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We propose a superconducting thermal memory device that exploits the thermal hysteresis in
a flux-controlled, temperature-biased superconducting quantum-interference device (SQUID). This
system reveals a flux-controllable temperature bistability, which can be used to define two well-
distinguishable thermal logic states. We discuss a suitable writing-reading procedure for these
memory states. The time of the memory writing operation is expected to be on the order of
∼ 0.2 ns, for a Nb-based SQUID in thermal contact with a phonon bath at 4.2 K. We suggest
a non-invasive readout scheme for the memory states based on the measurement of the effective
resonance frequency of a tank circuit inductively coupled to the SQUID. The proposed device paves
the way for a practical implementation of thermal logic and computation. The advantage of this
proposal is that it represents also an example of harvesting thermal energy in superconducting
circuits.

I. INTRODUCTION

Computing by employing heat rather than electric-
ity would offer several advantages compared to standard
electronic devices, not least that the unavoidable heat
dissipation, intrinsically produced in any computational
scheme, may be used as an advantage, rather than an hin-
drance. On a practical side, additional operations may be
done without adding extra heat dissipation. Of course,
realizing such a concept requires components that have
always been attributed to electronics [1–3]. Indeed, in
the past few years the thermal counterpart of conven-
tional diodes, transistors, memories, and logic elements
have been proposed and discussed thus offering a path to
a type of unconventional computing with heat [1, 3–9].

In order to process and store information by phononic
heat currents, both thermal logic and thermal memo-
ries [1, 2, 10, 11] were initially conceived. However, this
phonon-based thermal technology suffers from the lim-
ited speed of the heat carriers, i.e., the acoustic phonons,
which is some orders of magnitude smaller than the speed
of electrons. The first solid-state thermal memory was
practically demonstrated in Ref. [12]. Subsequently, op-
tical architectures for processing and managing informa-
tion via thermal photons were also developed [3, 7–9, 13–
18]. Kubytskyi et al. [8] designed a thermal memory
based on far-field radiative effects, in which the time to
write the memory states was predicted to be on the or-
der of a few seconds. Instead, a writing time of several
orders of magnitude lower, i.e., ∼ 5 ms, was expected in
near-field thermal memories [14]. Alternatively, Elzouka
et al. [13, 18] proposed a nano thermo-mechanical mem-
ory, by varying the coupling between thermal expansion
and near-field radiative heat transfer. In this case, the
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estimated writing time was on the order of ∼ 0.05 s.
These operational times are several orders of magnitude
too long for practical applications such as thermal logic
and/or computation.

In this paper, we make a step forward in the panorama
of thermal memories by introducing the concept of su-

FIG. 1. Thermal fluxes in a magnetically driven SQUID
formed by two superconductors, S1 and S2, at temperatures
T1 and T2, respectively, tunnel coupled through the junctions
Ja and Jb. The applied magnetic flux threading the SQUID
loop, Φext, drives the temperature T2. The heat current, Pt,
flowing through the junctions depends on the temperatures
and the total flux through the SQUID ring. Pe−ph repre-
sents the coupling between quasiparticles in S2 and the lattice
phonons residing at Tbath, whereas Pheat denotes the power
injected into S1 through heating probes in order to impose a
fixed quasiparticle temperature T1. The arrows indicate the
direction of heat currents for T1 > T2 > Tbath. The tempera-
ture T2 is the observable used to define the logic states 0 and
1 of the thermal memory.
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perconducting (Josephson) thermal memory, which uses
the electronic temperature of an inductive superconduct-
ing quantum-interference device (SQUID) to define dis-
tinct thermal states. We stress that in a superconductor
the electronic temperature follows dynamics appreciably
faster than the phononics ones [19]. Recently, the phase-
coherent thermal transport [20–24], the negative differen-
tial thermal conductance [25], and the hysteretical ther-
mal behavior [26] in temperature-biased Josephson de-
vices were investigated. Here, we discuss the dynamics
of a flux-controlled SQUID, delving into the hysteresis of
the steady temperatures [26] to define the logic states 0
and 1 of a memory device. The hysteretic behavior of
the SQUID is a straight consequence of the inductive na-
ture of the device [27], while the thermal bistability [26]
results from the coherent thermal transport through a
temperature-biased SQUID [28, 29].

The paper is organized as follows. In Sec. II, the the-
oretical background used to describe the phase evolution
of a thermally biased, magnetically driven SQUID with
a non-vanishing ring inductance is discussed. In Sec. III,
the thermal balance equation and the heat currents are
introduced. In Sec. IV, the thermal memory states are
defined and the behaviour of the thermal memory is ex-
plored. The characteristic switching time of the memory
and a fast readout scheme are also discussed. In Sec. V,
conclusions are drawn.

II. SQUID PHASE DYNAMICS

We first explore the dynamics of a magnetically driven
inductive SQUID formed by two Josephson junctions
(JJs), see Fig. 1. To do so, we rely on the resistively and
capacitively shunted junction (RCSJ) model, describing
the phase evolution of the JJs. According to the RCSJ
model, the current flowing through the i-th JJ is given
by [27, 30, 31]

Ii =
Φ0

2π
Ciϕ̈i +

Φ0

2π

1

Ri
ϕ̇i + Ici sinϕi, (1)

where Φ0 = h/(2e) ' 2 × 10−15 Wb is the flux quan-
tum (e and h being the electron charge and the Planck
constant, respectively), and Ci, Ri, Ici , and ϕi are the
capacitance, the normal resistance, the critical current,
and the superconducting phase difference across the i-th
junction, respectively.

The flux quantization in a superconducting ring inter-
spersed with two JJs imposes the constraint

ϕ1 − ϕ2

2
= π

Φ

Φ0
+ πk, (2)

where k is an integer representing the amount of enclosed
flux quanta in the ring. Here,

Φ = Φext − LIcirc (3)

is the total magnetic flux threading the SQUID loop,
where Icirc is the circulating current and the supercon-
ducting ring inductance L has a geometric contribution

as well as a kinetic contribution [27, 32]. The system is
driven by the externally applied magnetic flux through
the ring, Φext.

The dynamics of a SQUID formed by two JJs and bi-
ased by a current Ibias is determined by the following
system of equations [31]

Ibias
2

+ Icirc =
~
2e
C1ϕ̈1 +

~
2e

1

R1
ϕ̇1 + Ic1 sinϕ1 (4)

Ibias
2
− Icirc =

~
2e
C2ϕ̈2 +

~
2e

1

R2
ϕ̇2 + Ic2 sinϕ2, (5)

with the constraints given by Eqs. (2) and (3).
For the sake of generality, we suppose C1 6= C2 and

R1 6= R2 and we introduce the quantities C± = C1 ±
C2, R± = R1 ± R2, and I± = Ic1 ± Ic2 . The degree
of asymmetry of the SQUID is defined as r = I−/I+ =

−R−/R+ (since Ici ∝ R−1
i [30]). Once the values of r and

R1 are chosen, the S2 normal resistance can be estimated
according to R2 = R1(1 + r)/(1− r).

We recast Eqs. (4) and (5) in terms of the variables
ϕ = (ϕ1 + ϕ2)/2 and φ = (ϕ1 − ϕ2)/2. By the sum of
Eqs. (4) and (5), the following equation results

Ibias =
Φ0

2π
C

+
ϕ̈+

Φ0

2π
C− φ̈+

Φ0

2π

1

R
ϕ̇+

Φ0

2π

r

R
φ̇+I

+
fr(ϕ, φ),

(6)
where R = R1R2/R+ and fr(ϕ, φ) = sinϕ cosφ +
r cosϕ sinφ.

By proper normalization of the time, i.e., τ = 2πνt
with ν being the driving frequency, Eq. (6) becomes

K
(
∂2ϕ

∂τ2
+ C ∂

2φ

∂τ2

)
+
∂ϕ

∂τ
+ r

∂φ

∂τ
+ α [fr (ϕ, φ)− δ] = 0,

(7)
where C = C−/C+

, K = 2πνRC
+
, α =

RI
+

νΦ0
, and δ =

Ibias
I
+

. By subtracting Eqs. (4) and (5), one obtains

2Icirc =
Φ0

2π
C+

(
Cϕ̈+ φ̈

)
+

Φ0

2π

1

R

(
rϕ̇+ φ̇

)
+ I+gr(ϕ, φ),

(8)
where gr(ϕ, φ) = r sinϕ cosφ+ cosϕ sinφ.

From Eq. (3), φ(t) − φe(t) = −β2
Icirc
Ic1

, where φe =

πΦext/Φ0 and β = 2π
Φ0
LIc1 is the SQUID hysteresis pa-

rameter [27]. The higher the value of β, the greater the
hysteretical response of the SQUID [26]. By proper nor-
malization of Eq. (8) one obtains

βK
(
C ∂

2ϕ

∂τ2
+
∂2φ

∂τ2

)
+ β

(
r
∂ϕ

∂τ
+
∂φ

∂τ

)
+

+α {βgr (ϕ, φ) + 2(r + 1) [φ(t)− φe(t)]} = 0. (9)

Eqs. (7) and (9) have to be solved numerically to study
the behavior of the SQUID, when a non vanishing induc-
tance, i.e., β > 0, is taken into account. Then, the JJ’s
phases are calculated as ϕ1 = ϕ+ φ and ϕ2 = ϕ− φ.

The hysteretic parameter. − The hysteretic parameter
β is proportional to both the inductance of the supercon-
ducting ring, L, and the critical current Ic1 . L is the sum
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of both a geometric and a kinetic contribution, LG and
LKring , respectively. Moreover, β depends on the tem-
peratures through the kinetic inductance and the critical
current [33–35]. Specifically,

β(T1, T2) =
2π

Φ0
L(T1, T2)Ic1(T1, T2) = (10)

=
2π

Φ0

[
LG + LKring (T1, T2)

]
Ic1(T1, T2).

The BCS expression of the kinetic inductance of a su-
perconducting strip at temperature T is [32]

LK(T ) = Rsq
l

w

~
π∆(T ) tanh [∆(T )/(2kBT )]

, (11)

where Rsq is the sheet resistance in the non-
superconducting state, l and w are the length and the
width of the strip, respectively, so that its normal resis-
tance is Rstrip =

(
l
w

)
Rsq.

Therefore, the kinetic inductance of the superconduct-
ing ring of the SQUID with arms residing at temperatures
T1 and T2 is

LKring (T1, T2) =
∑
j=1,2

RLj
~

π∆(Tj) tanh
[

∆(Tj)
2kBTj

] , (12)

where RLj = Rsq

(
lj
wj

)
is the normal resistance of the

j-th SQUID arm, with lj and wj being its length and
width, respectively.

We assume a vanishing geometric inductance (i.e.,
L(T1, T2) ' LKring (T1, T2)), since we can show that it
does not crucially affects the overall behaviour. For
RL1

= RL2
= R1, if the temperatures are T1 = 6.5 K

and T2 ∈ [4.2 − 4.5] K, one obtains β(T1, T2) ' 1.91.
This is the value set in all the numerical calculations.
Anyway, in the presence of an hysteretical behaviour of
the SQUID the precise tuning of the parameters is not
required to define a reliable thermal memory.

The π-swap dynamics. −We investigate the behaviour
of ϕ and Φ, shown in Fig. 2(a), of a slightly asymmetric,
not-biased SQUID, i.e., r = 0.01 and Ibias = 0, driven by
the magnetic flux Φext = Φ0| sin(2πνt)|, with ν = 1 GHz.
The exact shape of the driving flux is not essential for
the thermal bistability we will discuss. Here, we assume
C1 = C2 = 10 fF and R1 = 10 Ω, namely, typical values
for a Nb/AlOx/Nb junction [36, 37], so that R2 ' 10.2 Ω
and I+ ' 0.3 mA. In the calculations, temperature-
dependent critical currents are taken into account.

The current circulating through the SQUID tends to
compensate and screen the applied flux, see Fig. 2. In
fact, according to the Faraday-Lenz law, as the external
flux Φext increases, the total flux Φ grows less rapidly
than Φext, since the flux induced by the circulating cur-
rent opposes Φext, see Fig. 2(a). However, as Φ ap-
proaches the critical value Φ0/2, we observe that the total
flux Φ abruptly changes, i.e., a transition k → k ± 1 [26]
takes place, and the phase difference ϕ jumps from 0
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FIG. 2. (a) Behaviour of Φ/Φ0 and ϕ/π as a function of t, for
three periods of the drive Φext. (b) and (c) Time evolution of
P (t) and T2, respectively. The values of the other parameters
are: r = 0.01, Ibias = 0, β = 1.91, R1 = 10Ω, C1 = C2 =
10 fF, ν = 1 GHz, T1 = 6.5 K, Tbath = 4.2 K, V = 10−1µm3,
Σ = 3× 109Wm−3 K−5, and NF = 1047 J−1 m−3.

to π (or vice versa), namely, a π-swap of ϕ occurs, see
Fig. 2(a). Then, the resulting path of alternate ϕ jumps is
related to the asymmetry of the device, i.e., r > 0, which
is necessary since we fix the external bias to Ibias = 0 [36].
Indeed, in order to guarantee no effects of the electric cur-
rent on the temperature difference, it is appropriate for
this device to consider only non-galvanic scheme, where
the SQUID is electrically isolated (floating) from external
circuit.

III. THERMAL DYNAMICS

We now suppose a thermal bias across the SQUID,
see Fig. 1. Specifically, the branch S1 resides at a fixed
temperature T1, which is maintained by the good thermal
contact with heating probes. The electronic temperature
T2(t) of the branch S2 is the key quantity to define our
thermal memory, since it floats and can be driven by the
external flux Φext. It depends on all the energy exchanges
in S2 which is in thermal contact with a phonon bath at a
temperature Tbath < T1. The thermal balance equation
for the incoming, i.e., Pt (T1, T2, t), and outgoing, i.e.,
Pe−ph,2 (T2, Tbath), thermal powers in S2 can be written
as [38]

Pt (T1, T2, t)− Pe−ph,2 (T2, Tbath) = Cv(T2)
dT2

dt
. (13)
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FIG. 3. Time evolutions of the temperature T2(t) as the ex-
ternal flux is kept fixed to the value Φref = 0.7Φ0, when this
value is reached within the first period during the forward (a)
and backward (b) sweep of the drive, for ν = 1 GHz. Dot-
dashed lines represent the asymptotic values approached by
T2 in the two cases. In both (a) and (b), the top panel shows
the driving flux Φext/Φ0, the dotted curve tracing the func-
tion | sin(2πνt)|. A red (blue) arrow is used to indicate the
increasing (decreasing) sweep direction of the drive, when its
value is frozen.

The rhs represents the variations of the internal energy
of the system, with Cv(T ) = T ∂S/∂T being the heat
capacity. S(T ) is the electronic entropy of the supercon-
ductor S2 and is given by [39, 40]

S(T ) = −4kBNFV
∫ ∞
−∞

f(ε, T ) log f(ε, T )N (ε, T )dε.

(14)
Here, kB is the Boltzmann constant, f(E, T ) =
1/
(
1 + eE/kBT

)
is the Fermi distribution function, NF

is the density of states at the Fermi energy, V is the vol-

ume of S2, and Nj (ε, Tj) =

∣∣∣∣Re [ ε+iγj√
(ε+iγj)2−∆j(Tj)

2

]∣∣∣∣ is
the smeared BCS density of states of the j-th supercon-
ductor, where ∆j (Tj) and γj are the BCS energy gap
and the Dynes broadening parameter [41], respectively.

The heat current Pt(T1, T2, t) flowing from S1 to S2

reads

Pt =
∑
i=1,2

Pqp,i(T1, T2, Vi) + cosϕiPcos,i(T1, T2, Vi) +

+ sinϕiPsin,i(T1, T2, Vi), (15)

where Vi(t) = Φ0/(2π)ϕ̇i is the voltage drop across the i-
th JJ. Pt(T1, T2, t) depends, through ϕ1(t) and ϕ2(t), on
the evolution of the driving flux Φext. In the adiabatic
regime [29], the quasi-particle and the anomalous heat

currents, Pqp,i, Pcos,i, and Psin,i read, respectively, [28,
29, 42]

Pqp,i(T1, T2, Vi) =
1

e2Ri

∫ ∞
−∞

dεN1(ε− eVi, T1)N2(ε, T2)

×(ε− eVi)[f(ε− eVi, T1)− f(ε, T2)], (16)

Pcos,i(T1, T2, Vi) = − 1

e2Ri

∫ ∞
−∞

dεN1(ε− eVi, T1)N2(ε, T2)

×∆1(T1)∆2(T2)

ε
[f(ε− eVi, T1)− f(ε, T2)], (17)

Psin,i(T1, T2, Vi) =
eVi

2πe2Ri

∫∫ ∞
−∞

dε1dε2
∆1(T1)∆2(T2)

E2

×

[
1− f(E1, T1)− f(E2, T2)

(E1 + E2)
2 − e2V 2

i

+
f(E1, T1)− f(E2, T2)

(E1 − E2)
2 − e2V 2

i

]
(18)

with Ej =
√
ε2j + ∆j(Tj)2 the Bogoliubov energies. We

observe that the anomalous terms in Pt depend crucially
on the junctions phases and are the terms which con-
nect the thermal conduction of the JJs with the phase
dynamics.

In Eq. (13), Pe−ph,2 represents the power loss by the
quasiparticles in S2 into the lattice phonons residing at
Tbath [43]

Pe−ph,2 =
−ΣV

96ζ(5)k5
B

∫ ∞
−∞

dEE

∫ ∞
−∞

dεε2sign(ε)M
E,E+ε

×

{
coth

(
ε

2kBTbath

)
[F(E, T2)−F(E + ε, T2)]

− F(E, T2)F(E + ε, T2) + 1

}
, (19)

whereME,E′ = Ni(E, T2)Ni(E′, T2)
[
1−∆2(T2)/(EE′)

]
,

F (ε, T2) = tanh [ε/(2kBT2)], Σ is the electron-
phonon coupling constant, and ζ is the Riemann
zeta function. Hereafter, we impose V = 10−1µm3,
NF = 1047 J−1 m−3, γ1 = γ2 = 10−4∆2(0), and
∆1(0) = ∆2(0) = 1.764kBTc, with Tc = 9.2 K, namely,
typical values for an Nb-based SQUID.

The temperature T2(t) is obtained by solving
Eqs. (7), (9), and (13) for fixed values of T1 and Tbath,
and represents the observable we use to encode the 0 and
1 logic states of the thermal memory.

IV. RESULTS

We impose that the bath resides at Tbath = 4.2 K, and
S1 is at a temperature T1 = 6.5 K kept fixed throughout
the computation. However, the thermal logic we are go-
ing to discuss is robust to moderate fluctuations of T1.
The time evolution of both the power Pt(T1, T2, t) in-
jected into S2 and T2(t) within three periods of the drive
Φext = Φ0| sin(2πνt)| is shown in Figs. 2(b) and 2(c), re-
spectively. The phase dependency of Pt is clearly visible
since it increases and abruptly falls in correspondence of
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FIG. 4. (a) Driving flux giving an initial memory state 1 and
four following switches, the latter indicated in all panels by
blue dashed lines. A red (blue) arrow is used to indicate the
increasing (decreasing) sweep direction of the drive when its
value is frozen to the value Φref = 0.7Φ0. (b) Time evo-
lution of the temperature T2(t). Dot-dashed lines represent
the asymptotic values approached by T2 in the two cases. (c)
Time evolution of the effective inductance, L̃T , see Eq. (20),
of the tank circuit coupled to the SQUID used for the memory
state readout, as LT = 100 pH.

the π-swaps of ϕ. The temperature T2(t) increases from
T2(0) = Tbath around a quasi-equilibrium value [26] de-
termined by Eq. (13), with peaks in correspondence of
the Pt’s jumps.

We discuss now how to drive the SQUID to control the
thermal memory. We assume a drive Φext(t ≤ tref ) =
Φ0| sin(2πνt)| and Φext(t > tref ) = Φref , with tref being
the time at which Φext(tref ) = Φref (i.e., the driving
flux is frozen to the value Φref for t ≥ tref ). Time-
dependent drives behaving in this manner are shown as
solid lines in top panels of Figs. 3(a) and 3(b). Here,
the dotted line represents the function | sin(2πνt)| and
the red (blue) arrow indicates the increasing (decreasing)
sweep direction of the drive when its value is fixed. Let
us set, for instance, Φref = 0.7Φ0. As is clearly shown
in Figs. 2 and 3, within each drive period, the condition
Φext = Φref = 0.7Φ0 occurs twice, once preceding and
once following a phase swap.

The temperature T2 evolves differently according to
the increasing, i.e., forward, or decreasing, i.e., backward,
sweep direction of the driving flux when its value is kept
fixed to Φref , as shown in the two driving protocols in
Figs. 3(a) and 3(b), respectively. Although the driving
flux finally assumes the same value, in the two cases T2

tends to rapidly converge to different steady tempera-
tures, T2,1 ' 4.5 K and T2,0 ' 4.4 K (indicated by two
horizontal dot-dashed lines in Fig. 3). Hereafter, a sub-
script enclosed in a rectangle indicates the logical state
associated to a specific value of an observable. Then, in
an inductive SQUID the phase bistability, i.e., the π-swap
of ϕ, reflects on a temperature bistability. Accordingly,
we suggest a thermal memory in which the logic states 0
and 1 are defined by these two distinct values of the elec-
tronic temperature T2. The writing operation of these
states is performed through the driving flux.

The switch between the logical thermal memory states
can be done over a short timescale, as shown in Fig 4, by
driving the system through a π-swap and fixing it again
as the Φref value is reached anew. Accordingly, a mem-
ory state switch corresponds to a change in the sweep
direction of the driving flux. Fig. 4(a) shows a mag-
netic drive giving an initial state 1 and four subsequent
switches, the latter indicated by blue dashed lines. The
temperature T2(t) increases from the value T2(0) = Tbath,
and the logic state 1 is rapidly reached, i.e., T2 ' 4.5 K,
see Fig. 4(b). After each switch, the temperature T2(t)
follows a transient regime and then, as the driving flux is
kept fixed again, it exponentially approaches the steady
temperature which is distinctive of the succeeding logic
state, see Fig. 4(b).

Memory switching time. − The time of the memory
writing operation can be evaluated as the characteristic
time of this exponential process, namely, τwr ∼ 0.2 ns.
Markedly, a quite good estimate of this time results from
first-order expanding the heat current terms in Eq. (13)
(see Appendix A). In doing so, it derives from Eq. (13)
that Cv d∆T2

dt = (K − G)∆T2 (see Appendix A), where
G and K are the electron-phonon [44] and electron [22]
thermal conductances of the JJs, respectively, and ∆T2(t)
represent the distance between T2(t) and its steady value,
T2s . Therefore, T2 exponentially approaches T2s , and
the characteristic time of this process, i.e., the memory
switching time, is τsw = Cv/(G −K). For T2s = 4.5 K,
we obtain τsw ∼ 0.1 ns.

The readout. − Recently, it has been shown that
that real time temperature measurements in supercon-
ducting circuits at nanosecond scale are possible [45, 46].
Due to these technical achievements, the readout of the
memory state can be done directly with time-dependent
calorimetric measurements [45–50]. Hereafter, we do not
specifically address those proposals and their applicabil-
ity to the proposed thermal memory, but we suggest an
alternative non-invasive indirect procedure. This read-
out scheme is based on the measurement of the effec-
tive inductance L̃T of a tank circuit inductively coupled
to our electrically-open double junction SQUID, as de-
picted in the equivalent electrical circuit schematically
shown in Fig. 5. The state of the system can be mea-
sured via the effective resonance frequency of the tank

circuit f̃T = 1
/(

2π

√
L̃TCT

)
, where L̃T is the effec-

tive inductance of the tank circuit (see Appendix B) and
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reads

L̃T = LT

[
1− k2 L

LJ(ϕ1, ϕ2) + L

]
, (20)

where k is the coupling coefficient defined by M2 =
k2LTL, M is the mutual inductance of the system, CT
and LT are the capacitance and the inductance of the
tank circuit, respectively. In Eq. (20), L is the ring induc-
tance [see Eq. (11)], LJ(ϕ1, ϕ2) = 4Lϕ1

Lϕ2
/(Lϕ1

+ Lϕ2
)

is the Josephson contribution, with

Lϕi(t) =
Φ0

2π

1

Ic,i(T1, T2(t)) cos [ϕi(t)]
(21)

being the Josephson inductance of the i-th JJ. Assum-
ing CT = 1 nF, LT = 100 pH, and k = 0.9, we obtain
for the logic state 1 the steady value L̃T,1 ' 83 pH and
a corresponding resonant frequency f̃T,1 ' 0.55 GHz,
while for the state 0 we obtain L̃T,0 ' 63 pH and
f̃T,0 ' 0.63 GHz, see Fig. 4(c). A cavity with a modest
quality factor, Q ∼ 10, should be able to resolve these
two memory states, even if it is worthwhile to note that
this Q value needs to be increased considerably when the
coupling term k is reduced. In this scheme, the total
flux Φtot through the SQUID is the sum of the flux Φ,
see Eq.(3), and the probing flux ΦT,ac due to the tank
circuit. For a proper operating point Φref of the exter-
nal flux, the oscillating component ΦT,ac should be kept
sufficiently small to avoid unwanted memory switches.
We stress that the main contribution to the difference in
the effective inductance between the two thermal states is
given by the Josephson terms, see Eq. (21), and increases
with increasing the temperature difference between the
memory states. Markedly, this detection scheme permits
the tuning of the tank circuit effective resonant frequency
by tuning the tank circuit parameters. Finally, the Lϕ’s
values can be increased, and therefore the visibility in the
dispersive mode enhanced, by changing the critical cur-
rent, namely, by increasing the JJ’s resistance Rj . Nev-
ertheless, the higher the Rj values, the lower the tem-
perature difference between the two logic states, so an
optimal point has to be found.

Notably, the thermal memory shows remarkable ro-
bustness against environmental disturbance (see Ap-
pendix C). In fact, our numerical calculations show that
thermal Johnson–Nyquist noise currents [30] only slightly
affects the steady values of the temperatures, while the
overall thermal dynamics remains essentially unchanged
also in a stochastic Langevin approach.

V. CONCLUSIONS

In conclusion, we have discussed the bistable thermal
behavior of a flux-controlled inductive SQUID and de-
signed a superconducting fast thermal memory based on
this effect. We propose a feasible fast readout scheme
based on the reading of the effective resonance frequency

FIG. 5. Thermally biased SQUID (on the left) inductively
coupled to a resonant tank circuit (on the right) characterized
by an inductance, a resistance, and a capacitance LT , RT ,
and CT , respectively. The total flux through the SQUID is
Φtot = Φ + ΦT,ac and M is the mutual inductance of the
system.

of a tank circuit inductively coupled to the SQUID. The
writing operation of the thermal memory states is per-
formed through the driving flux. Interestingly, a writing
time of the memory states on the order of ∼ 0.2 ns is in
principle achievable. This is at least seven orders of mag-
nitude faster than any other thermal memory proposed
up to now.

The proposed memory is well-placed in the context of
superconducting memory elements [51–57], significantly
pushes forward the thermal memory concept and has a
strong relevance in the context of thermal devices.

In addition to the memory encoding, this device will
use the heat produced by superconducting electronic cir-
cuits as a consequence of the computation to encode
memory functionalities. Then, the proposed memory ef-
fectively paves the way for a new generation of fast ther-
mal technology, including fundamental devices [23] and
logic gates [58].
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FIG. 6. Characteristic time, τsw, as a function of both the
volume V, for T2s = 4.5 K and Φ ' 0.41Φ0, (a), and the tem-
perature T2s , for V = 0.1 µm3 and Φ = 0.7Φ0, (b). The values
of the other parameters are the same used in the manuscript.

Appendix A: Estimate of the characteristic
switching time of the memory

To give a qualitative estimate of the switching time,
i.e., the time that the memory needs to change its state,
we first-order expand the heat currents in the thermal
balance equation Eq. (13) around the steady temperature
T2s , obtaining the equation

Pt (T1, T2s) +
∂PT
∂T2

∣∣∣∣
T2s

[T2(t)− T2s ]− Peph,2 (T2s , Tbath)

− ∂Peph,2
∂T2

∣∣∣∣
T2s

[T2(t)− T2s ] = Cv(T2s)
dT2(t)

dt
. (A1)

According to the stationary thermal balance equation,
i.e., Pt (T1, T2s) − Peph,2 (T2s , Tbath) = 0, Eq. (A1) be-
comes

Cv(T2s)
dT2(t)

dt
=

(
∂Pt
∂T2

∣∣∣∣
T2s

− ∂Peph,2
∂T2

∣∣∣∣
T2s

)
[T2(t)− T2s ]

= {K(T2s)−G(T2s)} [T2(t)− T2s ], (A2)

where

G(T ) =
∂Peph
∂Te

∣∣∣∣
Te=T

= (A3)

=
5ΣV

960ζ(5)k6
BT

6

∫∫ ∞
−∞

dEdεE |ε|3M i
E,E−ε

sinh ε
2kBT

cosh E
2kBT

cosh E−ε
2kBT

is the electron-phonon thermal conductance [44], and

K(T ) =
∂Pt
∂Ti

∣∣∣∣
Ti=T

=

=
1

2e2kBT 2R1

∫ ∞
0

dεε2

cosh2 ε
2kBT

[
N1(ε, T )N2(ε, T )(1 + a)−

−M1(ε, T )M2(ε, T )

√
1 + a2 + 2a cos

(
2πΦ

Φ0

)]
(A4)

is the electron thermal conductance [22] [here, a =
Ic2/Ic1 = R1/R2 = (1− r)/(1 + r)].

By defining ∆T2 = T2(t)− T2s , Eq. (A2) becomes

Cv(T2s)
d∆T2

dt
= {K(T2s)−G(T2s)}∆T2. (A5)

This equation can be recast in

d∆T2

dt
= −∆T2

τsw
, (A6)

whose solution is

∆T2(t) = ∆T20 e
− t
τsw , (A7)

where we have defined the characteristic time

τsw =
Cv(T2s)

G(T2s)−K(T2s)
. (A8)

For T2s = 4.5 K and Φext = 0.7Φ0, with Φ(t � 1) '
0.41Φ0 being the stationary value approached by the
total flux, we obtain τsw ' 0.1 ns, namely, a value
roughly comparable with the time τwr discussed in the
manuscript.

We note that a negative value of the switching time
means that at the linear order the system is unstable.
Anyway, the stability is recovered by considering the non-
linear corrections. In order to optimize the switching
times, we fixed the operating temperatures so that G &
K and the system is stable at the linear order.

Interestingly, the characteristic time τsw behaves coun-
terintuitively by varying the volume V (in the following,
we are assuming that any change in the volume V doesn’t
affect the JJ’s surface area and, therefore, the JJs nor-
mal resistance). As is shown Fig. 6(a), by increasing the
volume, τsw approaches a steady value, while it tends to
increase for small V. To explain this trend, we observe
that only Cv and G linearly depend on V, so that, if we
define Cv = VC̃v and G = VG̃, from Eq. (A8) one obtains
τsw = C̃v/(G̃−K/V), according to which τsw → C̃v/G̃ by
increasing V. A reduction of the island volume degrades
the time performance of the memory element.

The behaviour of the characteristic time as a function
of T2s , for V = 0.1 µm3 and Φ = 0.7Φ0, is shown in
Fig. 6(b). The characteristic time slightly reduces by in-
creasing the temperature T2s , such that τsw ∼ 0.058 ns
for T2s = 6 K and τsw ∼ 0.036 ns for T2s = 8 K, since the
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FIG. 7. (a) Time evolution of the temperature T2(t) as the thermal fluctuations are taken into account, for Φext(t ≥ ti) = Φref ,
where ti is the time for the magnetic flux Φext to reach the value Φref = 0.7Φ0 during the forward and backward sweeps, for
ν = 1 GHz. The magnifications shown in insets allow to appreciate the stochastic fluctuations of T2. (b) Evolution of the
temperature T2(t) as the thermal fluctuations are taken into account, when several memory switches are driven by the external
magnetic flux. In both panels, dashed curves represents the temperatures computed in the deterministic approach. The values
of the other parameters are the same used in the manuscript.

electron-phonon relaxation process becomes more effec-
tive. Anyway, an increase of the temperature will result
also in a reduction of the temperature difference between
the two memory states increasing also the negative effects
of the noise disturbance (see Appendix C).

Appendix B: Effective coupling SQUID-tank circuit

In order to implement the proposed readout scheme,
we need to couple our SQUID with a tank circuit, as
shown in Fig.5. In particular, as explained in the text
the dispersive reading crucially depends on the effec-
tive inductance L̃T of the tank circuit, which is modified
by the different SQUID states. The method we discuss
is inspired by the analysis presented in Ref. [30] for a
single-junction rf-SQUID. The difference here is that we
have two junctions in the SQUID, whose phases are con-
strained by the flux quantization, see Eq. (2). Here we
present how to derive the expression of the effective in-
ductance L̃T , see Eq.(20).

The tank circuit is coupled to the SQUID through the
mutual inductanceM , such that a fluctuation in the tank
current, IT , induces a fluctuation of the external flux,
Φext, through the SQUID ring, namely, δΦext = MδIT .
Consequently, a reactive circulating current is generated
in the SQUID

δIcirc =
δIcirc
δΦext

δΦext =
δIcirc
δΦext

MδIT , (B1)

which correspondingly induces a fluctuation of the to-
tal flux through the tank inductance, δΦT = LT δIT −
MδIcirc. Then, by using Eq. (B1), the effective induc-
tance L̃T reads

L̃T =
δΦT
δIT

= LT

(
1− M2

LT

δIcirc
δΦext

)
, (B2)

with δIcirc/δΦext being the circulating current transfer
function. The inverse of this transfer function can be
obtained by differentiating Eq. (3)

δΦext
δIcirc

=
δΦ

δIcirc
+ L. (B3)

The circulating current through the SQUID can be writ-
ten as Icirc = [Ic1 sin (ϕ+ φ)− Ic2 sin (ϕ− φ)] /2, so that

δIcirc
δΦ

=
π

Φ0

δIcirc
δφ

=
π

2Φ0
[Ic1 cosϕ1 + Ic2 cosϕ2] , (B4)

having used the relation δφ = π/Φ0δΦ. According to
Eq. (21), the previous equation becomes

δIcirc
δΦ

=
1

4

(
1

Lϕ1

+
1

Lϕ2

)
= LJ(ϕ1, ϕ2)−1. (B5)

Through Eqs. (B3) and (B5), one obtains

L̃T = LT

(
1− M2

LT

1

LJ(ϕ1, ϕ2) + L

)
. (B6)

By assuming for the mutual inductance the expression
M = k

√
LTL, the effective tank inductance becomes

L̃T = LT

(
1− k2 L

LJ(ϕ1, ϕ2) + L

)
, (B7)

where k is the coupling coefficient. This equations
resembles the result of Ref. [30] for a single-junction
SQUID coupled to a tank circuit, except that the Joseph-
son contribution is represented by LJ(ϕ1, ϕ2) defined in
Eq. (B5).

Appendix C: The noisy approach

We consider two independent Johnson–Nyquist noise
currents In1

and In2
, with the usual white noise fea-
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tures [30]

〈Ini(t)〉 = 0 (C1)

〈Ini(t)Ini(t′)〉 = 2
kBT

Ri
δ (t− t′) , (C2)

in the RCSJ models of both junctions [27, 31]

Ibias
2 + Icirc + In1

= ~
2eC1ϕ̈1 + ~

2e
ϕ̇1

R1
+ Ic1 sinϕ1

Ibias
2 − Icirc + In2

= ~
2eC2ϕ̈2 + ~

2e
ϕ̇2

R2
+ Ic2 sinϕ2.

(C3)

With the aim of estimating the overall effect of the
thermal fluctuations on the SQUID dynamics, we assume
to first approximation that the temperature T in Eq. (C2)
is the higher temperature at play, namely, the tempera-
ture T1 = 6.5 K of the hot electrode.

Differences with respect to the deterministic case
emerge by looking at the steady temperature T2 in the
memory states 0 and 1, i.e., T2,0 and T2,1 , respectively.
This is shown in Fig. 7(a). We observe that the stochastic
temperatures in the two cases converge to slightly higher
values with respect to the temperatures computed in the
deterministic case [indicated by dot-dashed and dashed
black lines in Fig. 7(a)]. The evolution of T2 in the
stochastic case, as several memory switches are guided
by the magnetic drive, is shown in Figs. 7(b). Despite
the aforementioned shift, the overall dynamics remains
unchanged.

All these features can be explained with a detailed
analysis of the stochastic regime, that we will investigate
further in a following paper.
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