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Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with 
degenerate spectra. Here, we study several fundamental yet so far unexplored aspects and variants of one-
dimensional SUSY in axially-symmetric optical media, including their basic spectral features and the 
conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially 
(totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a 
degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a 
dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the 
studied unbroken and isospectral SUSY transformations allow us to generate refractive index superpartners 
with an extremely large phase-matching bandwidth, spanning the S+C+L optical bands. These singular 
features define a new class of optical fibers with unprecedented potential applications. To illustrate this, we 
numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous 
supermodes with large effective area, a broadband all-fiber true mode (de)multiplexer requiring no mode 
conversion, and different mode filtering, mode conversion and pulse shaping devices. Finally, we discuss 
the possibility of extrapolating our results to acoustics and quantum mechanics. 

 
 

I. INTRODUCTION 
Supersymmetry was originally introduced within the 

context of string and quantum field theory as a necessary 
ingredient to unify the basic interactions of nature, i.e. 
strong, electroweak, and gravitational interactions [1]−[8]. 
For particle theorists, SUSY also offers a mathematical 
framework upon which to propose different dark matter 
particle candidates [9]−[12]. Despite these interesting 
features of supersymmetric models, there has been no 
experimental evidence of SUSY in nature so far [13]. 
Nevertheless, the ideas of SUSY have been profitably 
extended to diverse areas of physics and engineering 
[14]−[29], with applications to, e.g., quantum cascade 
lasers [20], graphene field theory [21], or matter-wave 
circuits [22]. 

One-dimensional (1D) SUSY has attracted particular 
attention in the fields of nonrelativistic quantum mechanics 
and photonics [14],[23]−[29]. The superalgebra underneath 
1D SUSY transformations (also known as Darboux or 
Darboux-Crum transformations) allows us to relate two 
different real quantum or optical potentials with identical 
spectra and scattering properties in the Helmholtz regime 
[14],[24]. These supersymmetric potentials are usually 
termed as superpartners. Moreover, efforts have been 
undertaken to extend the degeneracy and the scattering 
relations of 1D SUSY to complex potentials exhibiting 
parity-time symmetry [16]−[19],[29]. In such a scenario, it 
has been observed that superpartners exhibit dissimilar 
reflection coefficients [29].  

Thanks to these interesting features, new real and 
complex quantum potentials have been found to be 
analytically solvable [14]−[19], and a novel class of 

supersymmetric 1D optical devices has been recently 
proposed with intriguing and unexpected properties for 
mode multiplexing, mode conversion and cloaking 
applications [24]−[29].  

Remarkably, the ideas of 1D SUSY can also be applied 
to n-dimensional potentials [14],[30]. As an example, one 
can reduce the 3D Schrödinger equation to a 1D equation in 
spherical systems with radial symmetry [30], enabling us to 
benefit from the unique features of 1D SUSY. In the same 
way, one could expect the advantages of 1D SUSY to be 
also exploitable in axially-symmetric systems.  

Physical systems with axial symmetry present particular 
interest not only in quantum mechanics [31],[32], but also 
in other branches of physics, such as acoustics and 
photonics. In acoustics, cylindrical ducts are of special 
interest for pressure wave propagation and turbocharger 
applications [33]−[36]. In photonics, axially-symmetric 
media can be found in single- and multi-core optical fibers, 
optical couplers, laser arrays, modulators and Bragg 
gratings [37]−[41].  

Along this line, Miri et al. reported a theoretical SUSY 
relation between the azimuthal Bessel modes of two optical 
fibers [24] and its potential application to angular 
momentum multiplexing [42]. However, the study was 
limited to the unbroken SUSY regime, while many aspects 
of SUSY theory still remain unexplored in this context. 
Firstly, the different spectral features of SUSY axially-
symmetric optical systems (such as bandwidth and group 
delay) has not been studied so far. Secondly, the SUSY 
formalism encompasses a rich toolbox, including, e.g., 
unbroken SUSY chains, broken SUSY transformations, and 
isospectral deformations (having the same energy levels as 



 

the original system), which have not been analyzed within 
the frame of axially-symmetric media. Thirdly, the 
application of SUSY to this kind of systems entails a series 
of steps and assumptions whose range of validity has not 
yet been assessed: the dimensional reduction of the 
Helmholtz equation from 3D to 1D, the subsequent 
appearance of singularities in the superpotential relating the 
superpartners, and the accuracy of the required slowly-
varying index (SVI) and paraxial approximations in the 
photonic case.  

For instance, a singular superpotential can give rise to a 
breakdown of the degeneracy theorem between 
superpartners [14],[43]−[46], and therefore, its impact on 
the corresponding mode multiplexing applications should 
be critically investigated. Moreover, as we will show, the 
paraxial approximation is no longer valid (except for some 
energy levels) in broken SUSY and isospectral 
constructions, leading to unexpected effects and novel 
functionalities.  

In this work, we study all these points within the context 
of photonics. As a byproduct, a variety of applications for 
mode filtering, mode conversion, mode multiplexing, 
supermode generation (linear combination of degenerate 
modes of close-packed waveguides), dispersion engineering 
and pulse shaping are proposed. Specifically, using 
unbroken SUSY transformations, we design a multi-core 
fiber (MCF) incorporating mode conversion, mode 
filtering, and pulse shaping functionalities in the S+C+L 
optical bands (1460-1625 nm), as well as a photonic lantern 
supporting broadband heterogeneous supermodes generated 
from the linear combination of degenerate fiber modes with 
different azimuthal and radial order. In addition, we show 
that the partial degeneracy associated with isospectral 
photonic SUSY fibers can be used to build a broadband 
all-fiber true mode (de)multiplexer requiring no mode 
conversion, and that this approach offers a dimension-
independent design control over the group delay of the fiber 
modes. To verify and illustrate these utilities, extensive 

numerical simulations are performed using a 3D 
electromagnetic mode solver (CST Microwave Studio and 
COMSOL Multiphysics).  

The paper is structured as follows. In Section II, we 
describe the transformation method proposed to apply 1D 
SUSY to 3D axially-symmetric optical potentials. In 
Section III, we explore unbroken and broken 1D SUSY 
transformations of these systems. The construction of 
isospectral potentials via the Darboux procedure is 
investigated in Section IV. Finally, in Section V, the main 
conclusions and applications of this work are highlighted, 
including the extension of the presented theory to acoustics 
and quantum mechanics. 

II. 1D SUSY IN AXIALLY-SYMMETRIC 
OPTICAL POTENTIALS 

We are interested in the bound modes (corresponding to a 
discrete spectrum of energy levels) of an axially-symmetric 
linear isotropic non-magnetic optical medium with a 
refractive index n(r) (with variations confined to a finite 
spatial region). Such a system is described by the following 
exact 3D wave equation (cylindrical coordinates r, φ, z): 
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where ω is the angular frequency, c0 is the speed of light at 
the vacuum, and Em,n(r,ω) is the Fourier transform of the 
electric field strength of the eigenmode mn, with m and n 
indicating respectively the azimuthal and radial order. Note 
that Eq. (1) allows us to work with dispersive media just by 
using the proper frequency-dependent expression for n(r), 
although we only considered non-dispersive media to 
facilitate the analysis.  

In particular, we focus on the possibility of applying 
1D SUSY to Eq. (1) through the scheme shown in Fig. 1. 
We start from a given system [Em1,n

(1),n1] satisfying Eq. (1). 
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FIG. 1.  Flowchart of transformations to apply 1D SUSY to 3D axially-symmetric optical potentials. 



 

For SVI media, that is, with δn << n in δr ~ nλ0 (where 
δn := |n(r)−n(r+δr)| and λ0 = 2πc0/ω is the free-space 
wavelength) and under the paraxial approximation (for 
which the longitudinal component of Em,n can be neglected 
[37]), Eq. (1) reduces to (step A): 

( ) ( ) ( ) ( )3D 3D
, , 0,m n m nE V r⎡ ⎤Δ + Ψ⎣ ⎦− =r               (2) 

where Δ is the Laplacian operator, Em,n
(3D)−V(3D)(r) ≡ 

(ω2/c0
2)n(r), and Ψm,n is the linear combination of the 

transversal component of the quasi-degenerate true modes. 
This corresponds, for instance, to the linearly-polarized 
LPm,n mode group of a weakly-guiding optical fiber [37]. 
Since there is a degree of freedom in the mathematical 
identification of Em,n

(3D)−V(3D)(r) with the refractive index, 
we take Em,n

(3D) ≡ 0 for simplicity (it will be nonzero in 
quantum systems, see Table I in Section V). Therefore, it is 
important to bear in mind that Em,n

(3D) is just an auxiliary 
mathematical quantity different from the physical field 
energy. In Section 1 of the supplemental material, we 
include a more detailed discussion of Eq. (2).  

At this point, we perform a dimensional reduction from 
the 3D system [Ψm1,n

(1),V1
(3D)] to the 1D system 

[ψm1,n
(1),V1

(1D)] (step B, see below). Then, we transform 
[ψm1,n

(1),V1
(1D)] into [ψm2,n

(2),V2
(1D)] using 1D SUSY (step C). 

Proceeding in a similar manner as in the previous 
dimensional reduction, we calculate the 3D system 
[Ψm2,n

(2),V2
(3D)] from [ψm2,n

(2),V2
(1D)] (step D). Finally, 

Ψm2,n
(2) can be identified with the transversal component of 

the true modes of a second optical system [Em2,n
(2),n2] 

(step E) SUSY-connected with [Em1,n
(1),n1], provided that 

the SVI and paraxial approximations apply to n2. 
The dimensional reduction of Eq. (2) can be performed 

by applying the following separation of variables to Ψm,n:  

( ) ( ) ,
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with Rm,n the function describing the radial dependence and 
βm,n the phase constant of the eigenmode. Now, using the 
transformation Rm,n(r) = r−1/2ψm,n(r), Eq. (2) is reduced to: 
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Eq. (4) matches the following 1D Helmholtz equation: 
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with the identification: 
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In order to obtain a well-defined eigenvalue problem, an 
adequate expression for En

(1D) and V(1D)(r) must be selected. 
Obviously, the spatially-dependent terms of the right-hand 

side of Eq. (6) should be identified with V(1D)(r) (assuming 
a constant value of m). With this consideration in mind, a 
possible choice is (other options are accounted for by 
introducing a free-parameter α, see below): 

( ) ( ) ( )21D 3D
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Crucially, the various steps and approximations of the 
described method may alter the ideal SUSY relation 
between Em1,n

(1) and Em2,n
(2). This possibility has not been 

analyzed so far and will be essential for some of the most 
interesting results derived from our study (especially in 
isospectral constructions). In particular, the following 
considerations are in order: 
• From Eq. (8), inverse-square potentials V(1D)(r) appear 

for a non-singular V(3D)(r) (as will be our case). The 
corresponding 1D eigenvalue problem [Eq. (5)] may be 
ill-defined if it is not possible to choose a unique basis 
of eigenfunctions based on square integrability and 
boundary conditions [47]. Fortunately, this is never the 
case for m ≥ 0 [48], guarantying the validity of the 
mapping between Eqs. (2) and (5) established by 
Eqs. (3) and (8) in step B.  

• As we will see later, inverse-square potentials relate to 
a singular superpotential in the SUSY transformations. 
As a consequence, the degeneracy between V1

(1D) and 
V2

(1D) will only be preserved if the SUSY bound states 
ψm2,n

(2) are continuous normalizable solutions [14].  
• The transformation Rm,n(r) = r−1/2ψm,n(r) may give rise 

to a breakdown of the degeneracy between V1
(3D) and 

V2
(3D) if the optical boundary conditions are violated, 

that is, if Rm2,n
(2) becomes singular at r = 0 after step D. 

• The complete degeneracy between V1
(3D) and V2

(3D) 
may also be broken if n1 or n2 do not approximately 
satisfy the SVI criterion or their true modes do not 
meet the paraxial approximation.  

We will check all these points in the considered SUSY 
transformations. To simplify the discussion, we will use the 
more economical notation V(1D)(r) ≡ V(r) and En

(1D) ≡ En 
(n = 1,2,3…) from now on. 

III. UNBROKEN AND BROKEN 1D SUSY 
For a given potential V1(r) with energy levels En

(1), SUSY 
provides a systematic way for generating a potential V2(r) 
with energy levels En

(2) equal to those of V1(r), with the 
possible exception of the ground state level E1

(1). In the 
SUSY literature, V2 is usually referred to as the 
superpartner of V1. In particular, SUSY is known to be 
unbroken if the SUSY operator Â− (see below) annihilate 
the ground state wave function of V1, i.e., Â−ψm1,1

(1)
 = 0, 

which corresponds with the case E1
(1) = 0 [6],[14]. In this 

scenario, V2 has the same energy levels as V1 except for 



 

E1
(1), i.e., En

(2) = En+1
(1). On the contrary, SUSY is 

spontaneously broken when Â−ψm1,1
(1)

 generates a 
non-vanishing normalizable solution of V2, in which case 
E1

(1) ≠ 0 and both spectra are found to be completely 
degenerate (except perhaps for singular superpotentials), 
that is, En

(2) = En
(1) [14]. In general, the constraints on 

SUSY breaking have a far richer scope in quantum field 
theory than the implications previously described [6]. 
However, the aforementioned features of SUSY breaking 
seem to be sufficient for our purposes. 

In our case, E1
(1) = −(βm1,1)2 ≠ 0. Therefore, instead of 

directly calculating a SUSY partner of V1, it is useful to 
start from a potential 

1 1V̂ V α= −  (associated with the 
energy-shifted Hamiltonian Ĥ1 = H1−α = −d2/dr2+V1−α), 
calculate its superpartner 

2̂V  (with a corresponding 
Hamiltonian Ĥ2 = H2−α = −d2/dr2+V2−α), and undo the 
energy shift to find the superpartner of V2 as 

2 2̂V V α= + . 
This allows us to choose between unbroken SUSY or 
different broken SUSY transformations by selecting 
α = E1

(1) or α ≠ E1
(1), respectively. Assuming V1 and V2 of 

the form: 
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both superpartners are related by the Riccati equation [14]: 
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where W is the superpotential. The underlying connection 
given by Eq. (10) is derived from the properties of the 
SUSY algebra. More specifically, defining the SUSY 
Hamiltonian: 
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and the supercharges: 
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with Â± := ∓d/dr+W(r) and Â+ = (Â−)† in the case of a real 
superpotential (where † denotes the Hermitian adjoint 
operator), the following commutation and anticommutation 
relations define the closed superalgebra sl(1/1) [14],[15]: 

{ } { }H,Q 0;     Q ,Q H;     Q ,Q 0.± ± ± ±⎡ ⎤ = = =⎣ ⎦
m     (13) 

The degeneracy of the spectra is a direct consequence of the 
fact that Q+ and Q− commute with H when a non-singular 
superpotential is involved [14].  

A. Unbroken SUSY 

As mentioned before, the unbroken SUSY transformation 
allows us to connect the spectra of V1 and V2 through a 

relation of the form En
(2) = En+1

(1). In addition, since 
Â−ψm1,1

(1) = 0 and the energy levels are related to the phase 
constant of the LP modes as indicated by Eq. (7), we will 
be able to annihilate the ground state LPm1,1 and establish a 
perfect phase-matching between the LPm2,n

(2) and LPm1,n+1
(1) 

modes at λ0. In this vein, outstanding optical applications 
such as the mode filtering of the LPm1,1 mode, mode 
conversion between a great number of LP modes of 
different azimuthal (if m1 ≠ m2) and radial order, and 
supermode generation, can be investigated using the 
unbroken SUSY procedure. In this context, pulse shaping 
applications can also be proposed by exploiting the spectral 
behaviour of V1 and V2 at different wavelengths. Finally, 
some previous works on 1D SUSY suggest that all these 
interesting features might have a broadband nature, which 
is an additional motivation to carry out the present study 
[27]. Before exploring these possibilities, let us first 
describe the unbroken SUSY transformation in more detail. 

A well-known solution of Eq. (10) with α = E1
(1) can be 

expressed in terms of the ground state wave function ψm1,1
(1) 

of H1 as W(r) = −(ln ψm1,1
(1)(r))' [14]. From the relation 

ψm1,1
(1)(r) = r1/2Rm1,1

(1)(r): 
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In spite of the fact that Q+ and Q− commute with H at 
r = 0 [49], the singularity of W at this point might break the 
degeneracy between the 1D potentials V1 and V2 [43]−[46]. 
We analytically studied this possibility, finding that any 
bound state of the form ψm2,n

(2) ∝ Â−ψm1,n+1
(1) is a 

continuous normalizable solution, implying that degeneracy 
between V1 and V2 is preserved in all cases [49]. This is 
consistent with the numerical results obtained via the mode 
solver of CST Microwave Studio (see below). That is, 
step C always yields unbroken SUSY-related 1D systems. 

On the other hand, an expression for n2(r) can be derived 
by combining Eqs. (9), (10) and (14): 
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From the above equation, the considered SUSY procedure 
may also introduce a singularity in n2(r) at r = 0. Although 
singular potentials have been extensively discussed in the 
quantum-mechanical literature with interesting physical 
implications and properties [14],[43],[47], singular 
refractive indexes pose physical and technological 
complications in photonics. To avoid this potential 
hindrance, we search for non-singular refractive indexes by 
selecting an appropriate value of m1 and m2. From the 
equivalence: 
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where Jm1 is the Bessel function of the first kind and order 
m1, and Γ is the Gamma function, we can deduce that the 
singularity at r = 0 is avoided if and only if n1(r) is 
non-singular and m2 = m1+1, with m1 ≥ 0. This was already 
pointed out in [24], although only the case m1 = 1 was 
analyzed. However, LP modes without azimuthal variation 
(m1 = 0) are of paramount importance in optical 
communications, so we will pay particular attention to them 
in this work. 

In addition, it should be noted that Eq. (15) is frequency 
dependent, not only as a result of the possible frequency 
changes of n1, but also of the c0/ω term and the frequency 
dependence of Rm1,1

(1). Consequently, the mentioned 
phase-matching of SUSY axially-symmetric potentials will 
be band limited, a fundamental feature that has not been 
pointed out so far and the implications of which will be 
carefully studied in this work. Finally, a third parameter 
that has not yet been analyzed within the frame of optical 
SUSY is the group delay, i.e., the first-order derivative of 
the phase constant as a function of the angular frequency. 

As an illustrative example that allows us to study all 
these features (modes without azimuthal variation, 
band-limited phase-matching, and group delay), we 
consider an optical fiber (core radius R0 = 25 μm) with a 
step-index profile n1 [n1 (r ≤ R0) = nco, n1 (r > R0) = ncl, see 
Fig. 2(a)], as the original system. For this configuration, the 
SVI and paraxial approximations are very accurate, 
ensuring that, after step A, Ψm1,n

(1) is related to Em1,n
(1) as 

described above. The same initial index profile will be 
considered in all the examples analyzed in this paper.  

Figure 2(a) shows the profiles of n2 and W for two 
different free-space wavelengths (λ0 = 2πc0/ω): 1550 nm 
and 3000 nm. As expected, n2 and W are wavelength-
dependent, and so will be the phase-matching predicted by 
Eq. (17). 

In the classical modal analysis of step- and gradual-index 
optical fibers, the spectral features are analyzed from the 
dispersion and group delay diagrams, which respectively 
depict the phase constant and the group delay of the LP 
modes as a function of the angular frequency. In 
weakly-guiding optical fibers, the above parameters are 
usually normalized by using the step-index profile as a 
reference [50]. The normalized phase constant b, 
normalized frequency v and normalized group delay τ are 
defined as b = (β/k−ncl)/(nco−ncl), v = k·R0·(nco

2−ncl
2)1/2 and 

τ = b+v·db/dv, with k = ω/c0. In this way, the spectral 
features of the unbroken SUSY procedure can be analyzed 
by calculating numerically (via CST Microwave Studio) the 
aforementioned diagrams for the index profiles n1(r) and 
n2(r). 

Figures 2(b)-(d) depict the normalized dispersion and 
normalized group delay diagrams of the LPm1,n

(1) and 
LPm2,n

(2) modes for the cases m1 = 0, 2, m2 = m1+1 and n 
varying from 1 to 4 (λ0 = 1550 nm). The cases m1 = 1 and 
m1 = 3 are also included in the supplemental material for 

completeness [49]. As seen, in spite of using a singular 
superpotential, degeneracy between the expected LP modes 
of both optical systems is present in this case. This 
inherently implies that step D does not generate unphysical 
functions Rm2,n

(2) and that the SVI and paraxial 
approximations are valid for n2. Therefore, the unbroken 
SUSY procedure establishes a perfect phase-matching at λ0 
between the LPm1+1,n

(2) and LPm1,n+1
(1) eigenmodes, with m1 ≥ 

0 and n ≥ 1. More specifically, the corresponding Rm,n(r) 
and βm,n are connected by the expressions: 
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FIG. 2.  Modal analysis of two supersymmetric refractive 
indexes. (a) SUSY partner for the step-index profile and the 
corresponding superpotential as a function of the normalized 
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the LP modes as a function of the normalized frequency, and 
(c) the wavelength comprising the S+C+L optical bands. 
(d) Normalized group delay as a function of the normalized 
frequency. 

 



 

where ξ is a real constant. In order to validate the previous 
expression in the analyzed example, we compare in Fig. 3 
the results for Rm2,1

(2) of n2 for the cases m1 = 0 and m1 = 2 
as calculated using Eq. (18) and the 3D mode solver of CST 
Microwave Studio, finding that both results are in excellent 
agreement. Notably, an almost perfect phase-matching 
(δb ≤ 0.02) is achieved between LP modes in an optical 
bandwidth higher than 300 nm for m1 = 0, 2  [see Fig. 2(c)] 
and m1 = 1,3 [49]. The above bandwidth is defined as the 
phase-matching bandwidth (PMBW), which gives 
information about the range of optical frequencies for 
which the LP modes of both superpartners are found to be 
approximately degenerate according to the aforementioned 
criterion. In real optical fibers, in which the frequency 
dependence of n1 and n2 should also be taken into account, 
the PMBW could be slightly reduced with respect to the 
ideal case shown in Fig. 2.  

Furthermore, Fig. 2(d) reveals a very interesting feature: 
the normalized group delay of the LP modes in n2 presents 
a weaker frequency dependence than in n1, which indicates 
that the supersymmetric optical fiber is less dispersive than 
the original one. Consequently, the differential mode group 
delay (DMGD) between the LP modes of n2 (calculated as 
the absolute value of the difference between the group 
delays) is approximately constant within the PMBW.  

We next construct an unbroken SUSY chain comprising 
N supersymmetric refractive indexes n1(r),…,nN(r). A given 
index nq(r) [q ∈ {2,,…,N}] can be calculated from the 
original profile n1(r) as [49]: 

( ) ( ) ( ) ( )
2 2
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with mi = m1+i−1 (i = 1,…,q). The phase constants and the 
wave functions of the q-th system satisfy: 
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where Âl
− := d/dr+Wl(r) and Wl is the superpotential 

connecting nl and nl+1. Wl can be calculated from the 
corresponding ground state of the l-th system ψml,1

(l) as 
Wl(r) = −(ln ψml,1

(l)(r))'.   
As an example, we perform a modal analysis of an 

unbroken SUSY chain with N = 4 and m1 = 0. The 
numerical results are shown in Fig. 4. All refractive index 
profiles are non-singular, thanks to the choice ml = m1+l−1 
[see Fig. 4(b)]. As before, it can be theoretically shown that 
the bound states of each system in the chain are continuous 
normalizable eigenfunctions [49]. This is further confirmed 
through numerical simulations [Fig. 4(c)], which evidence 
that degeneracy is present throughout the whole chain 
(implicitly validating the application of step D and the SVI 
and paraxial approximations for all systems). 

Although the PMBW is slightly reduced in the fourth 
system, the group delay of higher-order modes (specially 
the LP3,1

(4)) is lower than that of the fundamental mode of 
the first system, the LP0,1

(1). This opens up the possibility of 
enabling privileged optical transmissions in higher-order 
LP modes. Moreover, the unexpected flexibility provided 
by SUSY in the design of exotic propagation properties 
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(such as weak dispersion or low group delay) can be 
combined with the mode-coupling phenomenon to design 
MCFs with special features for, e.g., mode conversion, 
mode filtering, dispersion engineering and pulse shaping.  

In order to illustrate these potential applications, we 
perform a pulse propagation simulation using a beam 
propagation method (BPM) along a 2.7-km MCF 
comprising two cores a and b with R0 = 25 μm, λ0 = 1550 
nm and index profiles na = n1 and nb = n4. For simplicity, 
we employ the notation LPm,n

(a) ≡ LPm,n
(1) and LPm,n

(b) ≡ 
LPm,n

(4). The core-to-core distance dab (measured from the 
center of the cores) is fixed to 75 μm. A Gaussian optical 
pulse with a temporal width of 20-ns (at 1/2e of the peak 
intensity) excites the LP0,1

(a) and LP0,4
(a) modes with a peak 

power of 0 dBm in order to guarantee that we are operating 
in the linear regime of the MCF. For this value of peak 
power, the pulse distortion induced by the nonlinear effects 
of the optical medium can be neglected [51]. 

Figure 5 depicts the simulated pulse propagation for the 
LP0,1

(a), LP0,4
(a) and LP3,1

(b) modes. The time was 
normalized with respect to the group delay of the LP0,1

(a) 
mode τG,01

(a) as tN = (t−τG,01
(a)·z)/TP, where TP is the full-

width at 1/2e of the peak pulse power. The z-coordinate 
was normalized to the MCF length, i.e., zN = z/L. 
Figure 5(b) shows that the pulse propagating through the 
LP0,1

(a) retains its shape along the MCF length as a direct 
consequence of the phase-mismatching of this mode, not 

only with the LP3,n
(b) modes, but also with any LPm,n

(b) mode 
(it was numerically tested that β0,1

(a) > βm,n
(b) at λ0 = 1550 

nm).  
However, the shape of an optical pulse launched to the 

LP0,4
(a) mode is modified along the MCF due to the 

intermodal dispersion between the degenerate LP0,4
(a) and 

LP3,1
(b) modes [see Fig. 4(c)]. Figure 5(c) shows the pulse 

shape observed at the MCF output for each mode. As 
demonstrated in [51], the first-order intermodal dispersion 
between two different phase-matched LP core modes 
[δb(λ0) = 0] can be modeled by two linear and time-
invariant systems with impulse response approximately 
proportional to δ(t−ΔτG·z)+δ(t+ΔτG·z) in core a and 
δ(t−ΔτG·z)−δ(t+ΔτG·z) in core b, where ΔτG is the DMGD 
between the LP modes and δ(t) is the Dirac delta function. 
That is, the input pulse is transformed into the sum of two 
pulses with a relative delay of 2ΔτG·L at the fiber output. 
In particular, the first-order intermodal dispersion length 
LID

(1) = TP/(2ΔτG) indicates the MCF length scales over 
which the dispersive effects of the first-order intermodal 
dispersion should be considered. Since L > LID

(1) = 0.4 km, 
the first-order intermodal dispersion between the LP0,4

(a) 
and LP3,1

(b) modes allows us to generate different pulse 
shapes by optimizing L. For instance, in the example of 
Fig. 5, L was chosen so that the two pulses into which the 
initial pulse launched into the LP0,4

(a) mode is transformed, 
add up to form a flat-top pulse with a broadened temporal 
width and a lower group delay than the original one. 
Likewise, note that the LP0,1

(a) mode is filtered at the output 
of the core a.  

Along these same lines, it should be noted that the group-
velocity dispersion (GVD) — also referred to as chromatic 
dispersion in the photonic literature — can be neglected in 
each LP mode. The GVD should only be considered in a 
given LPm,n mode when L > LGVD = TP

2/β2,m,n, where 
β2,m,n = d2βm,n/dω2 [52]. Typically, β2,m,n is of the order of 
−20 ps2/km or lower in weakly-guiding silica fibers 
[51]−[53]. Thus, since L << LGVD ~ 2·107 km, we can 
neglect the pulse distortion induced by the GVD in 
Fig. 5(c). 

The unbroken SUSY procedure and its intriguing features 
and applications can also be exploited by using planar 
waveguides [24]−[28]. In this context, a planar SUSY mode 
converter has been experimentally demonstrated in [28] by 
Heinrich et al. by performing a discrete representation of 
the refractive index profile using photonic lattices. In 
contrast to SUSY optical fibers, a SUSY mode converter 
with planar structure would be of special interest for signal 
processing applications in integrated photonics [54],[55]. 
However, the device demonstrated in Fig. 5 could be of 
extreme utility in applications requiring an all-fiber design, 
especially, for a fully integrated realization of angular 
momentum multiplexing [42]. Along this line, novel pulse 
shaping and dispersion management applications based on  
unbroken SUSY fiber chains can be explored within the 
framework of microwave photonics and radio-over-fiber 
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transmissions for the next-generation 5G cellular networks 
[56],[57]. Furthermore, note that in contrast to the classical 
mode conversion and mode filtering strategies based on 
rectangular waveguides and optical fibers with different 
width [39],[58]−[60], the unbroken SUSY procedure allows 
us to perform these functionalities in an extremely high 
optical bandwidth [see Figs. 2 and 4]. 

Moreover, the singular features of the unbroken SUSY 
chain allows us to design MCFs and selective photonic 
lanterns with unique broadband intra- and intermodal 
dispersion properties [Fig. 4(c)] that would be difficult to 
obtain with classical step-index or gradual-index profiles 
[61]−[66]. The concept of photonic lantern was originally 
conceived in the field of astrophotonics to couple the light 
between a multi-mode single-core fiber and individual 
single-mode single-core fibers [61]. In recent years, this 
device has been extensively developed to inject (extract) 
light to (from) optical fibers in space-division multiplexing 
transmissions (i.e., multiplexing techniques that establish 
multiple spatially distinguishable data paths using multi-
mode single-core fibers [62]−[66] and MCFs [67]), as well 
as for other applications [68]. The photonic lanterns 
considered in these previous works (based on classical step-
index and gradual-index profiles) support homogeneous 
supermodes, i.e., supermodes generated from the linear 
combination of degenerate LP modes with the same 
azimuthal and radial order. Typically, these supermodes are 
constructed through the linear combination of the LP01 
mode of different cores in a MCF, which requires a high 
number of cores to obtain supermodes with large effective 
area [64]. This is of special interest to increase the tolerance 
of the signal-to-noise ratio to the fiber Kerr nonlinearities in 
space-division multiplexing systems. In such a scenario, the 
advantage of SUSY would be that it allows us to construct 
photonic lanterns with heterogeneous supermodes, 
generated from the linear combination of different LP mode 
groups. In this vein, supermodes with large effective area 
can be designed using a MCF with a reduced number of 
SUSY cores. 

As a specific example, we designed a MCF comprising 
two cores a and b with R0 = 9 μm, dab = 2R0, na = n1 and 
nb = n2(m1 = 0, λ0 = 1550 nm). Figures 6(a)-6(c) show the 
intensity mode profile I(x,y) of different hybrid modes of 
the MCF calculated with the 3D mode solver of CST 
Microwave Studio at λ0 = 1550 nm. As can be seen, this 
structure supports both isolated LP modes [Fig. 6(a) and 
6(b)] and supermodes [Fig. 6(c)], depending on the 
stimulated hybrid modes. Remarkably, the supermode of 
Fig. 6(c) is generated in the MCF from the almost perfect 
phase-matching between LP modes of different azimuthal 
order (LP0,2

(a)±LP1,1
(b) in this case). As a result, SUSY 

allows us to generate designer heterogeneous supermodes 
with large effective area Aeff = (∫∫I(x,y)dxdy)2/∫∫I2(x,y)dxdy 
in a high optical bandwidth and using only two cores [see 
Fig. 6(d)].  

B. Broken SUSY 

Broken and isospectral (see next section) SUSY 
transformations relate the spectra of the original (V1) and 
transformed potentials (V2) through the relation En

(2) = En
(1). 

In this way, we will be able to establish a perfect phase-
matching between the LPm1,n

(1) and LPm2,n
(2) modes at λ0, 

provided that the conditions for the degeneracy between the 
optical systems [Em1,n

(1),n1] and [Em2,n
(2),n2] are satisfied (see 

Section II). In such circumstances, mode conversion 
applications between LP modes with the same radial order 
could be explored by using the broken (and isospectral) 
SUSY procedure. On the other hand, if degeneracy were 
not preserved (which will turn out to be the case for the 
broken transformations analyzed in this section), the 
corresponding SUSY transformation could be employed as 
a mathematical strategy to design gradual-index MCFs with 
a high core density and a low mode-coupling between the 
LP modes of different cores (also termed in the literature as 
inter-core crosstalk) within a large bandwidth. Finally, a 
partial degeneracy (which will be the case for the 
isospectral constructions studied in next section) could be 
used to achieve unprecedented selective mode filtering 
configurations without mode conversion provided that 
m1 = m2. 

The SUSY relation between V1 and V2 is spontaneously 
broken if α ≠ E1

(1). In this work, we focus on the case 
α < E1

(1). Redefining the auxiliary constant as α ≡ −k2·nα2, 
where k = ω/c0, we find that SUSY is broken if nα is higher 
than the effective refractive index of the ground state 
LPm1,1

(1), i.e., nα > βm1,1
(1)/k. The previous condition is 
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guaranteed by selecting nα > max{n1(r)}, in which case, the 
solution to Eq. (10) for the step-index profile is: 

( ) ( )
( ) ( )

1 1

1 1

( ) ( ) 1( ) ( ) ,
( ) ( ) 2

m m

m m

J irX r Y irX r
W r iX r

J irX r Y irX r r
⎡ ⎤′ ′− + −

= −⎢ ⎥
− + −⎢ ⎥⎣ ⎦

    (22) 

where X(r) = (ω/c0)·[nα2−n1
2(r)]1/2. The index n2 is 

calculated from the superpotential as: 

( ) ( ) ( )
2 2 2

2 0 2 1
2 1 2
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d 2

c m mn r n r W r
r rω
⎛ ⎞−= − +⎜ ⎟
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       (23) 

As in the previous section, W(r) is found to be singular. 
However, W(r) and n2 are now complex functions. This 
means that n2 includes local gain or loss (via its imaginary 
part), as in some transformation optics approaches 
[69]−[71]. 

Let us analyze under which conditions n2 will be 
non-singular, depending on the relation between m1 and m2: 
• m1 = m2: n2 will not be singular only for a non-singular 

W(r), which cannot be the case. 
• m1 < m2: n2 is bounded at r = 0 if W(r→0) = −∞. 

Nevertheless, from Eq. (22), W(r→0) = +∞. 
• m1 > m2: As W(r→0) ∝ (2m1−1)/2r when m1 > 0, n2 

becomes non-singular if m2 = m1−1. 
Thus, we focus on the last case in what follows. A 

particular example with m1 = 2, m2 = 1, λ0 = 1550 nm, and 
nα = 1.452 is considered. In this case, in order to simulate a 
complex refractive index profile, we use the 3D 
electromagnetic mode solver of COMSOL. Figures 7(a) 
and 7(b) depict the real (blue line) and imaginary (red line) 
parts of the broken SUSY index n2 and W. As expected, W 
presents a singularity at r = 0, but n2 is non-singular. 
Surprisingly, in this case both optical systems are found to 
be non-degenerate concerning the SUSY modes LPm1,n

(1) 
and LPm2,n

(2) [Fig. 7(c)]. Nonetheless, as can be seen from 
Fig. S4 in [49], additional LP modes are found to be 
degenerate at different frequencies in the third transmission 
optical window (normalized frequency between 14.2 and 
16). Furthermore, the imaginary part of n2 induces at 1550 
nm a mode-dependent loss per unit of length of 1.46 Np/m, 
1.34 Np/m and 1.07 Np/m for the LP1,1

(2), LP1,2
(2) and 

LP1,3
(2) modes, respectively [1 Np ≡ 10log(e) dB ≈ 4.34 dB]. 

We investigated the different possible origins for the 
non-degeneracy between [Em1,n

(1),n1] and [Em2,n
(2),n2]. 

Firstly, we verified that the singularity of W involved in 
step C is not behind this unusual behavior, since the SUSY 
bound states ψm2,n

(2) ∝ Â−ψm1,n
(1) are again continuous 

normalizable solutions [49]. Then, we checked whether the 
absence of degeneracy may come from a violation of the 
optical boundary condition at r = 0 by the SUSY modes of  
V2

(3D) after step D. This is not the case either, since 
Rm2,n

(2)(0) = 0 in the analyzed case [49]. By process of 
elimination, the non-degeneracy must be induced by step E. 
In fact, although we found that the SVI criterion is fulfilled  

(δn2 ≤ 0.01 << n2 in δr ~ n2λ0), the paraxial approximation 
is strongly degraded for V2

(3D)(r). Specifically, we verified 
that the true modes of the n2 profile are quasi-LP modes 
[72] and, as analyzed in the supplemental material, while 
the true modes are quasi-degenerate, their longitudinal 
component Ez cannot be neglected with respect to the 
transversal one ET (Ez/ET ≈ 0.1). Therefore, as the 
eigenmodes of V2

(3D) do not approximately satisfy Eq. (2), 
the degeneracy between both spectra is broken. 

This exclusive feature of broken SUSY in axially-
symmetric optical media can be used to design MCFs with 
a high density of cores propagating non-degenerate modes 
with low inter-core crosstalk levels. The ever-decreasing 
core-to-core distance in MCFs (aiming at increasing the 
core density and hence the channel capacity) significantly 
enhances the inter-core crosstalk levels [73]. In this 
scenario, gradual-index MCFs comprising a high core 
density with low inter-core crosstalk levels can be designed 
with the broken 1D SUSY procedure. In [49] we also 
analyze additional strategies as the inverse SUSY 
transformation. 

On the other hand, note that in all the analyzed SUSY 
transformations α ≤ E1

(1). The reason for not having 
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discussed the α > E1
(1) case is that it is related to a 

superpotential W(n)(r) = −(ln ψm1,n
(1)(r))', where n > 1 and 

ψm1,n
(1) is a wave function with n nodes. Therefore, W(n) and 

V2 will have n−1 singularities at r > 0 in this case, and so 
will the corresponding SUSY refractive index. 
Nevertheless, a superpotential W(n) could be an interesting 
alternative in complex cylindrical potentials with discrete 
spectrum and parity-time symmetry (e.g. to remove 
arbitrary modes [25]) or with continuum spectrum (e.g. to 
generate bound states in the continuum [74]). 

IV. ISOSPECTRAL POTENTIALS 
In the context of quantum mechanics, it is well-known 

that one can start from a given 1D potential and use SUSY 
transformations to construct single- and multi-parameter 
families of isospectral potentials, i.e., potentials with the 
same energy levels as the original one [14]. In this section, 
we investigate the application of these isospectral 
transformations to axially-symmetric optical potentials. As 
we will demonstrate, such transformations provide a 
privileged procedure to construct families of refractive 
index distributions supporting degenerate LP modes with a 
dimension-independent design control over their group 
delay. Furthermore, as mentioned above, selective mode 
filtering may also be performed if degeneracy is only 
partially preserved. 

There exist different approaches to construct a single-
parameter family [14]. For its intuitive character, we use 
here the so-called Darboux procedure, schematically 
depicted in Fig. 8(a) for the one-parameter case. In essence, 
it consists of first deleting the ground state ψm1,1

(1) of V1 
with an unbroken SUSY transformation, obtaining the 
potential V2. Remarkably, V2 has a non-normalizable 
solution Φ1 with energy E1

(1) that for axially-symmetric 
potentials takes the form [49]: 

( ) ( )
( ) ( )

( ) ( )( ) ( )
1

1

21
1 ,

11
1

,
1 11

1

; ;  . d
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m
m

r R
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r
rR r

τ τ τ
η

ηΦ =
+

= ∫
P

P    (24) 

In a second step, we apply another unbroken SUSY 
transformation to V2, taking Φ1 as a virtual ground state, 
i.e., by using the superpotential: 

( ) ( )D 1 1 1
d; ln ; .
d

W r r
r

η η= − Φ                   (25) 

The resulting partner potential 1 1( ; )V r η%  will have a solution 
1/Φ1 at E1

(1), which will be normalizable if and only if 
η1 > 0 or η1 < −P1(r→∞) [49]. In this case, a ground state of 
energy E1

(1) is reinserted, and we obtain the sought 
isospectral family 1 1( ; )V r η%  of V1(r). The corresponding 

refractive index profiles ñ1(r;η1) and ground state functions 

1

(1)
,1 1( ; )m rR η%  are [49]: 

( ) ( ) ( )( )
2

2 0
1 1 1 1122

2d l2 n ;
d

; cn rr
r

r nη η
ω

= ++% P      (26) 

( ) ( ) ( ) ( ) ( )
1 1

1 1
1 1,1 ,1 1; .m m rR r R rη η= +% P                            (27) 

Note that the Darboux procedure also involves a singular 
superpotential WD(η1) [49]. In order to elucidate whether 
degeneracy is preserved in this isospectral construction, we 
study the cases m1 = 1 and m1 = 2 for two different values 
of η1 (we include additional examples with different m1 and 
η1 values in Fig. S5 of [49]). The resulting profiles for ñ1 
are shown in Fig. 8(b). A closer look at the dispersion 
diagram (calculated with the 3D mode solver of CST 
Microwave Studio) for the cases ñ1(m1=1,η1=10−9) and 
ñ1(m1=2,η1=10−10) reveals an interesting unexpected result 
[Fig. 8(c)]: the Darboux procedure gives rise to optical 
media for which only the ground states of the selected 
isospectral family are degenerate. As in the broken SUSY 
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1Â−

1Â+
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case, we found that this occurs as a result of a degradation 
of the paraxial approximation (step E). In particular, only 
the ground state of ñ1(r;η1) satisfies that Ez << ET, with 
Ez/ET ~ 0.01. In contrast, the remaining bound states are 
found to be quasi-LP modes, with Ez/ET ~ 0.1. A further 
description of the LP and quasi-LP modes of Fig. 8(c) can 
be found in [49]. 

In contrast to the classical mode filtering strategies based 
on using optical waveguides with different width 
[39],[58]−[60], and the unbroken SUSY procedure, this 
unique property allows us to perform a true mode 
(de)multiplexing of any (fundamental) LPm1,1 mode, i.e., 
without having mode conversion between optical 
waveguides. A second advantage of the proposed 
isospectral construction is that the slope of the normalized 
propagation constant b associated with 

1,
(1)

1mR%  increases as η1 
tends to 0 (see Fig. 8(c) and Fig. S5 in [49]). Consequently, 
we have full control over the group delay of the SUSY 
ground state through this free parameter. These singular 
features open new paths for mode filtering, dispersion 
engineering and pulse shaping applications in photonics.  

Aimed to illustrate the power of this method, we propose 
an all-fiber mode demultiplexer (M-DEMUX) of the first 
three LP mode groups (LP0,1, LP1,1 and LP2,1) based on the 
presented theory. The M-DEMUX is designed using a 
60-cm MCF comprising three cores a, b and c with a 
core-to-core distance dab = dac = 55 μm, R0 = 25 μm, and 
λ0 = 1550 nm [Fig. 9(a)]. The index profiles of cores a and 
c are calculated from Eq. (26) as na = ñ1(m1=1,η1=10−9) and 
nc = ñ1(m1=2,η1=10−10). The index profile of core b is taken 
to be the previous step-index profile, with nb = n1. A 10-ps 
Gaussian optical pulse is launched to the LP01, LP11 and 
LP21 modes of the central core, core b, with a peak power of 
0 dBm to operate in the linear regime of the M-DEMUX. 
Figure 9(b) shows the BPM numerical results for the 
optical pulse propagating through each LP mode in the M-
DEMUX. The time and length were normalized with 
respect to the group delay of the LP0,1

(b) mode and the MCF 
length, respectively. As desired, at the device output, the 
pulse launched into the LP1,1

(b) mode has hoped to the 
LP1,1

(a) mode, the pulse launched into the LP0,1
(b) mode 

remains at core b, and the pulse launched into the LP2,1
(b) 

mode  has been transferred to the LP2,1
(c) mode. 

In addition, Fig. 9(c) shows that, in this case, the 
modification of the pulse shape induced by the first-order 
intermodal dispersion of the M-DEMUX (i.e. the pulse 
dispersion) is quite low given that the length of the 
M-DEMUX is of the order of the first-order intermodal 
dispersion length, which is found to be LID

(1) ≈ 1.4 m and 
0.3 m between the LP1,1

(a)-LP1,1
(b) and LP2,1

(c)-LP2,1
(b) 

modes, respectively. As a result, a true modal 
demultiplexing (or modal multiplexing considering the 
reciprocal nature of the device) with a reduced pulse 
dispersion is demonstrated.  

Nonetheless, in contrast with the unbroken SUSY case 
(see Fig. 5), the Darboux procedure allows us to engineer 
the first-order intermodal dispersion of a MCF just by 
adjusting η1. This provides us with a much higher design 
flexibility, as we can tailor this parameter even for fixed 
MCF length, core-to-core distance and core diameters. In 
this fashion, pulse shaping and dispersion engineering 
functionalities can be incorporated to the M-DEMUX. As 
an example, Fig. 10 depicts the behavior of the M-DEMUX 
now taking η1=10−11 for the cores a and c. These values 
were chosen so as to increase the intermodal dispersion 
with respect to the previous case and produce broadened 
and flat-top pulses at the M-DEMUX output. [Fig. 10(b)]. 
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Now, we found that LID
(1) ≈ 0.14 m and 0.11 m between the 

LP1,1
(a)-LP1,1

(b) and LP2,1
(c)-LP2,1

(b) modes, respectively.  
Moreover, since the M-DEMUX length is much lower 

than the GVD length in the LP0,1, LP1,1 and LP2,1 modes of 
each core (LGVD ~ 5 km), the pulse dispersion induced by 
the GVD can be neglected when propagating optical pulses 
in the picosecond regime (or higher temporal widths) in our 
M-DEMUX. 

Because of the partial degeneracy observed in the 
one-parameter isospectral family, novel photonic devices 
can be designed for next-generation optical networks based 
on mode-division multiplexing (MDM) transmissions. In 
spite of the fact that the proposed M-DEMUX is not 
scalable to a higher number of modes if the number of 
cores (three in this case) is kept constant, we can achieve 
such a scalability by including additional adjacent cores 
around core b and optimizing the MCF length to extract 
higher-order modes from this core, e.g., the LP3,1 and LP4,1 
modes. As an important example, an all-fiber add-drop 
mode multiplexer can be designed by using a MCF with a 

hexagonal close-packed structure [62] along with 
isospectral constructions. In this way, the surrounding cores 
will inject and extract the LPm,1 modes from the central core 
(at the corresponding λ0 wavelength), which can be used to 
distribute the different multiplexed signals in the MDM 
system. 

In addition, the Darboux procedure can also be 
generalized to obtain a n-parameter isospectral family of 
cylindrical potentials. In [49] we investigate the 
multi-parameter case and include an illustrative example of 
the two-parameter family for the step-index profile. 

V. CONCLUDING REMARKS 
In this paper we have applied different 1D SUSY variants 

to cylindrical optical potentials exhibiting axial symmetry. 
As SUSY transformations involve inverse-square 1D 
potentials and singular superpotentials, we investigated 
numerically and theoretically whether these features may 
produce a degeneracy between the corresponding 3D 
optical superpartners. Our results show that, while 
degeneracy is present in unbroken SUSY transformations, it 
is indeed violated in broken and isospectral SUSY 
transformations. Notably, this violation does not occur due 
to the aforementioned reasons, but it is actually induced at 
the energy levels for which the bound states of the SUSY 
optical medium do not satisfy the paraxial approximation. 
These results provide us with a recipe to construct axially-
symmetric potentials with total, partial, or no degeneracy 
using unbroken, isospectral, or broken SUSY, respectively. 
Outstandingly, the unbroken and isospectral SUSY 
transformations share an extremely large phase-matching 
bandwidth. 

Building on these interesting modal properties of optical 
superpartners, we have proposed and demonstrated a 
variety of applications for mode filtering, mode conversion, 
mode multiplexing, supermode generation, pulse shaping 
and dispersion engineering. These include SUSY 
multi-core fibers, mode-selective photonic lanterns and true 
all-fiber modal (de)multiplexers. Specifically, the true 
mode (de)multiplexer is designed using optical potentials 
with partial degeneracy induced by the violation of the 
paraxial approximation. Remarkably, this concept has not 
been previously observed in the optical SUSY literature 
[23]−[29]. In this vein, these results could be extrapolated 
to SUSY planar waveguides, which may open new 
possibilities for signal processing applications in integrated 
photonics [54],[55]. 

The SUSY transformation method depicted in Fig. 1 can 
be generalized by analyzing additional factorization 
procedures of the SUSY Hamiltonian given by Eq. (11) 
[75],[76]. As such, SUSY fiber transformations can 
likewise be employed to study new degenerate axially-
symmetric potentials with a different azimuthal relation 
from those for the unbroken and broken SUSY cases. The 
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proposed idea builds a bridge to investigate novel mode 
conversion and mode filtering strategies in all-fiber devices. 

On the other hand, it is worth mentioning the possibility 
of extrapolating the proposed transformation method to 
acoustics and quantum mechanics when axially-symmetric 
potentials are involved. Interestingly, Eq. (2) serves as a 
master equation that allows us to describe the dynamics of 
waves in these branches of physics, provided that an 
adequate mathematical identification of Em,n

(3D), V(3D)(r) and 
Ψm,n(r) is performed. We include in Table I a possible 
choice of the physical meaning of these parameters in each 
of the aforementioned fields [other options are accounted 
for by introducing a free-parameter in Em,n

(3D) and V(3D)(r) 
for the photonic and acoustic cases, e.g., Em,n

(3D) ≡ γ and 
V(3D)(r) ≡ γ − (ω2/c0

2)n(r)]. In quantum mechanics, the wave 
equation is given by the time-independent Schrödinger 
equation. Hence, Em,n

(3D), V(3D)(r) and Ψm,n(r) describe 
respectively the particle’s discrete energy levels, the 
quantum potential, and the probability amplitude. 
Moreover, Eq. (2) models the propagation of sound in 
acoustic media with slowly-varying mass density, provided 
that we use the identifications of the third column of 
Table I. In this case, Ψm,n(r) may represent the acoustic 
velocity potential or the acoustic pressure [77].  

The applicability of 1D SUSY in these fields is 
straightforward by employing Table I and Eqs. (7), (8). 
Given that the degeneracy between V1

(3D) and V2
(3D) is 

present in all the analyzed cases (unbroken, broken and 
isospectral deformations) [49], one would expect the same 
behavior for the case in which V1

(3D) and V2
(3D) represent  

acoustic or quantum systems, as they involve no paraxial 
approximations. However, this should be confirmed 
through further numerical analyses. If degeneracy is indeed 
preserved, our results for unbroken SUSY can be directly 
extrapolated to these fields. Hence, multi-core acoustic 
ducts or cylindrical quantum potentials with axial 
symmetry may be engineered with the same modal 
properties as unbroken SUSY MCFs. Furthermore, it would 
be interesting to explore broken SUSY transformations 
within the context of quantum mechanics as a theoretical 

procedure to generate complex V2
(3D) potentials from a 

given V1
(3D) real analytically solvable potential. This may 

present interesting practical applications in Bose-Einstein 
condensates (BEC) [78]. Finally, proceeding in a similar 
manner as in Section IV, isospectral deformations may also 
be proposed as a strategy to construct acoustic and quantum 
axially-symmetric potentials with similar spectra. 
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