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Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been
observed experimentally with high frame rate ultrasound: shear shock waves in soft solids. These
strongly nonlinear waves are characterized by a high Mach number because the shear wave velocity is
much slower, by three orders of magnitude, than the longitudinal wave velocity. Furthermore these
waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal
waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities
which can generate positive and negative shocks. Here we present the first experimental observation
of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in
a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data
from high frame rate (7692 images/second) acquisitions in combination with algorithms that are
tuned to detect small displacements (~ 1um) are used to generate quantitative movies of gel motion.
The features of shear shock wave focusing are analyzed by comparing experimental observations
with numerical simulations of a retarded time elastodynamic equation with cubic nonlinearities and

empirical attenuation laws for soft solids.

I. INTRODUCTION

Focusing is a fundamental tool of wave physics and
it is used for uncountable applications. There are nu-
merous methods that focus acoustical waves and they in-
clude curved sources, mirrors, lenses, and more recently,
phased arrays [1], time-reversal processes [2] or metama-
terial networks [3, 4]. In conventional materials the min-
imum size of the focal spot is determined by the wave-
length. As a consequence, shock waves, which are broad-
band and have a high frequency content, can be focused
efficiently. One of the first applications of shock wave
focusing is to lithotripsy, which is now used to treat 85%
of patients with kidney stones [5]. Shock waves, such as
those that generate outdoor noise, can also be undesir-
able. For instance the sonic boom from supersonic flight,
is focused during transonic acceleration [6] thus severely
limiting flight at supersonic speed over land. In linear
wave theory focusing is described by catastrophe theory
[7, 8. The two simplest caustics are the fold caustic and
the cusp caustic. They have universal local diffraction
patterns given respectively by the Airy and the Pearcey
functions. However, shock waves are inherently a non-
linear wave process. Even for weak shock waves, it has
been shown that nonlinear effects play a fundamental role
around the focus, especially in limiting the overall field
amplitude [9]. This has been studied extensively espe-
cially for fold [10, 11] and cusp caustics [12], and for
point focusing with applications to lithotripsy [13].

Compared to compressional waves, shear waves are rel-
atively unstudied because until recently there were no
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experimental methods that were capable of direct obser-
vation. In fluids, for example, a detector, such as a hy-
drophone, can be displaced within the medium to charac-
terize wave propagation at depth. In solids, on the other
hand, detector motion is impossible without disrupting
the medium. Optical techniques that measure displace-
ment have low penetration depths in opaque materials
and would only be suitable for surface waves. The first
observation of shear shock waves was reported in 2003
and it relied on ultrasound, i.e. a compressional wave,
to quantify shear wave motion in gelatin [14]. For quasi-
incompressible media like soft biological tissues or their
phantoms, the elastic compressible parameters (~ GPa)
are 6 orders of magnitude greater than shear parameters
(~ kPa). This results in a difference of 3 orders of magni-
tude between the shear wave speed (¢r ~ 1 m/s) and the
compressional wave velocity (¢ ~ 1500m/s). This dif-
ference in speed is what has allowed the development of
high frame-rate ultrasonic techniques to generate images
of the elastic properties of in wvivo soft tissue [15, 16].
Moreover, the slow speed of the shear waves is advan-
tageous to the investigation of shock waves because the
nonlinear effects are proportional to the square of the
Mach number, which itself is inversely proportional to
cr. Low values of ¢ therefore yield high Mach numbers.

The objective of this article is to present the first exper-
imental observation of shear shock wave focusing. In ad-
dition to being motivated by the fundamental physics of
nonlinear waves, we hypothesize that shear shock waves
may be responsible for certain types of traumatic brain
injuries (TBI). In particular 40 to 50% of deaths from
TBI are due to diffuse axonal injuries which occur deep
inside the brain, away from area of the primary im-
pact [17]. We have recently observed that shear shock
waves are generated and subsequently propagate in the



brain under impact conditions that are quite general [18].
For example, a 35g impact, which is in the concussive
range, propagates nonlinearly in the brain and develops
into a thin, destructive 300g shock front. This highly lo-
calized increase in acceleration suggests that shear shock
waves are a fundamental mechanism for traumatic in-
juries in the brain and in soft tissue.

Shear waves could be focused by the spherical skull
geometry and in the focal region, where the shear ampli-
tude is magnified, shock waves could form locally, gen-
erating injury. This hypothesis is supported by prelimi-
nary results which indicate that the order of magnitude
of measured impact velocities (~ a few m/s or more) for
brain trauma is comparable to the shear wave velocity
and thus results in Mach numbers of order one. Un-
derstanding shear shock wave focusing could therefore
provide insight on the biomechanical environment that
generates TBI’s.

II. EXPERIMENTAL SETUP
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Figure 1. Experimental set-up. A programmable high frame-
rate ultrasound scanner measures shear motion generated by
an electromechanical attached to a cylinder section embedded
in gelatin.

The experimental setup (Fig.1) uses an electromechan-
ical shaker attached to a cylinder section embedded in
gelatin to generate shear waves. A programmable high
frame-rate ultrasound scanner measures motion, . The
water-based gelatin phantom, composed of 3.14% gelatin
mimics the shear and compressional wave properties of
soft tissue. Graphite powder was added with 1% con-
centration to provide acoustical scatterers that can be
tracked with ultrasound. This gel phantom was poured
into a 25 cm by 20 cm by 15 cm rectangular polypropy-
lene container. The 90° arc of a PVC cylinder with a
7.5 cm radius of curvature and a height of 13 cm was
placed in the gel (11 cm inserted vertically within the

gel). The gel was then allowed to set and cool in an
ice-filled water tank. A constant 1°C temperature was
maintained during the experiment to minimize changes in
the mechanical properties. The electromechanical shaker
connected to the cylinder section was used to drive mo-
tion in the vertical direction and generate the linearly
polarized shear displacement.

A 5 cycle 100 Hz sinusoid enveloped by a Chebychev
window was chosen as a driving signal. This signal has a
-80 dB dropoff in the frequency domain which is required
to separate the harmonics as they develop with nonlin-
ear shear wave propagation. An accelerometer, attached
to the cylinder section, indicated that the shaker motion
was linear and that the harmonic generation occurs in the
medium and is not generated by the source. There are
currently no reports that directly measure the in vivo
brain motion during traumatic events. However, esti-
mates of skull or head motion, obtained with accelerom-
eters indicate that the velocity for shear motion can be on
the order of 1 m/s and acceleration can be on the order
of several hundreds of m/s? [19]. We choose three levels
of excitation for our experiment: weak (0.1 m/s), moder-
ate (0.24 m/s) and strong (0.47 m/s) which have a Mach
number (M = vg/cr) of 0.07, 0.17 and 0.33, respectively.
Note that these Mach number are relatively high respect
to the typical Mach number to produce acoustical shocks
(1072) [20].

Gel motion was measured with a custom flash focus
ultrasound sequence that we have previously developed
for shock wave tracking using a programmable Verason-
ics Vantage scanner and a commercial Philips ATL L7-4
probe [18]. The imaging sequence consists of 16 focused
transmit-receive events with an F-number of 4, synchro-
nized with the shear wave generation. Each event has a
constant 6 cm focal depth while the lateral position of
the focus is shifted. In a post-processing stage, a conven-
tional delay-and-sum beamforming is applied to generate,
from each event, 1500 frames of 8 RF lines at a frame rate
of 7692 images per second. All together, the 16 transmit-
receive event produced a stack of beamformed ultrasonic
RF images with 128 lines (4 cm width) each.

The harmonic development of the shock wave is chal-
lenging to measure due to the rapid motion of the gel and
the high motion detection accuracy required to represent
low-amplitude high frequency displacements. A dedi-
cated shock displacement tracking algorithm that uses
the raw ultrasound data was developed for this purpose
[21]. Tt is optimized to track shock waves by using an
adaptive quality-weighted median filter that maximizes
the correlation coefficient in a way that accurately rep-
resents the sharp shock front. Note that in general, due
to absorption, the shock front is not perfectly vertical,
and it is characterized by a significant steepening of the
waveform. Three-dimensional maps of gel motion were
obtained by displacing the ultrasound array in the lateral
y direction with a high precision (10um) robotic arm. It
was assumed that the source motion was uniform in the
vertical direction x, and the measured speed data was av-
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Figure 2. 2D (y,z) maps of the measured maximum velocity (ms~

excitation amplitudes 0.1m/s(1), 0.24m/s(2) and 0.47m/s(3).

eraged over 100 measurement points (3 mm) vertically.
The averaging was performed deep in the gel to remove
unwanted boundary or surface effects. Thus, with the
averaging the 3D data set was converted to 2D maps of
shear displacement in the x direction as a function of y
and z.

III. EXPERIMENTAL RESULTS

Examples of such 2D maps are shown in Fig. 2 for three
shaker excitation levels, ranging from weakly (0.1m/s)
to moderately (0.24m/s) to strongly (0.47m/s) non-
linear. Row (a) shows the maximum velocity maps
maz(v(y, z,t)), row (b) shows the maximum accelera-
tion maxt(a(y, z,t)) maps computed from the velocity
maps with a time derivative based on the Fourier trans-
form,and row (c) shows the maximum velocity maps com-
puted from the simulation (described subsequently). To
improve signal-to-noise ratio (SNR), frequencies above
the 10" harmonic (1000 Hz) were not included in the
derivative calculation because they are beyond the range
of detectability for the ultrasound system. The figure
outlines the shear wave focusing process. The size of fo-
cal spot, about 2 cm long and 1 cm wide, is in general
agreement with expected laws of linear diffraction. Sig-
nificant differences are visible between linear and nonlin-
ear regimes. In the nonlinear cases, wave attenuation is
enhanced relative to the linear case because of harmonic
generation which shifts the frequency spectrum towards
higher frequencies. This increased attenuation is more
pronounced on the axis, where the amplitude is maxi-
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mal, than off axis, which consequently tends to widen
the focal spot (Fig. 2). Moreover, in the highly nonlinear
case, due to the same process of energy being transferred
within the spectrum, strong absorption occurs even be-
fore the focal spot, so that the focal gain is lower than
in the linear case. Compared to the velocity, the focal
spot for acceleration is narrower in width and shorter
axially, i.e. it shrinks as a function of amplitude. This
is due to the steepening of the wave-front from nonlin-
ear propagation that tends to localize high acceleration
[18, 22]. This is a highly nonlinear process because the
input velocity spans a factor of five between the lowest
and highest excitation. However, the velocity at the fo-
cus spans a factor of 3.7 and the acceleration spans a
factor of approximately 12.

The shock steepening is clearly visible in Fig. 3 which
plots the velocity (left) and the corresponding frequency
spectrum (right) measured at y = 0, z = 6cm to illustrate
this nonlinear process. To better visualize the time wave-
form, only the first four central periods of the maximum
velocity are shown. The frequency spectra are normal-
ized by the fundamental frequency at 100 Hz to outline
the harmonic generation. There is a significant nonlinear
wave distortion between weakly nonlinear shaker excita-
tion (0.1 m/s, in 1) and the moderately (0.24 m/s, in 2)
or strongly (0.47 m/s, in 3) nonlinear cases.

In the first, quasi-linear case, the waveform remains
almost sinusoidal with a frequency spectrum centered at
the transmitted 100 Hz frequency, with hardly any vis-
ible energy at the odd harmonics. For the intermediate
case (0.24 m/s) the time waveform steepens, there is a
significant amount of energy at the 3rd harmonic, and a
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Figure 3. Velocity time waveform (four central periods) at ax-
ial position z = 6cm (a) and corresponding normalized spec-
tra (b) for shaker excitation amplitude 0.1m/s(1), 0.24m/s(2)
and 0.47m/s(3). Measurement (black circles) compared to
simulation (red)

small but measurable amount of energy at the 5th har-
monic. For the strongly nonlinear case (0.47 m/s) the
waveform approaches the characteristic shape of a cu-
bically nonlinear shock profile; the positive and negative
shocks are clearly visible. Indeed for the cubic shear non-
linearity, the increase of entropy through a shock implies
that |vy| > |v_| (where v+ and v_ are the velocity just
after and just before the shock). This is unlike compres-
sional waves, which have been studied in far more detail,
and for which there are no negative shocks since the en-
tropy inequality is vy > v_. The specific odd harmonic
frequency spectrum at the maximum excitation, which
has significant amounts of energy at the 3" and 5, is a
direct consequence of the cubic nature of the nonlinearity.

IV. THEORETICAL MODEL AND
SIMULATION

To further demonstrate that measured waves match
the theoretical behavior of purely nonlinear shear waves
with cubic nonlinearity, measurements are compared to
previously established numerical simulations of a nonlin-

ear elastic wave model [22, 23]. In the paraxial approxi-
mation the nonlinear shear wave equation can be written
as:

ov _cr [T 0%v B ov?
&—7 7@TqﬁdT+E8—7—_a(ﬂ*U' (1)

Here ¢y is the linear shear wave velocity, 7 =t — z/cr
is the retarded time measuring the arrival time of an
axial plane shear wave. The cubic nonlinear parame-
ter is 8 = 3(u+ A/2+ D) /(2u), the shear modulus is
pu = pck, and the higher order coefficients of the ex-
pansion of the strain energy using Landau’s invariants
for an incompressible and isotropic solid are written as
A and D [24]. In Eq. (1), left-hand side describes one-
way forward wave propagation in the main axial direc-
tion z, while terms on the right-hand side describe, suc-
cessively, diffraction in the transverse direction y, cu-
bic nonlinearity and absorption. The absorption pro-
cess a(T) * v was assumed to be linear with respect to
the velocity field, though this might be an oversimpli-
fication of the objectivity principle [25]. Absorption in
gels and soft tissues is not purely viscous and it is most
frequently determined empirically via experimental mea-
surements of the wave absorption coefficient in the fre-
quency domain &(w) = F{A}. To compare the sim-
ulations of Eq.(1) with measurements, the absorption
coefficient & was measured for a plane wave excitation
in the linear regime in the frequency range 100-500 Hz.
A best fit with a power law yielded &(f) = 0.0375f%3
Np/m, where f has units of Hz. This is a significantly
lower frequency power than classical thermovsicous ma-
terials (o< f2). The shear wave velocity cr=1.41 m/s
was determined by fitting the arrival times of the fo-
cused signals at axial and off-axis points in the linear
regime (0.1m/s peak excitation). Compared to a simpler
plane wave arrival time method this focused approach has
an improved SNR while minimizing the influence of lat-
eral reflections from a finite aperture. The nonlinear pa-
rameter is difficult to measure directly. The third-order
elastic parameter A can be measured through acousto-
elastic changes of ¢y under a static compression [26, 27].
The fourth-order constant D has been determined from
a nonlinear wave measurement of § [28]. Here this last
approach was modified to account for the focused con-
figuration, and 3 was left as the single free parameter
to fit simulations to experiments. For the simulations
shown in this article, the spatial and temporal stepping
were chosen as dZ = 165,64 um, dY = 250 pm and
dI' = 130 us. This parameter satisfies the stability
relation for MacDonald-Ambrosiano scheme [29]. Note
that, due to the retarded time formulation, the theoreti-
cal model described by Eq.(1) does not directly take into
account the spatially varying cylindrical curvature. To
overcome this geometrical constraint the velocity field
measured in a planar geometry at the first line of the ul-
trasound array was directly used as an input for simula-
tion. At this location the nonlinear effects are moderate
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Figure 4. Measured and simulated maximum total velocity
along the axis (left) and maximum velocity at the third har-
monic frequency (right).

even in the strongest nonlinear case (0.47m/s) because
the propagation distance is relatively short and focus-
ing has not yet occurred. This measured field was then
propagated numerically for different values of nonlinear
cubic parameter 5. A value of § = 2.2 + 0.2 yielded
the best agreement between data and simulations along
the axis as illustrated by Fig. (3) for the velocity time
waveform (zoomed in on the four central periods) at the
focal position (y = 0,z = 6¢m). For the low amplitude
case, the nonlinear effects are negligible, the waveform is
almost sinusoidal and as expected the numerical simula-
tions are insensitive to 8. For the two other cases, there is
a large nonlinear distortion leading to waveform steepen-
ing (0.24m/s) and shock wave formation (0.47m/s). The
selected value 8 = 2.2 4+ 0.2 provides a very good agree-
ment in both cases, thus indicating that the wave evolu-
tion is clearly dominated by cubic nonlinearities. Note
that in Fig. 3, b3 there are some spectral fluctuations in
the measured results that are subsequently propagated
by the simulations. This may be an indirect consequence
of the large driving amplitudes which may arise from sur-
face waves, or deviation from the initial assumption of
a purely polarized shear waves geometry. However ac-
celerometric measurements indicate that the initial con-
dition generated by the shaker were in fact linear.

The maximum velocity maps calculated by these sim-
ulations (Fig. 2 row (c)) show excellent agreement with
experiments (Fig. 2 row (a)).

The measured and simulated maximum total velocity
along the axis and the maximum velocity at the third
harmonic frequency (Fig 4) are also in close agreement.
Slight differences in the third harmonic in the strong non-
linear case (0.47m/s) may reflect the limits of theory that

is formally valid only for small Mach number, whereas in
this case the Mach number reaches 0.38 at the focus.
The total axial velocity has a focal spot near 58 mm
with a weak dependence of this spot on the amplitude.
However, for the third harmonic velocity, the focal dis-
tance depends more strongly on the driving amplitude,
decreasing as the amplitude increases. This focal length
shortening is analogous to the same classical observation
in nonlinear acoustics [30].
V. DISCUSSION AND CONCLUSION

Previous reports of shear shock waves for a planar
source show that the peak third harmonic amplitude oc-
curs between a distance of 12.5 and 20.1 mm [14]. In the
brain this third harmonic peak is between a distance of
5 and 7 mm [18]. Due to experimental constraints from
the cylindrical geometry, the z-axis in Fig. 4 starts at 30
mm. For the large amplitude case (0.47m/s), between 30
and 42 mm, the third harmonic amplitude decreases, and
then after 42 mm if starts increasing again as the shear
wave converges to the focus. Nevertheless accelerometric
measurements indicate that the third harmonic ampli-
tude at z = 0 is negligible. We therefore hypothesize
that there is a peak which not visible in the plots. Then,
for the highly nonlinear case there is an initial rise in the
third harmonic from near-field plane wave-like behavior
then a decrease in the third harmonic from dissipation,
followed by a second rise from focusing, and finally a sec-
ond decrease from dissipation.

Thus, Fig. 4 indicates that three regimes, in terms of
shock development, can be identified. First, at low am-
plitudes the attenuation dominates over nonlinearity and
a shock is never formed. Second, at intermediate ampli-
tudes the shock forms at the focus due to the increased
amplitude from focusing and the rate of accumulation of
nonlinear steepening with propagation. Finally, at high
amplitudes, the shock forms before the the focal point
and at the focus.

In summary this first experimental observation of shear
shock wave focusing in a soft solid shows good agreement
with nonlinear elastodynamic theory. Though performed
in vitro with a biological phantom (gel), the present ex-
periment scales realistically, in terms of geometry, am-
plitude and frequency, with the human skull and brain.
These results suggest that the skull geometry could am-
plify high intensity mechanical effects deep inside the
brain, and may play a significant role in traumatic brain
injuries such as diffuse axonal injuries.
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