attached specimen and will drop dramatically
when the two prongs are not well balanced, making it
impractical for resonant detection. Previous QTF-based
torque magnetometry was investigated with attaching an
iron wire to one prong of a free tuning fork [11]. There
are no prior studies on qPlus-mode magnetometry where
one prong is mechanically fixed.

In this article, we demonstrate that a qPlus-like
setup of QTF, dubbed torque differential magnetometry,
can achieve several times larger Q than prior non qPlus-
like setup even with a relatively massive sample [11]. The
QTF device is integrated on the rotator probe of a Ja-
nis Variable Temperature Insert(VTI) system which pro-
vides a low temperature and vacuum environment. We
tested two different measurement circuits and achieved
high sensitivity measurements in both low and high mag-
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netic field. In order to calibrate the order of magnitude of
magnetization measured with the quartz tuning fork, we
measured the hysteresis loop of a well-studied ferromag-
netic material Fe0.25TaS2 with different methods of mag-
netometry. Our analysis demonstrates that torque dif-
ferential magnetometry can achieve a sensitivity which is
comparable to that of the commercial Magnetic Property
Measurement System (MPMS) as well as the cantilever-
based torque magnetometer. Furthermore, we demon-
strate the high sensitivity of our torque differential mag-
netometry by measuring the de Haas-van Alphen effect
in the bismuth single crystal. Quantum oscillations are
observed in a magnetic field up to 10 T and the extracted
Fermi surfaces are consistent with previous results [16].
The observation of hysteresis loop, as well as the quan-
tum oscillations, indicate that QTF-based magnetometry
is a very promising characterization tool in studying the
magnetic properties of many novel materials.

II. EXPERIMENTAL SETUP

Our experimental setup is shown in Figure 1 (a), one
prong of the QTF is firmly glued on the side of an “L”
shaped substrate with H74F epoxy from Epotek. Figure
1 (b) shows the side view of the experimental setup under
the microscope. The “L” shaped substrate is machined
from brass, which has high density and high thermal con-
ductivity. Attaching a heavy mass to the tuning fork is
crucial for obtaining a high quality factor. The sample is
attached to the top of the free prong. The magnetic field
is applied in the plane which formed by two crystalline
axises (Inset of Figure 1 (b)). The QTFs (MS1V-T1K)
are from Microcrystal with free standing resonance fre-
quency f0 = 215 Hz = 32768 Hz. The original QTF is
sealed in a metal case which holds a rough vacuum and
can be gently removed with pliers. The spring constant
of the quartz tuning fork can be calculated by the beam
formula [17]

k =
Et3w

44L3
, (1)

where E is Young’s modulus of quartz, t the thickness, w
is the width, and 4L is the effective length. After plug-
ging in the numbers from reference [2, 17], 4L = 2400
µm, t = 214 µm, w = 130 µm and E = 79.1 GPa, the
theoretical spring constant is approximately 1822 N/m.
However, the calculation with the beam model is only a
rough estimation for the spring constant and barely agree
with the geometrical configuration of the qPlus sensors.
The effective length 4L = L − L0 is ambiguously de-
fined since it highly depends on the mounting position L
of the sample as well as the determination of the beam
origin L0 [18]. Furthermore, the assembling procedure,
such as the non-symmetric alignment of the sample, will
affect the spring constant of the QTF [19]. The rigid
bonding between the sample and QTF, and between the
QTF and substrate are crucial for obtaining a high Q

[20]. The whole device is tightly fixed on a 16 pin socket
which seats on the rotator probe of a Janis VTI system
and stays in vacuum during the whole measurement.
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(a) (b) 

(c) 

Bi�

substrate�
QTF�

1mm�

Figure 1. (a) Experimental setup. One prong of the QTF
is firmly glued on the side of an “L” shaped substrate. The
sample is attached on top of the free prong. (b) Side view
of the experimental setup under the microscope. Inset shows
the sketch of the measurement setup, where the magnetic field
is applied in the ac plane of the sample. The sample stage
is rotatable up to 90 degrees. θ is the angle between the c
axis and H. Schematic of the experimental circuit: (c) direct
mode and (d) PLL mode.

In our experiments, we performed frequency depen-
dent current measurements with the direct mode circuit
shown in Figure 1 (c). A KEYSIGHT 33520B function
generator is used to provide a 10mV AC voltage across
the QTF. The signal frequency is read by a KEYSIGHT
53230A frequency counter. At the same time, the re-
sponding current Ĩ(ω) due to piezoelectric effect is mea-
sured with a Stanford Research 830 lock-in amplifier
whose reference signal comes from the function gener-
ator.

The field dependent current measurement is
achieved with both the direct mode circuit and phase
lock loop(PLL) mode circuit (Figure 1 (d)). In direct
mode, the frequency of the function generator is always
fixed at the resonance frequency of the QTF at zero field.
When the magnetic field is changing, the magnetization
in the sample generates a torque on the free prong of
the QTF, which modifies the resonance frequency of the
QTF. The lock-in amplifier measures the amplitude and
phase of the current through the QTF. All data acquisi-
tion is fulfilled by Labview programming.

The phase shift of the current depends on how much
the resonance frequency deviates from the excitation fre-
quency. Compared with the direct mode, the PLL mode
[7] can directly measure the frequency change of the QTF
when applying a field. The shift of the QTF is quite steep
at the resonance frequency [11] because of high Q factor.
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This slope can be used to convert the phase signal to
the frequency change. In the PLL mode measurement,
the drive frequency of QTF is modulated by a feedback
loop to maintain constant phase. The phase lock loop
is achieved by sending the phase of the current to the
input of a Stanford Research SIM960 analog PID con-
troller, while the output of the PID is used to modulate
the frequency of the function generator and is recorded
by a Keithley 2182A nanovoltmeter.

III. TORQUE DIFFERENTIAL
MAGNETOMETRY

In our experiment, the magnetization from the sam-
ple is represented by the frequency change of the QTF.
Here we give a brief mechanical model which is similar
to the mechanism of the frequency-modulated cantilever
magnetometry [21]. In the qPlus configuration, only one
prong of the QTF can oscillate freely while the other
prong is tightly fixed on the substrate. The free prong
is equivalent to a quartz cantilever which performs har-
monic oscillation when applying AC voltage. In the PLL
mode, the QTF is driven at its resonance frequency ω0

during the measurement. The displacement of the free
prong is given by x(t) = x0cos(ω0t). In the presence of
an external magnetic field H, the magnetization M from
the sample applies a torque τ = M×H on the QTF. The
motion of the QTF can be expressed by

meff
d2x

dt2
+ γ

dx

dt
+ keffx = Fdrive + Fτ , (2)

in which meff is the effective mass of the free prong, γ is
the damping factor, keff is the effective spring constant,
Fdrive is the driving force and Fτ is the force coming
from the magnetic torque. Fτ can be further expressed
as Fτ = τ/Leff, where Leff is the effective length of the
QTF. Here we define the angle between H and c axis
to be the tilt angle θ. While the free prong keeps on
oscillating, the motion adds a small oscillation change
to the θ which makes θ

′
(t) = θ + ∆θ(t). ∆θ(t) also

varies with the same frequency ω0 of the driving force
and can be written as ∆θ(t) = ∆θ0 cos(ω0t), in which
∆θ0 relates to the oscillation amplitude of the free prong
∆θ0 = x0/Leff. In other words, the deflection of QTF (x)
is ∆θ(t) = x(t)/Leff. The force change can be expanded
as

Fτ (θ + ∆θ(t))− Fτ (θ) ≈ ∂Fτ
∂θ

∆θ(t) =
1

Leff

∂Fτ
∂θ

x(t)(3)

Therefore, the magnetic torque results in a change of
effective spring constant

∆keff = k
′

eff − keff =
1

Leff

∂Fτ
∂θ

=
1

L2
eff

∂τ

∂θ
, (4)

So the shift of the resonance frequency becomes

∆ω0 ≈ ω0
∆keff

2keff
=

ω0

2L2
effkeff

∂τ

∂θ
, (5)

Therefore, in PLL mode the frequency shift is propor-
tional to the derivative of the magnetic torque with re-
spect to the tilt angle θ, which means the quartz tuning
fork is actually a torque differential magnetometer [3].

When the magnetic field is applied in the ac plane
of the crystal (Inset of Figure 1 (b)), the magnetic torque
can be expressed with the components along crystalline
c and a axis by

τ = MaHc −McHa. (6)

For a paramagnetic or diamagnetic material [22],

τ = µ0χaHaHc − µ0χcHcHa

= µ0∆χH2sinθcosθ,
(7)

where µ0 is the vacuum permeability and ∆χ = χa − χc
is the magnetic susceptibility anisotropy. With the same
derivation, the frequency shift for a paramagnet material
is

∆ω0 ≈ ω0
µ0∆χH2 cos 2θ

2L2
effkeff

= ω0
MeffH cos 2θ

2L2
effkeff

, (8)

in which Meff = µ0∆χH is the effective magnetization.
If the sample is not paramagnetic along all crystal

axises, the θ dependence of the frequency shift is a lit-
tle bit different. Take Fe0.25TaS2 as an example, it is a
paramagnet along a axis but a ferromagnet along c axis
[23]. When the magnetization along c axis is saturated,
the magnetic torque can be written as

τ =
1

2
µ0χaH

2sin2θ −MsHsinθ, (9)

in which Ms is the saturation magnetization along c axis.
In Fe0.25TaS2, the magnetization in ab plane is very low
compared with the saturation magnetization along c axis
[23]. As a result, the frequency shift is following

∆ω0 = ω0
µ0χaH

2 cos 2θ

2L2
effkeff

− ω0
MsH cos θ

2L2
effkeff

. (10)

Further, given the magnetic torque is dominated by
the second term in Eq. (9), the dominating term in Eq.
(10) would be the second term, which means the fre-
quency shift is proportional to H. Later we are going
to demonstrate the angular dependence of the frequency
shift at Hc in Fe0.25TaS2 single crystal.

IV. RESULTS

A. Hysteresis Loop in Fe0.25TaS2

In order to calibrate the order of magnitude of the
magnetic moment measured by the quartz tuning fork as
well as verify the theoretical model of torque differential
magnetometry, we measured the hysteresis loop of a well-
studied ferromagnetic material Fe0.25TaS2 with different
methods of magnetometry. The Fe0.25TaS2 sample used
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here were grown by chemical vapor deposition method
[24]. Both the magnetization and resistivity are ex-
tremely anisotropic, with the magnetic moments aligned
parallel to the c crystallographic direction [23–25].

Anisotropic magnetization was taken by a Quantum
Design Physical Property Measurement System(PPMS)
using the Vibrating Sample Magnetometer(VSM) option
at 1.9 K. The sample measured in PPMS (sample A) has
a dimension of 0.9 mm × 0.75 mm × 0.05 mm. As shown
in figure 2 (a), a sharp hysteresis loop was observed when
H‖c. The H‖c magnetization saturates at 5.2 T(Ms ∼
10−3 emu) and is about 1 order of magnitude larger than
the H‖ab magnetization (Mab ∼ 10−4 emu).

The angular dependent magnetic torque of sample
B was measured by the cantilever-based torque magne-
tometer. The experimental setup is similar to the one in
reference [22], a 0.3 mm × 0.16 mm × 0.05 mm single
crystal was put on the tip of a beryllium copper cantilever
with a magnetic field applied in the ac plane. The mag-
netic torque τ coming from the sample is measured by
tracking the capacitance change between the cantilever
and a gold film underneath [26]. Figure 2 (b) shows the
torque vs. H at θ = −34.8◦, in which θ is the angle be-
tween H and c axis. The bow-tie feature corresponds to
the sharp jump in the magnetization at the coercive field
Hc. As demonstrated in the previous session, the mag-
netic torque in this material is dominated by the second
term in Eq. (9). So the torque signal should be propor-
tional to sinθ. The loop height was defined as the torque
change at the coercive field τc = τup

c (Hc) − τdown
c (Hc).

The angular dependent torque measurement was done
from −45◦ to 45◦. The angular dependent data shows
that the loop closes exactly at θ = 0◦ and the loop
size gradually increases as θ deviates from 0◦(Figure 2
(e)). Theoretically, the torque signal should get a max-
imum at θ = ±45◦. Unfortunately, we were not able to
get the angular dependence above 45◦ due to the limi-
tation of our rotator. The angular dependent ∆τc/2Hc

data can be well fitted with Eq. (9) (red dashed line
in Figure 2 (e)), which indicates the magnetization from
the c axis is about 45 times larger than the contribution
from the ab plane. In comparison, we also fit the angular
dependent data with a sinusoidal function (blue dashed
line). It turns out that with a large magnetic anisotropy,
Fe0.25TaS2 can be approximated with a 3D Ising model.

Sample B was then attached on the free prong of
a qPlus-mode quartz tuning fork with the magnetic field
applied in the ac plane. The field dependent frequency
shift was measured by the PLL mode and the frequency
shift vs H at θ = −38◦ was shown in figure 2 (c). A sim-
ilar hysteresis loop with a bow-tie feature was observed.
Here the loop height is defined as the frequency shift
jump at the coercive field ∆fc = fup

c (Hc) − fdown
c (Hc),

the loop width is defined as 2Hc. The angular depen-
dent hysteresis loops show that the loop height gets a
maximum at θ = 0◦ and continuously increases as θ de-
viates from 0◦. Figure 2 (d) shows the angular depen-
dent ∆fc/2Hc, which can be well fitted with Eq. (10)
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Figure 2. Hysteresis loop in Fe0.25TaS2. (a) M(H) curves for
H‖c (black) and H‖ab (red) measured by VSM in sample A
at 1.9 K. (b) Torque vs. H measured by torque magnetome-
ter in sample B at 1.7 K. (c) Frequency shift vs. H measured
by quartz tuning fork in sample B at 1.7 K. θ is the angle
between H and c axis. The differential of torque is derived
with Eq. (5). Arrows here denote the direction of magnetic
field change. (d) ∆fc/2Hc vs θ for the quartz tuning fork.
(e) ∆τc/2Hc vs θ for the cantilever. Blue dashed lines are
the theoretical fitting with the magnetization only along the
c axis. Red dashed lines are theoretical fitting with magneti-
zation coming from both c axis and ab plane.

(red dashed line). The magnetic anisotropy derived from
the fitting is consistent with the result of the cantilever
data (Figure 2 (e)). If we treat the Fe0.25TaS2 sample as
a 3D Ising system, the angular dependence of ∆fc/2Hc

can be well fitted with the second term of Eq. (10) (blue
dashed line). This angular dependent behavior verifies
that tuning fork is actually measuring the differentiation
of magnetic torque instead of the torque itself. The coeffi-
cient in front of the cosθ in the fitting function equals to
f0Ms

2L2
effkeff

. The resonance frequency f0 of the QTF with

Fe0.25TaS2 sample attached is 30432 Hz, the effective
length of QTF is Leff = 2.4 mm, the saturation mag-
netization is Ms = 3.55 × 10−7 emu. Then the spring
constant can be calculated to be k = 2131 N/m after
plugging in all these numbers, which is consistent with
the calculated spring constant in previous session and
the reported values (103 ∼ 104 N/m) in previous studies
[10, 17, 27, 28].

B. Quantum Oscillations in Bismuth

We also did the field dependent measurement for
single crystal bismuth (Bi) with the qPlus-mode QTF.
The orientation of the bismuth crystal is confirmed by X-
ray diffraction. A 0.6 mm × 0.2 mm × 0.13 mm (∼156



5

15190 15200 15210 15220

0

20

40

60

80

100

120

Frequency (Hz)

A
m

pl
itu

de
 o

f C
ur

re
nt

 (n
A

)
T=1.6K

-80

-40

0

40

80

P
ha

se
 o

f C
ur

re
nt

 (d
eg

)

Q = 20000
f0  = 15198 Hz

Figure 3. Resonance curve of the QTF with Bi sample at-
tached at 1.6 K and in the vacuum. Q = 20000, f0 = 15198
Hz. Inset is the configuration of the measurement. The mag-
netic field is applied in the trigonal-binary plane of the Bi
crystal.

µg) bismuth (Bi) crystal is attached on the top of the
free prong. The zero field resonance curve was measured
with the direct mode at 1.6 K, as shown in Figure 3. The
amplitude of the current shows a sharp peak at resonance
frequency f0 while the slope of the phase curve is quite
steep. Fitting the magnitude and the phase of the cur-
rent with Eq. (1) and (2) in reference [27] gives a quality
factor around 20000 and f0 = 15198 Hz. The phase of
the current has a linear relationship with the frequency
within ±0.3 Hz around f0, so we can use the phase devi-
ation to infer the shift of the resonance frequency 4f if
f0 +4f was in this linear range. However, strong mag-
netic torque in a high field could result in large frequency
shift beyond the linear range. In this situation, the PLL
mode has to be involved to track the variation of f0 in a
broad range.

To verify that the direct mode can produce the same
result as the PLL mode in this linear range, field depen-
dent measurements up to 10 T are performed with both
modes. The crystal orientation is shown in the inset of
Figure 3, the magnetic field is rotating in the trigonal-
binary plane of the Bi crystal, θ denotes the angle be-
tween the field and the trigonal axis. Figure 4 (a) and (b)
show that the frequency shift in the PLL mode and the
phase of the current in the direct mode shows the same
pattern(later we will compare the periodicity to 1/µ0H).
Figure 4 (c) is the effective magnetization Meff calculated
from the frequency shift with Eq. (8). Comparing Fig-
ure 4 (a) with Figure 4 (b), the direct mode is better at
revealing high pitch oscillations with respect to µ0H at
low field. The reason is when the magnetic field changes,
the magnetization of the sample changes the resonance
frequency of the QTF and produces a phase shift on the
current. With a sweeping rate of 0.23 T per minute, to
obtain a stable PLL, the integration gain can not be too
large, which means the time constant of the PLL can not
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Figure 4. Quantum oscillations observed in the Bi crystal
with two different measurement modes: (a) The phase of the
current vs. H in direct mode. (b) Frequency shift vs. H in
PLL mode. (c) Converted effective magnetization Meff vs. H
with Eq. (8) in PLL mode. Here we used k = 2131 N/m from
the fitting result of angular dependent Fe0.25TaS2 data for
calculating Meff. Meff signal is quite noisy at low field. This
is because Meff is calculated through dividing the frequency
shift by H, which is comparably a larger number at low field.
All curves are taken at θ = −43◦, 1.6 K. Dashed lines are
given as guides to the eye.

be too small. The PID takes quite a long time to grad-
ually reach a stable output which tunes the frequency of
the function generator to the new resonance frequency.
However, before the PID generates a stable output, the
variation of magnetization forces it to achieve a new res-
onance frequency. So the direct mode has advantages
in low field measurements since the phase of the current
always responds more rapidly than the PID output.

In our experiment, we performed angular dependent
measurements up to 10 T at 1.6 K. Figure 5 shows the
raw data taken with the direct mode at 6 selected angles.
When H is increasing, the Landau level energies are also
increasing. Every time the Fermi surface passes through
a Landau level, the derivative of free energy F over H has
an extreme slope. Hence the Landau level crossings can
be observed as a series of anomalies in the phase of the
current versus H. If H was at an angle α to the normal
direction of a Fermi surface, the extreme slope happens
at fields Bn given by [29]

1

Bn
=

2πe

h̄
(n+ γ)

1

S(α)
, (11)

where h̄ denotes the reduced Plank constant, e is the
electrical charge, n is a positive integer, γ is the Onsager
phase, and S(α) is the Fermi surface cross section at the
magnetic field tilt angle α. We use (n,±) to denote the
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Figure 5. The phase of the current vs. H of the Bi crystal
at six selected angles taken at 1.6 K (H is in log scale) with
direct mode. Crossings of the Landau sublevels (n, s) appear
as extremes Bn in the phase of the current. (n,+) and (n,−)
denote the splitting of degenerate Landau levels due to the
Zeeman effect.

sub-Landau levels due to Kramers degeneracy. For the
electron pocket, the index field Bn is distinguished by a
minimum in the phase of the current, as shown in Figure
5 (a) - (e). For the hole pocket, Bn is revealed by peaks
in the phase of the current, as shown in Figure 5 (f).

Landau level indices n vs. 1/Bn measured at three se-
lected angles are plotted in Figure 6 (a). For the hole
pocket, eg. θ = −43◦, the data points fall on a straight
line which has an intercept of 0 as H approaches infinity.
Whereas for the electron pocket, eg. θ = −11◦, 33◦, the
infinite field limit of the index plot intercept is around
-0.2. This linear relationship confirms that the above
indexing is consistent, the slope corresponds to the dom-
inant quantum oscillation frequency at each angle, from
which we can extract the Fermi surface cross-section pro-
jected on the plane perpendicular to H.

At each angle, quantum oscillations could come
from both electron and hole pockets. Multi-frequencies of
the quantum oscillations are revealed by the fast Fourier
transform(FFT) of the field dependent phase data. A
polynomial background has been subtracted before the
FFT process. Figure 6 (b) shows the angular depen-
dence of the quantum oscillation frequencies which can
be fit with a 3D ellipsoidal Fermi surface model [29]. Red
dashed lines denote quantum oscillation periods coming
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Figure 6. (a) Plot of the Landau level index n vs. 1/Bn at
three selected angles. The Landau levels all fall on straight
lines. The slopes give Fermi surface cross-section areas Se

at corresponding angles. (b) Oscillation periods of the ob-
served Fermi surfaces is shown as a function of the angle
between H and trigonal axis. Dashed lines are theoretical
fittings from −60◦ to 40◦ with a 3D ellipsoidal Fermi surface
model. Red dashed lines represent two electron pockets while
a blue dashed line denotes the hole pocket.

from two electron pockets which are symmetric with re-
spect to the bisectrix axis. The blue dashed line repre-
sents the periods originating from the hole pocket that
extends along the trigonal axis. Our results are consis-
tent with previous de Haas-van Alphen measurements in
Bi [16]. In the cantilever-based torque magnetometry
measurement done by Li. et al. [30], the Bi sample has
a mass of 0.12 g (770 times larger than our sample) and
the quantum oscillation starts to show up at B ∼ 0.5
T. With a much smaller sample, a quantum oscillation
is revealed at a comparable magnetic field in our exper-
iment, which indicates QTFs have advantages in small
signal detection.
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Figure 7. Temperature dependence of oscillating frequency
shift for Bi. (a) Frequency shift after subtracting a polynomial
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the angle between H and the trigonal axis. (b) Temperature
dependence of the oscillating frequency shift at µ0H = 2.41 T,
normalized by the 0 K limit. Fitting the oscillating amplitude
to the LK formula (red dashed line) yields the effective mass
m = 0.065 me for the hole pocket.
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The electronic properties of Fermi surfaces can be
revealed by tracking the temperature dependence and the
magnetic field dependence of the quantum oscillation am-
plitude, which is well defined by the Lifshitz-Kosevich
(LK) formula [29]. The oscillation amplitude is deter-
mined by the product of thermal damping factor RT and
Dingle damping factor RD, as follows,

RT = αTm∗/B sinh(αTm∗/B), (12)

RD = exp(−αTDm∗/B), (13)

where the effective mass m = m∗me and the Dingle
temperature TD = h̄/2πkBτS . me is the bare electron
mass, τS is the scattering rate, kB is the Boltzmann Con-
stant, and α = 2π2kBme/eh̄ ∼ 14.69 T/K. Figure 7 (a)
shows the temperature dependent frequency shift after
subtracting a polynomial background between 1.5 K and
15 K. Fitting the temperature dependence of the normal-
ized frequency shift at µ0H = 2.41 T yields m = 0.065
me for the hole pocket, which is within 20% error of the
reported value in ref. [31].

V. DISCUSSION

The frequency sensitivity of the direct mode can be
estimated in the following way. From the resonance curve
of QTF with Bi sample attached(Figure 3), the slope of
the phase vs. frequency is 132 deg./Hz. The main uncer-
tainty of the direct mode measurement depends on the
uncertainty of the phase measured by the lock-in ampli-
fier. In our setup, the error from the phase measured by
the lock-in is ±0.5 deg, which means the frequency sen-
sitivity is about ±3.8 mHz. This is about 7 ∼ 8 times
higher than the frequency sensitivity achieved by the free
tuning fork magnetometer [11].

As for the PLL mode, the major limitation for the
sensitivity comes from the output of PID. Take the hys-
teresis loop measurement as an example, the uncertainty
for the PID output is about 3×10−3 V, which corresponds
to 1.8× 10−3 Hz. The sensitivity of the saturation mag-
netization is estimated to be δMs ∼ 2.8 × 10−10 A·m2

∼ 2.8 × 10−7 emu at 5 T, which is comparable to the
claimed best sensitivity of the latest MPMS (sensitivity
∼ 5 × 10−8 emu) by Quantum Design. With the mag-
nitude of our magnetic moment signal about 10−4 emu,
the signal to noise ratio for our setup is 103. The sensi-
tivity of QTF-based differential torque magnetometer is
comparable to the sensitivity of cantilever-based torque
magnetometer used for the hysteresis loop measurements.
In our torque magnetometer experiment, the uncertainty
of the beryllium-copper cantilever’s capacitance is about
10−5 pF, which corresponds to a magnetic moment of
1×10−7 emu at 5 T. In the cantilever-based torque mag-
netometry, a thinner cantilever beam can achieve a higher
sensitivity (10−10 emu). This is because a thinner beam
has a lower spring constant, which makes the relative

capacitance change (∆C/C0) larger and has higher sen-
sitivity. But it would not sustain the rather large torque
signal from the ferromagnet (10−4 emu). Finally, we note
that the majority of the frequency noise comes from the
commercial analog PID feedback controller used in our
electronics. In the future study, the performance and
sensitivity of torque differential magnetometry can be
improved by using a dedicate PLL with tunable band-
width. The magnitude of Ms for Fe0.25TaS2 sample B is
about 10−4 emu, so the signal to noise ratio for our setup
is 103.

The frequency sensitivity in the PLL mode is higher
compared to the sensitivity in the direct mode, which is
counterintuitive at the first glance. This is because the
qPlus-mode QTF with Fe0.25TaS2 sample attached has a
2.25 times larger Q compared to the QTF with Bi sample
attached. As an approximate estimation, the slope of
the phase curve for Fe0.25TaS2 sample will be around
±297 deg./Hz. This results in a frequency sensitivity
about ±1.68 mHz, which is smaller than the frequency
sensitivity in the PLL mode (1.8 mHz). This comparison
indicates that a higher Q can help a lot in increasing the
sensitivity of the direct mode.

Apart from the DC magnetic field, QTFs could po-
tentially be used in a pulsed field up to 65 T as well. As
an insulator, quartz does not have a problem with eddy
currents present in metal cantilevers. Furthermore, the
resonance frequency of the QTF is much higher than that
of the traditional cantilever (≤∼ 100 Hz), which reduces
the coupling between the QTF signal and low frequency
mechanical vibration coming from the environment. The
response time of magnetometry needs to be much smaller
than the ring up time of the pulsed field (about 8 ms).
Therefore, a QTF with higher resonance frequency is de-
sirable in the pulsed field measurement.

In conclusion, we developed a qPlus-like setup for
torque differential magnetometry with the QTF. With
the sample attached, the QTF maintains an excellent Q
factor of ∼ 104 at 1.6 K. Two different circuits for low and
high field measurements maintain high sensitivity in both
conditions. The hysteresis loop measurement in the ferro-
magnetic Fe0.25TaS2 single crystal proves that QTF can
achieve a sensitivity of magnetic moment measurement
at around 10−7 emu, which is comparable to other state-
of-the-art magnetometers. The field dependent measure-
ment on the well-studied metal Bi gives solid evidence for
the observation of quantum oscillations. Our measure-
ments on ferromagnet and quantum oscillations demon-
strated that our qPlus QFT magnetometry is a reliable
method for conducting torque differential magnetometry
measurements, especially at cryogenic temperatures and
intense magnetic fields. Since the magnetic torque is the
derivative of the free energy with respect to the tilt an-
gle, the qPlus QFT magnetometry measures the second
derivative of the free energy with respect to the tilt angle,
thus providing a powerful probe to resolve the electronic
and magnetic anisotropy of novel solid state materials.
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