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This study investigates the occurrence of acoustic topological edge states in a 2D phononic elastic
waveguide due to a phenomenon that is the acoustic analogue of the quantum valley Hall effect. We
show that a topological transition takes place between two lattices having broken space inversion
symmetry due to the application of a tunable strain field. This condition leads to the formation
of gapless edge states at the domain walls, as further illustrated by the analysis of the bulk-edge
correspondence and of the associated topological invariants. Interestingly, topological edge states
can also be triggered at the boundary of a single domain, when boundary conditions are properly
selected. We also show that the static modulation of the strain field allows tuning the response of
the material between the different supported edge states. Although time reversal symmetry is still
intact in this material system, the edge states are topologically protected when inter-valley mixing
is either weak or negligible. This characteristic enables selective valley injection which is achieved

via synchronized sources strategy.

I. INTRODUCTION

Topological acoustics has rapidly emerged as a new
and fascinating branch of physical acoustics. Follow-
ing the groundbreaking research in solid state physics,
which showed the existence of topological states of mat-
ter [1, 2], researchers have been able to formulate the
acoustic analogue of selected mechanisms [3-12]. During
the last decade, several studies have investigated topolog-
ical materials based on broken space-inversion symmetry
(SIS). In electronic materials, SIS was broken using differ-
ent methodologies including graphene-like lattices with
staggered sublattice potentials [13-17], strained graphene
[18], and multi-layered graphene under externally applied
electric fields [19-25]. The effect of the asymmetry is that
of opening a gap at the original Dirac cone, associated
with the hexagonal lattice structure, in which edge states
are supported. These edge states cannot be explained by
the quantum Hall effect (QHE) mechanism. In fact, as
TRS is intact the lattice still possesses a trivial topology
within the context of QHE [1, 26, 27]. However, due to
the large separation of the two valleys in k-space, valley-
dependent topological invariants can be defined and used
to classify the topological states of the different lattices.
This approach, usually referred to as quantum valley Hall
effect (QVHE), was recently investigated for application
to fluidic acoustic waveguides [9, 12], as well as for elastic
plates with local resonators [28, 29].

In the present study, we consider the dispersion
and propagation behavior of a topological elastic
phononic waveguide assembled from a truss-like unit cell
(Fig. 1(a)). Compared to previous studies [28, 29|, we
take a fully continuum modeling approach which pro-
vides a general methodology of analysis and allows map-
ping the topological behavior all the way back to the
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massless (or massive, when SIS is broken) Dirac equa-
tion. An in-depth study of the occurrence of edge states,
either at domain walls or at the lattice boundaries, is
also presented. The analysis addresses both the topo-
logical significance of the different edge states as well as
their lossless behavior. Despite the weak topological na-
ture of the QVHE, we show that selective valley injec-
tion can be obtained by a synchronized source approach
which is able to target specific eigenstates. In addition,
we show tunable and reconfigurable capabilities of the
topological medium. Starting from an initial hexagonal
Dgy, lattice symmetry, the symmetry level can be tuned
using an external static actuation which allows real-time
tuning of the edge states (i.e. of the corresponding topo-
logical bandgaps) as well as a complete reconfiguration
of the lattice from a regular phononic material to a tun-
able topological medium, and viceversa. Note that, in
this study, we are mostly concerned with the analysis of
the physical behavior of the medium and of its tuning
capability and we do not concentrate on the practical
details of the implementation of the tuning mechanism.
Nevertheless, we note that the local perturbation could
be practically implemented by using, as an example, me-
chanical or thermal loads. In the following, we assume
that an isostatic pressure could be applied on the side
walls to produce the deformation necessary for the topo-
logical phase transition.

The individual trusses forming the lattice are assumed
made out of aluminum, and having width w = 0.1a, and
thickness ¢ = 0.05a where «a is the lattice constant. The
fundamental lattice structure clearly exhibits SIS with
inversion axes located at the nodal points. The lattice is
then deformed by applying an internal pressure dp that
lowers the symmetry to Dsj. The equivalent force pro-
duced by the dp is locally normal to the individual truss
element as shown in Fig. 1(d). The application of either
a positive or a negative pressure dp results in two differ-
ent deformed states of the lattice that for simplicity we
label as a- and fS-states (Fig. 1(b),(c)), respectively. In



these states, the SIS is broken and the states o and 5 are
inverted images of each other, that is they turn into each
other as dp switches sign.
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FIG. 1. Schematic illustration of the lattice geometry. (a)
The reference crystal (unstrained) consisting of an aluminum
truss-like hexagonal lattice having SIS. The dashed black line
indicates the primitive Wigner-Seitz cell. (b, ¢) The deformed
a- and (-lattices obtained upon application of internal pres-
sure. In both configurations SIS is broken. (d) The red and
blue arrows show the equivalent forces produced by dp. To
improve the visualization, the deformation shown in (b), (c)
is magnified by a factor of 5 with respect to the actual defor-
mation produced by dp = 20 MPa.

We will use a combination of theoretical and numeri-
cal tools to show in the following that 1) the evolution
from a- to S-state (and viceversa) is accompanied by a
topological phase transition, and that 2) when a phononic
system is obtained by assembling the two phases, an edge
state is supported along the domain wall (DW, i.e. the
interface between the a- and -state). We note that these
edge states can be created and modulated at the bound-
ary of a single lattice by selecting proper boundary con-
ditions and by tuning the internal pressure.

II. TOPOLOGICAL BAND STRUCTURE
ANALYSIS

A. Phononic band structure

For a unit cell in prestrained conditions, the numerical
analysis can be divided in two parts: 1) a nonlinear static
analysis to calculate the state of displacement ug, stress
So, and strain €p induced by the applied pressure load,
and 2) a linear wave propagation analysis around the
pre-stressed equilibrium state.

In our analysis, the pre-stressed state was calculated
using finite element analysis and used as input for the
linear wave analysis. The wave propagation in the pre-
stressed medium can be studied as a linear small oscilla-
tions problem u’e™? around the new static equilibrium
ug. The total displacement can then be expressed as
u(t) = ug+u’e™’. Under these conditions the linearized
wave equation is given by

0%u

PW =-V-P, (1)

which is readily rewritten as:

—pwtn’' = -V . P, (2)

where p is the mass density, P = (Vu + I)s is the
first Piola-Kirchhoff stress tensor, s is the second Piola-
Kirchhoff stress tensor with s =sg + C : (€ — €y), where
C is a 4 order elasticity tensor, sp and €y are the ini-
tial stress and strain, respectively, and the differential
operator V is taken with respect to the material frame.
Solving the k-dependent Bloch eigenvalue problem yields
the phononic band structure and the eigenstates. The
above described model was assembled and solved using
the commercial finite element software COMSOL Multi-
physics.

The frequency dispersion is normalized by the bulk
shear wave speed in aluminum c over the lattice constant
a. Note that the current system is effectively a flat waveg-
uide that admits Lamb guided modes (symmetric S and
antisymmetric A), as well as shear horizontal SH modes.
In this study, we concentrate only on A modes (flexural
modes) that are those more naturally excited in plate-
like structures under external excitation. Other modes
are filtered out based on the particle motion polarization
of the mode shapes. The value of the pressure perturba-
tion dp = 20 MPa was chosen in order to achieve large
deflections without inducing plastic deformations. Note
that, because the lattice was designed based on slender
members, it can easily accumulate large deflections while
maintaining small strain levels.

Fig. 2 (a) and (b) show the band structure of the flex-
ural modes of the lattice with dp = 0 (intact SIS) and
dp = 20 MPa (broken SIS), respectively. Note that the
two lattices in states a and 8 have identical band struc-
ture (Fig. 2 (b)) since they are simply spatially inverted
versions of each other and with intact TRS.
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FIG. 2. Phononic band structure of (a) the undeformed lattice
(shown in Fig. 1 (a)), and of (b) the a- (or 8-) lattice (shown
in Fig. 1 (b) and (c)). An incomplete bandgap opens up at
the original Dirac point as SIS is broken. The inset in (a)
shows the comparison between the numerical dispersion data
(black dots) and the dispersion predicted by the k - p method
(red lines) near the Dirac point.

The analysis of the dispersion properties in Fig. 2 (a)
reveals the existence of a degeneracy at the K point from
which locally linear dispersion curves emanate. This dis-
persion structure, known as the Dirac cone (DC) [30],
is protected by the lattice configuration. However, when
SIS is broken (Fig. 2 (b)), the degeneracy is lifted and the
initially degenerate modes can separate and give rise to a
local bandgap. It is the adiabatic evolution of this specific
dispersion structure under small perturbations that en-
ables the generation of topological edge modes. We will



show that the dispersion near the valleys in either the
reference or the perturbed configuration can be mapped
into a massless or a massive Dirac equation, respectively.
Before proceeding, we should also note that the current
configuration produces an incomplete bandgap (Fig. 2b).
In principle, a complete bandgap could be obtained by
optimizing the lattice geometric parameters [7], however
we will show that the valley-dependent design is fairly
robust and does not strictly require a full bandgap.

As established above, the process of lifting the degener-
acy and opening the bandgap is connected to the applied
pressure perturbation within the cell. Fig. 3 (a) and (b)
show the evolution of the gap bounds as well as of the
width of the gap as a function of the applied pressure
op. An average upward shift of the frequency is observ-
able in the gap bounds as |[dp| increases. This behavior
is directly related to the stress stiffening effect produced
by the geometric nonlinear deformation of the cell. The
analysis of the gap width indicates that the gap vanishes
and reopens as dp crosses zero, therefore suggesting a
topological phase transition in the dp-space.
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FIG. 3. Effect of the applied perturbation dp on (a) the evo-

lution of the upper and lower bounds of the bandgap, and (b)

the gap width.

B. Berry curvature and valley Chern number

The evolution of the bandgap as a function of dp sug-
gests that, a lattice obtained by connecting a and f
domains should experience a topological phase transi-
tion associated with a vanishing gap occurring exactly
at the DW. The topological nature of this transition
can be characterized using a topological invariant, that
is the Chern number C,, (module 27). The parame-
ter C, is obtained by integrating the Berry curvature
Qn(k) = Vi x (u,(k)[iVi|u,(k)) - 2 of the n*® mode
throughout the first Brillouin zone. For our system,
C, is expected to be zero due to an odd distribution
of the Berry curvature in k-space, which should be ex-
pected given TRS is preserved [1, 26, 27]. It follows that
these lattices are classified as trivially gapped materi-
als in the context of QHE systems. Nevertheless, for
small SIS breaking, the Berry curvature is highly local-
ized at the valleys, and the local integral of the Berry
curvature converges quickly to a non-zero quantized value
[13, 23]. This local integral is often referred to as the val-
ley Chern number C,, of the n'? band and it is defined as

27C, = [ Q,(k)d*k, where the integral bounds extend
to a local area around the valley. The right hand side
of this equation is also referred to as topological charge.
Previous studies in electronic systems [15] have shown
that this quantized value has important implications be-
cause it characterizes the bulk-edge correspondence. In
fact, the difference between the valley Chern numbers of
the upper (or lower) bands of two adjacent lattices indi-
cates the number of gapless edge states expected at the
DW.

Numerical integration of the Berry curvature shows
that each valley of either the - or [-lattices carries
a topological charge of magnitude m. The two lattices
clearly exhibit Berry curvatures of opposite signs. It fol-
lows that, for the upper mode of the valley K, the valley

Chern numbers are —% for the a-lattice and —|—% for the

[B-lattice. The difference |C1(,a) - CZS’Q )| = 1 indicates the
existence of a single gapless edge state at the DW between
the a- and S-lattices. Fig. 4(a) shows the calculated dis-
persion surfaces of the flexural modes of the a-lattice near
the valley K. Fig. 4(b) shows the Berry curvature cor-
responding to the upper mode. Equivalently, the lower
band carries a Berry curvature of opposite sign.
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FIG. 4. (a) The dispersion of the flexural A modes of the
a-lattice near the K valley. (b) The corresponding Berry
curvature of the upper mode.

IIT. DOMAIN WALL EDGE STATE

There are two possible configurations of the DWs be-
tween the a- and S-lattices, that is « above 8 (+y) or
viceversa (see Fig. 5 (a) and (b)). These two configura-
tions are not equivalent, and are dominated by a mirror
symmetry with respect to either DW1 or DW2. As a di-
rect consequence of the mirror symmetry, the edge states
propagating along the DWs can be either symmetric or
anti-symmetric (with respect to the DW interface).

This symmetry was exploited in order to reduce the
size of the finite element model. In particular, we built
an a-state superlattice ribbon made of 37 triangular sub-
cells stacked along the y-direction (see the red part in
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FIG. 5. (a) Lattice structure and (b) schematic illustration of
the two possible DW configurations based on the a- and f-
lattices. Each DW allows propagation of an edge state for
each valley index. (c) Dispersion curves in a superlattice
ribbon containing 37 triangular subcells of a-lattices stacked
along the y-direction, with symmetric boundary conditions.
The colorbar denotes the y-position of the centroid of the su-
perlattice weighted by the strain energy density: modes in
blue color are edge states at DW1, while modes in red indi-
cates edge states at DW2. (d, e) Full field simulations of the
edge states along a straight and an arbitrary-shaped DW.

Fig. 5 (a)) and having a length of about 64a. Then,
either symmetric or anti-symmetric boundary conditions
along DW1 or DW2 were applied to simulate the presence
of the (-state ribbon. The model was solved to get the
Bloch eigenvalues and eigenvectors. Results show that
the edge state at DW1 is anti-symmetric, while at DW2
it is symmetric. Fig. 5 (c) shows the dispersion relation
of such a ribbon structure.

The colorbar denotes the y-position of the centroid of
the superlattice weighted by the strain energy density.
The blue color indicates edge states at DW1 while the
red color indicates edge states at DW2. The two modes
have equal and opposite group velocities but since they
are supported by the two different edges of the lattice
they cannot couple. In addition, if inter-valley mixing
is neglected (due to large separation in k-space between
the K and K’ points), these edge states are immune to
back-scattering. Note that this assumption is well veri-
fied in the absence of short range disorder. We highlight
that this dynamic behavior is effectively equivalent to
the quantum spin Hall effect in topological insulators [1]
if the spin index is replaced by the valley index.

In order to further characterize the egde modes, we
performed full field numerical simulations. In particular,
we simulated the steady-state response of two different
DW shapes (i.e. straight and arbitrary) under a point ex-
citation. Low-reflecting boundaries were used all around
the model to suppress reflections. In both cases, results
show that the edge states are well concentrated near the
DWs and are guided along the wall itself (Fig. 5 (d),(e)).

IV. SEMI-ANALYTICAL APPROACH

Although the band structure and the valley Chern
number were accurately calculated via a numerical ap-
proach, it is still useful to introduce a semi-analytical
model to further analyze the effects of SIS-breaking on
the phononic waveguide. Starting from the (undeformed)
reference lattice configuration which still preserves SIS,
the k - p perturbation approach [31] can be used to show
that the linear dispersions at the valleys can be mapped
to a massless Dirac equation. The method allows obtain-
ing approximate solutions to the governing equations by
using the degenerate modes as fundamental basis of an
expansion process. In this method, the origin of the k-
axes is shifted to the degeneracy by letting q = k — K
(or k — K’) and v = w — wp. Hence, the problem of de-
termining the dispersion relations v—q is cast in the form
of a 2 x 2 eigenvalue problem associated to the following
Hamiltonian:

H(q) =vyq- 7 (3)

where v, is the group velocity, and ¢ = (01, 02,03) are
Pauli matrices. The Hamiltonian maps to the massless
Dirac equation associated with locally linear dispersion.
By extracting the eigenstates from the previous simula-
tions, we can numerically confirm that the group velocity
vy = £0.138¢ obtained from the k - p method matches
well with the tangent slopes of the exact dispersion data
obtained from numerical calculations (inset Fig. 2 (a)).
When SIS is broken by the application of a pressure
perturbation dp, the degeneracy at K (or K’) is lifted, the
modes become non-degenerate, and a gap opens up. It is
well-known that breaking SIS introduces a o3-component
into the Hamiltonian that can be expressed as [1, 26]:

H(q) =vyq- 7+ mos (4)

It represents the Hamiltonian of a massive Dirac equa-
tion which we show applies also to our specific lattice
structure:

Since the SIS-breaking perturbation is small, it can be
expressed as a perturbation of the massless Hamiltonian,

H(q) = vgq -G+ 7, (5)

where we assumed a general perturbation that poten-
tially contains all the four Pauli matrix components
(¢ = [o1,02,03]) as well as the identity matrix og. At
the K (or K’) point (q = 0), the Hamiltonian reduces to

1(0) = 1 - 5. (6)

Let u‘f)Q be the two degenerate modes of the undeformed
lattice and uf 5 be the two non-degenerate modes of the
deformed lattice, at ¢ = 0. These modes are available
from the numerical calculation of the band structure. By
performing the inner product

i

L = u? u?dgr, (7)

unit cell



it is seen that matrix I is diagonal (or anti-diagonal, de-
pending on the numbering of the modes), which implies
that #(0) = m - & is also diagonal. This means that the
perturbation term can only contain o¢ and o3 compo-
nents, at most. In particular, the splitting of the eigen-
frequencies is connected to the o3 component while the
average upward shift of the bands (as a function of dp) is
connected to the ogp component. Note that the oy term
does not affect either the eigenvectors or the topological
properties, hence it can be omitted in the Hamiltonian.
The above arguments confirm that the Bloch eigenvalue
problem of the SIS-broken lattice can be mapped to the
massive Dirac equation (Eq. (4)).

The bulk dispersion is then given by v(q) =
+4/|vgql? + m? with a gap equal to 2|m|. From the
numerical results in Fig. 3 (b) we find that |m| =
0.000795MPa~16p, where dp is expressed in MPa.

The corresponding Berry curvature, associated with
the evolution of the eigenvectors in k-space, has a distri-
bution sharply peaked at the two Dirac points,

1 _3
Q(a) = grmug(la®vg +m?*)"2, (8)

where 7 = £ allows simple labeling of the two valleys
K and K’. Integrating Eq. (8) gives the valley Chern
number C, = %ngn(m). Under TRS, mx = myg for
either a lattice o or 8, and m(® = m at the same

valley. Thus |C§a) — Cl(,ﬁ )| =1 is always true. Hence, we
can conclude that there is one gapless edge state living
on the DW connecting the two lattice o and f.

V. EDGE STATES AT EXTERNAL
BOUNDARIES

The topological phase transition illustrated above can
be obtained also at the boundary of an individual lattice
when proper boundary conditions are selected. The two
specific boundary conditions considered in this study are
traction-free and fixed. Each boundary condition can be
applied on the top (4+y) and bottom (—y) boundaries of
the ribbon (either in a- or f-state), hence resulting in
a total of eight possible configurations (Fig. 6 (a)-(d)).
However, since the a- and §-lattices are inverted images
of each other, a given boundary condition on the edge
of an a-ribbon corresponds to the inverted image of the
same boundary condition on the opposite edge of a (-
ribbon, therefore yielding only four different edge disper-
sions (for example, see the pairs (a)/(c) and (b)/(d)) in
Fig. 6. Note that, although they have the same edge
dispersion, the valley indexes interchange.

Not all the four groups of boundary conditions yield
edge modes. Only the two edges of the ribbon § in Fig. 6
(a) (or the edges of ribbon « in Fig. 6 (c)) have propa-
gating edge states, as shown in Fig. 6 (e). The other two
groups (Fig. 6 (b) and (d)) do not support edge states
(Fig. 6 (f)). Note that in both cases (Fig. 6 (e) and (f))
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FIG. 6. (a-d) Schematic of the four different boundary con-
figurations involving fixed and traction free conditions on the
top (+y) or bottom (—y) boundaries of the a- or S-ribbons.
The configurations (a) and (c) yield two edge states associ-
ated with the dispersion shown in (e). The two boundary
conditions in (b) and (d) do not yield topological edge states,
as shown in (f).

there are localized modes near the free edge whose dis-
persion curves run along the bulk bands corresponding
to the faster flexural branch. These modes have no topo-
logical significance and they are effectively surface-like
waves with depth of the same order of the wavelength,
which will be discussed in detail in a later section. These
results can be explained by identifying the similarity be-
tween the dynamic behavior imposed by the boundary
conditions and the DWs, respectively.

Recall that DW1 supports an anti-symmetric edge
state. Anti-symmetry requires u -t = 0 on the interface,
where t is any tangent vector to the interface, therefore
having the direction of either x or z. To satisfy the anti-
symmetry condition u, and u, must be zero, while the u,
component are non-zero. The A modes, under consider-
ation in this study, exhibit particle displacement mostly
dominated by the u, component. When a fixed boundary
condition is imposed along the edge, the particle displace-
ment u is set to zero therefore resembling the behavior of
the anti-symmetric interface. On the other hand, DW2
supports symmetric edge states. At the interface we have
u-y = 0, without restriction on u,. Similarly to the dis-
cussion above, the traction free boundary condition will
allow u, therefore behaving more closely to a symmetric
interface.

As a result, each of the fixed boundaries in Fig. 6 (a)
and (c) (note that this figure is equivalent to Fig. 5 in the
main text; here reported for convenience) is dynamically
equivalent to half of the DW1. This boundary config-
uration supports edge states similar to those observed
along DW1, but without connecting the two continuous
bulk bands (i.e. the red modes in Fig. 6 (e)). Similarly,
each of the free boundaries in Fig. 6 (a) and (c¢) supports
an edge state that does not cross the bandgap. On the
contrary, the other two groups of boundary conditions



(Fig. 6 (b) and (d)) break the similarity with the DWs,
therefore the edge states are strongly suppressed.

Full field numerical simulations confirmed this behav-
ior and showed that edge states can be excited on the
fixed edge on the top of an a-ribbon, but they cannot
be excited under equivalent conditions in a S-ribbon (see
Fig. 7 (a) and (b)). These two conditions correspond to
the fixed edges in Fig. 6 (c¢) and (b), respectively.

(b) Source

FIG. 7. Full field numerical simulations showing that (a) edge
states can be excited on the fixed edge on the top of an a-
ribbon, while (b) they cannot be excited at the same position
in a B-ribbon.

VI. LOSSLESS EDGE STATES

The results above deserve some further discussion to
clarify why the edge states can be excited independently
from the bulk states existing at the same frequency. Due
to the lack of a full bandgap, when a point excitation is
placed at the domain wall, both bulk and edge states can
potentially be excited. However, two factors contribute
to make the edge states predominant compared to the
bulk states. First, the bulk states amplitude decays as
1/r from the source, while the edge state amplitude re-
mains constant. Second, since the lattice is inhomoge-
neous, the mode shapes of either the bulk or the edge
states have non-uniform distribution over the unit cell.
If a point source is located at the point where the edge
state has the largest displacement amplitude, most of
the input energy will be injected into the edge rather
than the bulk state. In Fig. 7 (b) if the edge state was
suppressed, the long wavelength ripples of the bulk state
would be visible. In summary, both states exists but their
large separation in k—space allows selective excitation of
the edge states. In a similar way, if a distributed source
was used other than a point source, the valley injection
could still be achieved by targeting a selected wavenum-
ber that supports strong edge modes. This result could
be achieved by using excitation methods such as comb
transducers.

In addition, it can be shown that the edge state propa-
gates without loss. At the frequency of the edge state, we
calculate the equi-frequency contour (with the z-axis is
aligned with either the edge, the DW, or the boundary) of
the faster bulk state which is indicated by the solid curve
in Fig. 8. The curve shows an almost circular profile for
the propagating bulk state while the dashed line indi-
cates the imaginary kyuik,ya component corresponding to

an arbitrary large k,a beyond the circle. This is equiva-
lent to a conventional slowness diagram, but different by
a constant factor a/w. When the edge state propagates
and induces bulk wave scattering, the k,a component
must be conserved, that is ||Kedge|| = kbuik,e. Clearly
since the bulk state is faster, there exists no kpu on the
solid curve satisfying this condition. The scattered bulk
state then has a complex wavevector with purely imag-
inary k, component as illustrated graphically in Fig. 8.
This means that the scattered bulk wave is evanescent
along y-direction and travels with the same speed as the
edge state along z-direction. As a result, the edge state
is lossless and it does not necessarily require a bulk band
gap as long as the bulk state is faster (in terms of phase
velocity) than the edge state at the same frequency.
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FIG. 8. The equi-frequency contour of the bulk state hav-
ing the z-axis aligned with the edge (DW or boundary) at
the edge state’s frequency. By imposing the conservation of
the wavevector component parallel (k) to the interface and
providing that the bulk state is faster that the edge state, re-
sults in scattered waves towards the bulk that are evanescent
in the normal (ky) direction and therefore the edges state is
non-leaky.

VII. TUNING THE BOUNDARY EDGE STATES

In addition to the effect of the boundary conditions,
adjusting the pressure of the outermost cells (those close
to the boundary) can significantly tune the edge state
dispersion. Yao et al. [15] showed that on a graphene sys-
tem with staggered sublattice potential, the edge states
dispersion can be controlled by the on-site energy on the
boundary cells. Similarly, in our system the phononic
edge states dispersion can be manipulated by tuning the
pressure of the outermost row of lattice. From the dis-
persion curve (Fig. 6 (e)), we observe that the edge state
develops from the bulk band near the valley and as k,, in-
creases the edge state localizes more sharply on the edge.
At kya = m, the energy is mostly confined in the out-
ermost row of the lattice, therefore controlling the edge
state requires tuning the outermost cell properties. For
our phononic waveguide, a general trend can be estab-
lished observing that a positive pressure on the outer cells
tends to increase the edge state frequency at k,a = ,
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FIG. 9. (a, b) Edge states at the fixed and free edge when
the outer cell pressure is set to dp, = +2.5/0p| and —2.5|dp|,
respectively. The edge states can be tuned to bend towards
either the top or the bottom bulk bands. (c, d) Edge states
at the fixed and free edge when the outer cell pressure is set
to 0po = —2|0p| and +2|dp|, respectively. The edge states
become flat bands.

while a negative pressure tends to decrease it. This sug-
gests that the edge state dispersion can be tailored by
controlling the local pressure in the edge cells.

Numerical results in Fig. 9 show that a combination of
boundary conditions and local pressure allows tuning the
edge states to either a partially gapped band, a gapless
band, or a flat mode. As an example, by setting the outer
cell pressure to 0p, = +2.5[0p| near the fixed edge (cf.
Fig. 6 (c)) the dispersion curve of the edge state bends
up towards the top bulk band (Fig. 9 (a)). Similarly,
by setting the outer cell pressure to dp, = —2.5|0p| near
the free edge (cf. Fig. 6 (a)) the dispersion curve bends
down towards the bottom bulk band (Fig. 9 (b)). Flat
bands can also be obtained (Fig. 9 (¢) and (d)) by ap-
plying 0p, = 2|dp| and —2|dp| in the previous two cases,
respectively. For the two cases supporting the gapless
edge states crossing the gap, the pressure applied on the
outer cells has different sign from the bulk lattice. This
situation is somewhat equivalent to introducing a DW
on the boundary and it results again in the occurrence
of gapless edge states due to the contrast between bulk
topological charges.

A. Discussion of the non-topological edge state

These results deserve some additional discussion con-
cerning the dispersion of the traction-free edge (Fig. 6 (e),
(f) and Fig. 9 (b), (d)). Note that the dispersion curves
highlight the existence of a localized mode near the free
edge, which develops along the bulk band corresponding
to the faster flexural branch. These parts have no topo-
logical significance and they are effectively surface-like
waves with depth of the same order of the wavelength.
To clarify this aspect further, consider a fin-like elastic

waveguide with thickness ¢ and width b. The fin can be
thought as a continuum version of our phononic ribbon
without the lattice structure. It is well-known that as
kb > 1 the fundamental flexural mode develops into a
surface wave (Fig. 10). This is similar to the Sy and
Ap Lamb modes evolving into Rayleigh surface modes as
kt — oo. Therefore, this edge mode has no topological
significance as confirmed also by the zero Berry curvature
being associated with the bulk bands. Nevertheless, there
is strong coupling between this mode and the topologi-
cal edge states propagating along the same traction-free
edge. To clarify the interaction between these two edge
modes, we can plot again the results of Fig. 9 (b) with an
emphasized nonlinear color scheme in Fig. 11. The gap-
less topological edge state and the non-topological edge
state meet at the upper left of the cone, and there is
a strong level repulsion indicating hybridization. When
they enter the continuous bulk band of the other, they be-
come strongly leaky due to the coupling with bulk modes.
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FIG. 10. Cross-section view of the mode shapes of a fin-like
elastic waveguide with thickness ¢t and width b, at kb = 0 and
kb = 157. The fundamental flexural mode develops into a
surface wave as kb > 1.
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FIG. 11. Results of Fig. 9 (b) plotted using a nonlinear color
scheme based on the particle displacement. This plot clarifies
the interaction between the two edge modes. The gapless
topological edge state and the non-topological edge state meet
at the upper left of the K point, and experience a strong
repulsion which indicates mode hybridization. When both
modes enter the continuous bulk band, they become leaky
waves due to the coupling with the bulk modes.

VIII. SELECTIVE VALLEY-INJECTION AND
EXCITATION OF ONE-WAY PROPAGATING
EDGE STATES

Finally we show that, despite the TRS remains intact,
the two valley-dependent edge states can be excited in-
dividually therefore giving rise to one-way propagation.



Since the two valley edge modes are largely separated in
momentum space, the coupling between them is vanish-
ingly small. This means that accurate valley-injection
can be achieved by using a source having a stronger cou-
pling with one of the two valleys. This selective coupling
can be obtained using a set of two point-sources having
a carefully controlled phase difference. The procedure is
explained here below.

As discussed and shown in Fig. 5 (c¢) and Fig. 9, edge
states can have positive or negative group velocity near
a valley depending on the DW configuration (or, equiva-
lently, on the boundary conditions). Each of those modes
has its time-reversed counterpart defined around the op-
posite valley (Fig. 12). The edge state associated with
the valley K = (3X,0) (in reciprocal space) maps to
kya = —27/3 in the first Brillouin zone of the superlat-
tice. For simplicity, we denote this state as K-polarized
edge mode. Similarly, we indicate its TR counterpart at
kya = 27 /3 as the K'-polarized edge mode, as shown in
Fig. 12. Note that the term polarization is not used here
to classify the particle velocity, but instead to indicate
the coupling with a specific valley. This situation sug-
gests that, although both the polarized modes exist at
the same frequency, they can still be selectively excited
by a source that is polarized in favor of a specific valley.

(a) w
K—polarlz\ ‘ / K’'-polarized
S 23 w3 0 w3 2m3 n

(b) w
K—polarlze/ ‘ \ polarized
v —om3 w3 0 w3 23

FIG. 12. Edge states can have positive or negative group ve-
locity near a valley depending on either the DW configuration
or the external boundary conditions. Each state has its own
time-reversed counterpart defined around the opposite valley.
The edge state around kza = —27/3 is associated with val-
ley K and it is denoted as the K-polarized edge mode. Its
TR counterpart around kya = 27/3 is denoted as the K'-
polarized edge mode.

Consider a K-polarized edge mode (k,a = —27/3),
the associated displacement field is a Bloch wave func-
tion uk (z) = Gk (z)e”?7*/3% where ik a periodic func-
tion of period a. When selecting two points, in physi-
cal space, on the DW (or on the boundary) such that
their positions differ by a distance a (for example, x and
x + a, see Fig. 13(a)), then the Bloch function must sat-
isfy uk (z+a) = uk (z)e~7/3. In other words, the phase

of the particle displacement at x + a differs from that at
x by —%w. Similarly, a phase difference of —|—§7r would be
obtained for the K’'-polarized edge mode.

Fig. 13 shows a schematic view of both the point forces
and the displacement vectors in a complex plane, where
the single arrows represent the forces and the double ar-
rows represent the particle displacements.

Assume a harmonic point force applied at position x.
Without loss of generality, we can use this point as refer-
ence for the phase calculation, that is we assume that the
force f(z) is in phase with the displacement u(z) at po-
sition z (red arrows in Fig. 13(a)). In this case, the force

(:c) contrlbutes an equal amount of energy per period
Stz (z)dt (or, equivalently, [.f(z) - uk:(x)dt) to
both the K— and the K’-polarized modes. Next, we apply
a second harmonic point force at position = + a with a
phase difference designed to target a specific valley injec-
tion. As an example, if the phase difference is selected
as —m/3 (single blue arrow fx (z + a) in Fig. 13(c)), the
K-polarized mode will be excited because the force pro-
duces an additional 0.5 unit of energy on the K-polarized
mode. However, this same force produces a negative unit
of energy on the K’-polarized mode which, ultimately,
eliminates the energy done at x by the first point source.
Similarly, a phase difference of +7/3 (the single yellow ar-
row fx/ (z + a) in Fig. 13(c)) creates a pure K’'-polarized
mode. In general, we observed that a phase difference
of —27/3 (27/3)is the most efficient to generate a K-
polarized (K'-polarized) mode, since the source is per-
fectly aligned with the mode polarization therefore ap-
plying two units of energy to the target mode. However,
in this case 0.5 unit of energy would be done on the K'-
polarized (K-polarized) mode as well, hence resulting in
a polarization ratio of 0.8. In general, either one of the
two approaches described above will be effective in trig-
gering a specific edge state, therefore the preferred exci-
tation strategy could be selected based on the capability
to drive a specific mode in a given material configuration.

Full field numerical results are shown in Fig. 14 (a, b)
for the propagation along the DW and in Fig. 14 (¢, d)
for the fixed boundary. Both cases were obtained using
a phase difference of +27/3. The point force sources
were applied in the direction normal to the plate and low
reflecting boundaries were used all around the model to
suppress reflections.

IX. CONCLUSIONS

In conclusion, we presented the design of a tunable
topological elastic phononic waveguide based on the
acoustic analog of the QVHE. The lattice structure ex-
ploited SIS-breaking while preserving TRS, hence result-
ing in a weak topological acoustic material. SIS-breaking
was induced by producing elastic deformations of the
original lattice structure while the topological phase tran-
sition was achieved by contrasting ribbons having differ-
ent topological charges. This configuration could produce
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FIG. 13. Schematic illustration showing the selective valley
injection procedure. (a) Two point forces are applied on the
DW edge at two locations separated by a distance a (equal
to the lattice constant). The phase between the force and the
displacement at the two points can be schematically visualized
in a complex plane. (b) Choosing location z as the reference,
we can assume that the force f(z) (single red arrow) and
the corresponding particle displacements uk(x) and uk/(z)
(double red arrows) are initially in phase. In this case, the
force contributes one unit of energy to each mode. (c) The
phase of the K- and K'-polarized modes (blue and yellow
double arrow, respectively) and of the harmonic forces at x+a
necessary to create a pure K- or K’'-polarized mode (blue
and yellow single arrow, respectively). The forces produce
negative work on the modes with different subscript therefore
canceling the work done by the force at x and realizing single
mode excitation.

clear edge states at the domain wall interface. In a sim-
ilar way, the proposed design was capable of achieving
topological edge states even in a single lattice configu-
ration where boundary conditions were properly selected
to mimic the second topological phase. We showed that,
in both configurations, the edge states could be tailored
efficiently by simply tuning the pressure within the cells.
Despite TRS is preserved in the proposed design, selec-
tive valley injection could be effectively achieved by using
a two-point source excitation strategy, therefore giving
rise to well-defined uni-directional edge states. We note
that, in presence of smooth disorder, the inter-valley mix-
ing proved to be sufficiently weak to result in (almost
completely) back-scattering immune edge states.
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FIG. 14. Full field numerical simulations showing the ability
to trigger a specific uni-directional edge state (either around
the K or K’ point) along either (a,b) a DW or (c,d) a
fixed edge. The insets show that by selecting a proper two-
point excitation with appropriate phase difference (matched
to the targeted Bloch mode) accurate valley injection can be
achieved.
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