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In this work, we provide a proof-of-concept experimental demonstration of the wave control capa-
bilities of cellular metamaterials endowed with populations of tunable electromechanical resonators.
Each independently tunable resonator comprises a piezoelectric patch and a resistor-inductor shunt,
and its resonant frequency can be seamlessly re-programmed without interfering with the cellular
structure’s default properties. We show that, by strategically placing the resonators in the lattice
domain and by deliberately activating only selected subsets of them, chosen to conform to the direc-
tional features of the beamed wave response, it is possible to override the inherent wave anisotropy
of the cellular medium. The outcome is the establishment of tunable spatial patterns of energy
distillation resulting in a non-symmetric correction of the wavefields.

I. INTRODUCTION

Cellular solids are porous media known to display
unique combinations of complementary mechanical prop-
erties, such as high stiffness and high strength at low
densities [1]. Lattice materials—cellular solids with or-
dered architectures—are obtained by spatially tessellat-
ing a fundamental building block (unit cell) comprising
simple slender structural elements such as beams, plates
or shells. Advances in additive manufacturing have re-
cently propelled a resurgence of architected cellular solids
as mechanical metamaterials with unprecedented func-
tionalities at multiple scales [2–5]. Examples include
fully-recoverable, energy absorbing lattices with buck-
lable struts [6, 7], pentamode fluid-like materials that
behave as “unfeelability” cloaks [8], lattices with nega-
tive Poisson’s ratio [9], negative thermal expansion [10],
and smart lattices with programmable stiffness [11].
Lattice structures also display unique dynamic proper-

ties. They commonly feature Bragg-type bandgaps as a
result of their periodicity and occasionally subwavelength
bandgaps for special unit cell designs or in the pres-
ence of internal resonators, thus behaving as frequency-
selective stop-band filters for acoustic [12], elastic [13–
19] and electromagnetic waves [20]. They also display
elastic wave anisotropy, which manifests as pronounced
beaming of the energy according to highly directional
patterns [13, 21–30]. This behavior can be attributed
to the fact that, at the cell scale, elastic waves are
forced to propagate along the often tortuous pathways
dictated by the links/struts. The spatial characteristics,
symmetry landscape and frequency dependence of the
anisotropic patterns are dictated by the unit cell’s archi-
tecture [31, 32] and are usually irreversibly determined
during the design and fabrication stages. To endow cel-
lular solids with functional flexibility and active spatial
wave management capabilities, we need our structural
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systems to be tunable or programmable [33–42]. To en-
sure that geometry and material requirements imposed
by other functional constraints are preserved during the
tuning process, it is especially important to devise mini-
mally invasive tunability strategies [43].

In this work, we propose and implement a strategy for
tailorable spatial wave management in architected cel-
lular solids, based on the interplay between the inherent
anisotropy of the underlying lattice medium and the reso-
nant behavior of tunable resonators strategically located
on selected lattice links. Let us recall here that a res-
onator attached to a structural medium interacts with
an incident propagating wave by distilling from the wave
spectrum an interval of frequencies comprised within the
neighborhood of its resonant frequency [44, 45]. This be-
havior can be explained by invoking the destructive inter-
ference mechanisms between the incident wave and the
wave that the resonator re-radiates, which experiences a
180o phase shift for frequencies immediately above res-
onance [46]. As a result, by tuning the resonators as
to induce distillation at frequencies for which the lattice
displays anisotropic directional wavefields, and by acti-
vating selected spatial subsets of resonators located along
the dominant energy beams of the directional fields, we
can override selected spatial wave features. The result
is a smart lattice structure whose spatial wavefields can
be programmed to display several complementary pat-
tern corrections that relax the symmetry of the response.
For this task, we resort to resonators consisting of thin,
minimally invasive piezoelectric patches shunted with
resistor-inductor (RL) circuits to realize resonant RLC
units, adapting and perfecting a framework previously
established for beams, plates and waveguides [45, 47–54].
The resonant frequency of each electromechanical res-
onator can be seamlessly varied by modifying the elec-
trical impedance of the corresponding shunting circuit,
which is carried out by simply tuning one of the circuit
components.
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II. EXPERIMENTAL SETUP

Our experimental setup is illustrated in Fig. 1a. The

FIG. 1. (a) Experimental setup. (b) Detail of the rear face
of the specimen near the actuation point, showing multiple
piezoelectric patches bonded to the lattice structure. (c) One
of the synthetic inductor circuits, schematically connected to
one of the patches. Please consult the Supplemental Mate-
rial [55] for details on the patch-circuit connection.

cellular medium of choice is a square lattice specimen,
comprising 29×29 unit cells, manufactured out of a
1.27mm-thick 6061 aluminum plate (Young’s modulus
E = 68GPa, density ρ = 2700 kg/m3, Poisson’s ratio
ν = 0.33) using water jet cutting. The characteristic
length of the unit cell is L = 3.2 cm, and the width of
a lattice link is b = 8mm. The out-of-plane motion of
points on the front face of the specimen that correspond
to a pre-determined scanning grid is measured via a 3D
Scanning Laser Doppler Vibrometer (3D-SLDV). The ex-
citation signals are imparted through an electromechan-
ical shaker and a stinger, connected to the lattice node
at the center of the specimen. A detail of the rear face
of the specimen near the actuation location, shown in

Fig. 1b, highlights the presence of multiple piezoelec-
tric patches (8 × 7 × 0.2mm wafers made of PZT-5A)
bonded to the structure. A total of 28 patches are lo-
cated as to form a ring around the excitation point. All
the patches are wired, but only up to seven (or eight)
are simultaneously activated—i.e. connected to a RL
circuit—during each experiment. Eight synthetic induc-
tors (Antoniou circuits) are built on a solderable bread-
board to serve as equivalent inductors for the eight re-
quired shunting circuits; one of them is shown in Fig. 2c.
Synthetic inductors are a staple in the shunting liter-
ature due to their compact dimensions (even for large
values of inductance), versatility and tunability [56]. DC
power supplies are used to power the Op-Amps in the
Antoniou circuits. To seamlessly program the synthetic
inductor (and consequently the characteristics of the res-
onator), the resistor R1 in each circuit is a tunable po-
tentiometer; modifying R1 changes the equivalent induc-
tance Leq = R1R3R4C/R2 and, therefore, the resonant

frequency fr = 1/[2π(CpLeq)
1/2], where Cp is the capac-

itance of the piezo patch. The circuit components are
selected as to allow the resonators to be tuned at any
frequency in the interval from 2 to 13 kHz. Series resis-
tors are required to introduce enough damping to allevi-
ate the effects of circuit instabilities [57]. More details
on the experimental setup, on the circuits and on their
tuning are reported in the Supplemental Material [55].

III. NUMERICAL AND EXPERIMENTAL

WAVE RESPONSE

The default wave response of the pristine lattice is il-
lustrated in Fig. 2. The band diagram of an infinite lat-
tice having the same cell dimensions, geometry and ma-
terial properties as our specimen is shown in Fig. 2a;
this result is obtained through a Bloch analysis of a
unit cell modeled with plate finite elements (implement-
ing Mindlin’s plate model) limited to wave vectors sam-
pled along the contour of the Irreducible Brillouin Zone
(IBZ) [13]. We are especially interested in frequencies
where the appearance of partial bandgaps suggests pro-
nounced wave anisotropy. In the low-frequency range
shown in Fig. 2a, these frequencies are approximately
2.35 kHz and 4.1 kHz. The blue lines in Fig. 2b mark the
Cartesian iso-frequency contour obtained by slicing the
first dispersion surface at 2.35 kHz, and highlight how, at
this frequency, waves are predominantly allowed to prop-
agate along directions that are ±45o-oriented with re-
spect to the horizontal axis. Iso-frequency contours pro-
vide information analogous to the slowness curves [58],
whereby proximity to the origin implies high phase veloc-
ity, and vice versa. The iso-frequency contour of the sec-
ond surface at 4.1 kHz displays complementary features:
wave speeds are now much higher along the horizontal
and vertical directions.
In Fig. 3, we report the out-of-plane velocity snap-

shots (at two time instants) of the measured transient
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FIG. 2. (a) Band diagram of the pristine square lattice com-
puted via a FE-based unit cell analysis. This diagram only
comprises flexural wave modes, i.e., those relevant in the case
of low-frequency, out-of-plane loads. The Irreducible Brillouin
zone is shown in the insert. Colored horizontal lines high-
light frequencies where wave anisotropy is most pronounced.
(b) The blue lines represent the numerically computed iso-
frequency contour of the first dispersion surface at 2.35 kHz;
the underlying contours are the spectral lines computed from
the experimental lattice response to a burst with carrier fre-
quency 2.35 kHz. (c) Same as (b) for the second dispersion
surface at 4.1 kHz.

response of our lattice specimen. The excitation signals
are 13-cycle bursts with carrier frequencies correspond-
ing to 2.35 kHz and 4.1 kHz, respectively. Note that, at
this stage, all patches are in their open circuit configura-
tion. The response at 2.35 kHz (Fig. 3a) shows that, at
this frequency, the wavefields feature four highly-beamed
packets propagating along ±45o-oriented directions, as
predicted by the iso-frequency contour in Fig. 2b. On
the other hand, the wavefields corresponding to 4.1 kHz
(Fig. 3b) feature packets propagating mainly along the
vertical and horizontal directions—consistent with the
predictions of Fig. 2c. In Figs. 2b-c, to further demon-
strate the excellent agreement between the results from
the unit cell analysis and the laser-acquired experimen-
tal data, we superimpose to the iso-frequency contours
the spectral lines of the lattice response at the same
frequencies, obtained from the experimentally acquired
wavefields through a 2D Discrete Fourier Transform pro-
cedure (2D-DFT; see the SM section for details on the
reconstruction procedure). This comparison also high-
lights how the presence of the open circuit (non-shunted)

FIG. 3. Transient experimental response of the lattice to
13-cycle bursts with carrier frequencies (a) 2.35 kHz and (b)
4.1 kHz, when all piezoelectric patches are in their open circuit
configuration.

patches has minimal influence on the characteristics of
the medium in this low-frequency regime.

IV. WAVE-RESONATOR INTERACTION

To elucidate the mechanisms behind the wave-
resonator interaction in the specific case where the res-
onator comprises a piezoelectric patch shunted with a
RL circuit, we resort to a simple one dimensional exper-
iment. The specimen is a 117.4 cm-long and 8mm-wide
beam with the same thickness and material properties as
the lattice specimen. The beam is clamped at both ends,
and the excitation is imparted near one of the clamps.
Approximately at the center of the beam, we bond a
single piezoelectric patch (identical to those used in the
lattice experiment). A schematic of the beam, with illus-
tration of the location where the response is measured by
the 3D-SLDV system, is shown in Fig. 4a (the setup for
this experiment is shown in Fig. S7 and discussed in the
Supplemental Material [55]). The beam is excited via a
9-cycle burst with carrier frequency 3.5 kHz. Boundary
reflections are eliminated through a time-filtering pro-
cedure, also discussed in [55]. In Fig. 4b, we compare
the frequency spectra of the out-of-plane velocity signals
recorded in the open circuit case (gray line) and in the
shunted case (black line). These signals have been ob-
tained by averaging the response at multiple measure-
ment points located after the resonator. The patch-
circuit system is tuned as to resonate around 3.5 kHz, al-
though a small error in pinpointing the frequency is often
expected. We observe that, as predicted, the resonator
causes wave attenuation/distillation in the neighborhood
of the tuning frequency. The amplitude of attenuation is
small compared to other instances reported in the litera-
ture on shunted systems due to the fact that here the
wave packet is purely incident and interacts with the
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FIG. 4. Experimental results on wave-resonator interaction.
(a) Schematic of the experimental setup (clamped-clamped
beam with a single piezoelectric patch). (b) Frequency spec-
tra of the filtered out-of-plane velocity time histories for open-
circuit and shunted cases, in response to a burst with 3.5 kHz
carrier frequency. The curves are obtained by averaging the
spectra recorded at multiple measurement points downstream
from the patch. (c) Difference between the open circuit spec-
trum and the shunted one.

resonator only once. Stronger attenuation results usu-
ally arise from multiple wave-resonator interactions, as
in steady-state conditions or when we can aggregate the
effects of multiple transient packets bouncing back and
forth between the structure’s boundaries [45]. The ac-
tion of the resonator can be better visualized by sub-
tracting the shunted spectrum from the open circuit one;
this differential plot is shown in Fig. 4c. Notably, most
of the attenuation is recorded right above the expected
resonance. This behavior can be qualitatively explained
using arguments of phase delay and wave interference.
Specifically, when a propagating wave interacts with a
resonator, a fraction of the energy is stored in the res-
onator and re-radiated into the structure, possibly with
a phase shift. This wave can interact constructively or
destructively with the incident wave, according to their
relative phase [44, 46, 59]; above resonance, where in-
cident and re-radiated wave are in opposition of phase,
destructive interference mechanisms result in signal at-
tenuation. This effect becomes less pronounced as we
move away from resonance, the resonator becomes pro-

gressively less engaged and the portion of the reradi-
ated energy drops, ultimately dictating the width of the
bandgap. Note that, while this effect is precisely observed
for continuous harmonic excitation (which explains why
the onset of resonant bandgaps in the frequency domain
can be pinpointed experimentally with great accuracy in
steady state conditions), its signature is blurrier for burst
excitations with compact support where issues of packet
delay and distortion may contaminate the inference.

V. ANISOTROPY OVERRIDING

At this stage, we know how the lattice responds to
bursts at several frequencies of interest and how a trav-
eling wave interacts with an electromechanical resonator
based on a shunted piezo patch. Therefore, we have all
the ingredients to investigate the influence of strategically
placed, properly tuned resonators on specific wave fea-
tures of the anisotropic response of the lattice. A numer-
ical demonstration of this strategy for an idealized lattice
of springs and masses with mass-in-mass nodes, which
can be seen as a purely mechanical analog of our system,
is reported in the Supplemental Material [55]. Despite
the pronounced modeling differences, these simulations
are insightful in that they allow to freely explore the pa-
rameter space of the population of resonators far beyond
the constraints of the experiments. Back to our experi-
ments, we first consider the lattice response at 2.35 kHz,
shown in Fig. 3a. Our goal is to override one of the four
±45o-oriented packets propagating from the excitation
point. In our first test, we shunt eight patches located
along the path of the packet propagating towards the
bottom-left corner of the domain. The selected patches,
located on the links highlighted by cross-shaped markers
in Fig. 5a, are connected to the synthetic inductors on
the circuit board through series resistors with resistance
Rs = 1kΩ. Each resonator is tuned at 2.2 kHz (see the
Supplemental Material for details on the tuning proce-
dure [55]); we choose this lower tuning frequency rather
than the nominal 2.35 kHz to compensate for the shift
in resonance caused by the large value of Rs (necessary
to avoid circuit instabilities). The response of the lattice
at three distinct time instants is shown in the top row of
Fig. 5b. At first glance, we do not detect any macroscopic
modification with respect to the open circuit response of
Fig. 3a. To further explore the data and reveal potential
higher-order correction effects in the shunted response,
in the bottom row of Fig. 5b, we report the differen-
tial wavefields obtained by subtracting the shunted re-
sponse from the open circuit one at the considered time
instants. Upon this operation, an asymmetric pattern
consistent with our expectations unfolds. As predicted,
properly-tuning a selected subset of resonators produces
a frequency-distillation (and consequently an amplitude
correction) of the wave packet in the spatial neighbor-
hood of the activated resonators: packets traveling from
the source towards the bottom-left corner of the domain
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FIG. 5. Anisotropy overriding at 2.35 kHz; the targeted wave feature is the packet propagating towards the bottom-left corner
of the specimen. (a) Detail of the front (scanned) face of the specimen; the circular marker indicates the actuation location
and the crosses denote the links with shunted piezos. (b) Top row: wavefields acquired at three time instants. Bottom row:
spatial patterns displayed by the difference between the open circuit and the shunted response.

carry the strongest signature of shunting. In Fig. 6, we
report the velocity time histories recorded at four char-
acteristic locations on the specimen’s surface—one point
in each quadrant of the scanned area (top-right, bottom-
right, bottom-left and top-left). These results confirm
that waves propagating towards the bottom-left corner
are the most affected by the resonators and indeed ex-
perience wave attenuation. These and other results in
this Section, albeit representing an unequivocal proof
of concept of the anisotropy overriding capabilities of
shunted lattices, reflect effects that are one order of mag-
nitude smaller than the amplitude of the wave response.
Stronger attenuation results could ostensibly be attain-
able through refinements of the experimental setup, e.g.,
by using a larger number of simultaneously activated res-
onators or by working with improved circuitry with re-
duced parasitic resistance. These technological improve-
ments will be addressed in future investigations.

To demonstrate the tunability of our metamaterial sys-
tem, we re-program the lattice by shunting a different set
of patches and re-tuning the circuits as to override the
wave packet propagating, still at 2.35 kHz, towards the
top-left corner of the domain. Note that re-tuning is
needed since each patch has a slightly different capaci-
tance. This experiment is illustrated in Fig. 7. In this
second scenario, we again manage to override the desired
feature of the anisotropic wave pattern.

We now shift our attention towards the wave response
at 4.1 kHz—characterized by complementary wave pat-
terns propagating along the vertical and horizontal direc-
tions as illustrated in Fig. 3b. By shunting seven patches
located on the links immediately to the right of the ex-
citation point as indicated in Fig. 8a, we program the
system to override the right-going wave packet. Note

FIG. 6. Clockwise: time histories of the open circuit (red line)
and shunted (black line) response at four points in the top-
left (TL), top-right (TR), bottom-left (BL) and bottom-right
(BR) quadrants, respectively. The targeted wave feature is
the packet propagating towards the bottom-left corner of the
specimen.

that, in this case, the resonators are tuned exactly at
4.1 kHz, since the required 330Ω series resistance seems
not to produce any appreciable shift in resonance fre-
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FIG. 7. Anisotropy overriding at 2.35 kHz; the targeted wave feature is the packet propagating towards the top-left corner of
the specimen. (a) Detail of the front (scanned) face of the specimen, indicating where the shunted patches are located. (b) Top
row: wavefields acquired at three time instants. Bottom row: spatial patterns displayed by the difference between the open
circuit and the shunted response.

quency. The differential wavefields in Fig. 8b show that
the right-going horizontal feature is indeed the one being
attenuated by the resonators. An additional result tar-
geting another direction of propagation is reported for
completeness in the Supplemental Material.

VI. CONCLUSIONS

In this work, we have demonstrated that the frequency-
selective anisotropic wave patterns intrinsically estab-
lished in cellular metamaterials can be corrected by re-
sorting to clouds of strategically placed, tunable elec-
tromechanical resonators and by selecting objective-
specific spatial activation strategies. We have shown that
we can achieve levels of programmability that allow to
override the anisotropy of the wave response along dif-
ferent directions and at different frequencies. It is rea-
sonable to assume that results similar to those shown
in this proof-of-concept study for a simple square lattice
would be achievable in more complex two- and three-
dimensional architected cellular solids, albeit requiring
even more complex electromechanical control systems.
Integrated manufacturing of the electromechanical res-
onators, improved circuitry [60], or the adoption of less
invasive resonators capable of offering a stronger coupling
while simultaneously allowing the activation of more than
seven or eight resonators could increase the tangibility
of the observed effects. This kind of developments will
eventually pave the way towards families of smart lattices
with programmable spatial wave control capabilities such
as wave steering, energy channeling and re-routing, and
spatial filtering.
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FIG. 8. Anisotropy overriding at 4.1 kHz; the targeted wave feature is the rightward-propagating packet. (a) Detail of the front
(scanned) face of the specimen, indicating where the shunted patches are located. (b) Top row: wavefields acquired at three
time instants. Bottom row: spatial patterns displayed by the difference between the open circuit and the shunted response.
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