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Abstract 

We experimentally demonstrate quantum coherent dynamics of a triple-dot-based 

multi-electron hybrid qubit.  Pulsed experiments show that this system can be 

conveniently initialized, controlled, measured electrically, and has good ratio Q ~ 29 

between the coherence time and gate time.  Furthermore, the current multi-electron 

hybrid qubit has an operation frequency that is tunable in a wide range, from 2 to 

about 15 GHz.  We have also provide qualitative understandings of the experimental 

observations by mapping it onto a three-electron system.  The demonstration of the 

high tunability in a triple dot system could be potentially useful for future quantum 

control. 
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I. INTRODUCTION 

A fully controllable two-level system is an essential building block toward a 

scalable quantum computer.  A gate-defined semiconductor quantum dot (QD), 

which can be manipulated electrically and fabricated using modern microelectronic 

technology, is considered an ideal platform for quantum computation [1–3].  Over 

the past decade, extensive progress has been achieved in the exploration of qubits 

based on the spin and charge degrees of freedom of QD-confined electrons [4–19].  

An important objective in these studies is to improve the number of gate operations 

within the coherence time.  Although spin qubits, which couple weakly to their 

environments, have long coherence times, their single-qubit operations are relatively 

slow [6,8,13,14].  In contrast, charge qubits can be manipulated quickly, albeit 

within a short coherence time, because of the strong electrical interaction [16–19]. 

A hybrid qubit of charge and spin is a practical scheme which aims to achieve fast 

operations with a reasonably long coherence time by taking advantage of parallel 

energy levels.  Using a non-adiabatic pulse, x rotation can be realized near a charge 

transition, while z rotations can be obtained in the region with parallel energy 

structure, so that dephasing is suppressed efficiently.  Two-hybrid-qubit gates can be 

implemented using electric dipole coupling [20, 21].  Recently, experiments on the 

hybrid qubit in a Si/SiGe heterostructure have demonstrated fast coherent control 

using both pulse- and microwave-driven mechanisms [22–24].  By tuning the qubit 

parameters, Ramsey and Rabi decay times have been extended to more than 120 ns 

and 1 μs, respectively [25].  However, tunable operation frequency for this qubit 

design remains a difficult challenge because the qubit energy splitting is based on 

valley splitting in Si. 

Adding quantum dots and/or electrons inevitably increase the size of the system 

Hilbert space, thus allowing a broader search for an optimal qubit encoding scheme 

that is both controllable and coherent [26].  For instance, a triple quantum dot with 

multiple interacting electrons has a highly tunable energy structure.  All-exchange 

qubit based on three electrons in a triplet dot is one such example [27-30].  We have 
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also studied a tunable hybrid qubit in a five-electron GaAs double quantum dot by 

taking advantage of the asymmetry-split excited states in one of the dots [31].  In 

short, increasing the number of electrons and/or quantum dots allows tuning of the 

mixture between charge and spin degrees of freedom, therefore provides a potential 

path to realize an optimally encoded qubit. 

In this Letter we report an experimental exploration to realize a controllable 

hybrid qubit in a linear triple quantum dot with asymmetric tunnel couplings in the 

multi-electron charge configuration of (6,2,3)-(7,1,3).  We perform pulsed 

experiments to generate coherent oscillations that indicate the presence of 

quasi-parallel energy levels, the same favorable characteristics displayed by the 

double-dot hybrid qubit [20, 21].  More importantly, we find that the energy splitting 

of our hybrid qubit can be tuned conveniently in a wide range.  By mapping our 

complex energy structure onto that of a three-electron triple dot, we provide a 

qualitative description of our experimental observations.  The results could 

potentially lead to various applications, including a new encoding scheme that can be 

exploited on the triplet dot structure. 

 

II. RESULTS AND DISCUSSIONS 

A. Experimental setup 

The linear triple dot we study is fabricated on a GaAs/AlGaAs heterostructure 

using a combination of photolithography and electron beam lithography, as is 

illustrated by the scanning electron microscopy image shown in Fig. 1(a).  The 

two-dimensional electron gas is located about 90 nm below the surface of the 

heterostructure.  The density and mobility of the two-dimensional electron gas are 2.0 ൈ 10ଵଵܿ݉ିଶ and 1.2 ൈ 10ହܿ݉ଶ · ܸିଵ ·  ଵ, respectively.  Metal gates (Ti-Au)ିݏ

D1–D7, H1 and H2 form the triple dot array, while gates U1–U3, together with H1 

and H2, create a quantum point contact (QPC) as a sensor of the charge states of the 

quantum dot array.  The transconductance response of the QPC channel is acquired 

using a lock-in amplifier with a small ac modulation voltage (typically 0.2 mV) 
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applied to gate D1.  A high-frequency signal, passing through a semi-rigid coaxial 

cable from a room-temperature environment, is also applied to gate D1 using a bias 

tee.  The device is cooled inside a dilution refrigerator at a base temperature of 20 

mK. 

B. Charge stability diagram 

A typical charge stability diagram in Fig. 1(b) of our device shows three distinct 

charging line slopes (indicated by three dashed lines) corresponding to the three 

quantum dots [32], with the green (blue, black) dashed line indicating the charging 

line of the left (middle, right) dot.  A careful investigation of the charge occupation 

indicates that the charge transition we study here (marked by the circle) is (6,2,3) to 

(7,1,3), where (l,m,r) denotes the electron numbers in the left, middle, and right dot, 

respectively.  The smooth (sharp) anti-crossing marked by the rectangle (circle) 

implies that the middle and right (left) dots have strong (weak) tunnel coupling [33]. 

Our manipulations are always initialized in the ground state of charge 

configuration (6,2,3).  Figure 1(c) shows the charge stability diagram near the area of 

the charge transition between (7,1,3) and (6,2,3) for a short pulse duration of tp = 200 

ps and a pulse height of Vp = 400 mV, with a repetition rate of 40 MHz.  The region 

between the two white dashed lines is the area where the pulse can drive the electron 

non-adiabatically go through the transition line (upper dashed line) between (7,1,3) 

and (6,2,3).  And the coherent oscillations are generated between the two 

lowest-energy states of the triple dot in (7,1,3) configuration.  The fringes, marked 

by the yellow arrows, indicate Landau-Zener-Stückelberg interference in the (7,1,3) 

charge configuration, similar to what we observed before in other experiments 

[15–17]. 

C. Quasi-parallel energy spectrum 

Figure 2(a) shows the transconductance of the QPC channel as a function of the 

pulse duration time ݐ and the detuning ߝ from the starting point of the pulse 
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[together with pulse height, it would determine how deep the system is pushed into 

the (7,1,3) region].  Two easily distinguishable patterns are indicated in pink and 

green in Fig. 2(b).  The green-line pattern, corresponding the x-axis rotations, is right 

at the boundary separating the (7,1,3) and (6,2,3) region.  It has the shape of a letter 

V on the side, and is characteristic of a lock-in measurement of a charge qubit, also 

known as a charge-qubit Larmor oscillation pattern [17, 23].  We thus conclude that 

the green pattern here results from charge oscillations between the left and middle dot, 

i.e. between (7,1,3) and (6,2,3) configurations for the three dots. 

The pink-line oscillation pattern, corresponding the z-axis rotations, resides 

completely within the (7,1,3) region.  It has nearly parallel fringes as we vary the 

detuning point within (7,1,3), indicating that the oscillation frequency depends only 

weakly on ߝ (which is equivalent to the interdot detuning between the left and the 

middle dot).  To extract the oscillation frequency’s dependence on detuning, we 

perform a fast Fourier transform on the data of Fig. 2(a), and show the result in Fig. 

2(c).  Clearly, the oscillation frequency changes slowly in a large range of the 

left-middle detuning.  Since the oscillation frequency is given by the energy 

difference between the two relevant states accessible through the fast-pulse technique, 

we conclude that the energy splitting varies only slowly with the detuning, indicating 

a quasi-parallel energy spectrum. 

Figure 2(d) is a line cut of the data along the red dashed line in Fig. 2(a), after 

subtracting a smooth background.  A fit in the form ݔ݁ܣሾെሺݐ െ /ሻଶݐ ଶܶכଶሿܿݏ ሺ߱ݐ  כሻ gives ଶܶߠ ൌ  shown by the red solid line ,ݏ݊ 4.0

in Fig. 2(d).  The frequency of the coherent oscillation is ~3.6 GHz, corresponding to 

a gate-time of ~140 ps. The Q-factor is thus ~29 (the ratio between decoherence and 

gate-time) which indicates that our qubit has reasonably good quantum coherence.  

While this dephasing time is much faster than a spin qubit, it is on par with an 

un-optimized double dot hybrid qubit [23, 25]. 

We can make two observations from the experimental results obtained here.  

First, the coherent oscillations cannot be due to a hyperfine field gradient between the 

dots.  The frequency of these oscillations is far too high to be generated by the small 
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nuclear field.  Second, the oscillations cannot be due to charge oscillations between 

the left and middle dots as in the case of a charge qubit, because the oscillation 

frequency of a charge qubit should be sensitive to ߝ, and the observed oscillations 

occur within the (7,1,3) region.  We thus conclude with confidence that the coherent 

oscillations we have observed here are Larmor oscillations between the ground and 

first excited states within the (7,1,3) region. 

D. Tunable oscillation frequency 

Further investigation of the triple dot reveals another interesting feature, as shown 

in Fig. 3.  Specifically, we find that the frequency of the coherent oscillation depends 

sensitively on the gate voltage on D6, which presumably influences the detuning of 

the right dot the most, while the coherent oscillation seems to occur in the left two 

dots where charge occupation has changed relative to the initial state.  Figure 3(a) to 

3(d) presents the measured QPC transconductance response for four different D6 gate 

voltages.  The oscillation frequency changes more than three times, from about 2 to 

about 7 GHz, as the D6 voltage changes only 15%, from −0.5 to −0.42 V.  In Fig. 4(a) 

we present a more complete dependence of the oscillation frequency on the D6 

voltage.  The frequency can be continuously increased to ~15 GHz by increasing the 

D6 voltage, at which point the oscillation is too fast to resolve.  

The tunable oscillation frequency indicates that the energy difference between the 

parallel energy levels depends sensitively on the detuning of the right dot.  

Superficially this seems counter-intuitive, as the coherent oscillation is generated by 

changing the charge occupation in the left two dots, with the right dot occupation 

remaining constant.  However, as we discuss in our theoretical model below, this 

unexpected dependence becomes quite reasonable when we realize that all three dots 

are coupled, and the relevant states are multi-electron states extended over all three 

dots.  

We have extracted the coherence time of each frequency using data from the line 

cut at ߝ ൌ െ80 μeV.  The results are presented using the blue dots in Fig. 4(a).  

Clearly, the two quantities display opposite trends: as the coherent oscillation 
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frequency increases from 2 to 15 GHz, coherence time decreases from 6 to 1 ns. 

Summarizing our experimental results, we observed coherent oscillations 

between the ground and first excited states within the (7,1,3) charge configuration 

with reasonably good coherent properties, and found that the oscillation frequency 

depends sensitively on the detuning of the right dot but insensitively on the detuning 

between the left and middle dot.  The important questions we need to answer now 

are thus, first, what are the two states between which the coherent oscillations occur, 

and second, why the observed oscillation frequency has the particular detuning 

dependences. 

III. THEORETICAL EXPLANATIONS 

A. Theoretical model based on the three outer-shell electrons 

A theoretical calculation of the eigenenergies and eigenstates of 11 electrons in a 

triple dot is not impossible.  However, the strong Coulomb interaction and the 

resulting electron correlations mean that the eigenstates will not be single Slater 

determinants from single-particle states.  Instead the electron eigenstates are always 

superpositions of multiple Slater deteminants, or “configurations’’.  As such even an 

analytical solution would hardly give us any intuition on our problem.  We thus 

focus on the qualitative physical picture and do not attempt to obtain a numerically 

accurate description of our system through a full-scale configuration interaction 

calculation.  

There are two key features for the states of our triple dot, the charge distribution 

within each dot, and the spin symmetry of the many-electron states involved in our 

study.  The former explains why we cannot repeat our experiments at lower charge 

occupation numbers.  In other words, the electrons occupying the larger excited 

orbitals also see a lower tunnel barrier, making it much easier for us to observe 

correlated dynamics in the triple dot.  The later feature, on spin symmetry, helps us 

map our multi-electron system onto a simpler system, and allows us to provide a 

qualitatively sensible physical picture for our experimental observations.  Below we 
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focus on this mapping.  

Since Coulomb interaction is not spin dependent, each of the multi-electron 

eigenstates has a specific spin symmetry.  For example, Hund’s Rule dictates that in 

the ground state, 6 of the 7 electrons in the left dot should pair-up and form 

spin-singlets in the lowest three orbital states.  Since our quantum dots are 

two-dimensional and nearly circular, these orbitals states should be the S and P 

Fock-Darwin states.  Excitations from these close-shell states requires large energy, 

thus should contribute less to the low-energy states.  Therefore the spin property of 

the 7 electrons in the right dot is determined by the lone outer-shell electron.  The 

same argument can be made for the three electrons in the right dot.  In all, we can 

thus argue that the spin symmetry of our triple-dot multi-electron states can be 

mapped to those for three electrons near the (1,1,1)-(0,2,1) charge transition. 

To explain the basic features of our observations, we build a simple model based 

on the three outer-shell electrons (more details can be found in the Appendix).  As 

schematically shown in Fig. 4(b), the qubit can be manipulated similar as the original 

hybrid qubit.  The initial state of our experiment is the ground state in the (0,2,1) 

configuration with zero applied magnetic field, and the spin state (considering only 

the ܵ௭ ൌ  1 2⁄  component, without loss of generality since we do not consider 

spin-flip tunneling) is |ܵۧெ|՛ۧோ, where the subindex indicates the dot where the 

electrons are located [20-22].  The system is then driven to the (1,1,1) configuration 

with interdot exchange couplings ܬெ  and ܬெோ  [26, 27].  We can use a spin 

Hamiltonian here because we have excluded charge dynamics between (1,1,1) and 

(0,2,1) so that we can focus on the spin dynamics within the (1,1,1) charge 

configuration. 

The key to our observed coherent oscillation is that ܬெ ്  ெோ in our case, suchܬ

that the total spin S is not a good quantum number (while ܵ௭ is).  The ground g

and first excited e  states are thus mixtures of |՛ۧ|ܵۧெோ and ඥ1 3⁄ |՛ۧ| ܶۧெோ െඥ2 3⁄ |՝ۧ| ାܶۧெோ states [34], or the logical qubit states for the all-exchange qubit 

architecture [28-30].  In other words, when the system is suddenly driven from the 
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initial (0,2,1) configuration into (1,1,1), both the ground and first excited states have 

finite probabilities of being occupied (see Appendix).  The frequency of the ensuing 

coherent Larmor oscillation is at the energy splitting between these two states, given 

by ඥܬெଶ  ெோܬெܬ  ெோଶܬ . 

The expression of the oscillation frequency hints at why we have the observed 

dependences on the two detunings.  Specifically, at the limit when ܬெோ ب  ெ, theܬ

oscillation frequency is approximately ܬெோ  ெܬ 2⁄ , which is mostly determined by ܬெோ  and only slightly affected by ܬெ .  In other words, even though our pulse 

creates a charge transition between the left and middle dots, the frequency of the 

resulting coherent oscillation in the (1,1,1) regime is actually mostly determined by 

the stronger coupling between the middle and right dots, which is sensitive to the 

detuning between the middle and right dots controlled by D6 voltage.  Conversely, 

the detuning between left and middle dots mostly affects ܬெ, which only influences 

the oscillation frequency slightly.  Thus our results seem insensitive to the 

left-middle detuning.  In short, the tunable operation frequency presented in Fig. 4(b) 

is expected within this model.  

The decrease in dephasing time in Fig. 4(a) can also be interpreted 

straightforwardly.  Specifically, as ܬெோ increases, dephasing of the coherent 

oscillation becomes increasingly susceptible to fluctuations in ܬெோ , so that 

decoherence effect of charge noise or other fluctuations becomes dominated by its 

influence on ܬெோ.  Consequently, if we can identify a sweet spot for ܬெோ, it should 

be possible to have fast oscillations while enjoying good coherence properties 

[35-37]. 

Clearly, the addition of a third dot significantly increases the tunability of the 

qubit splitting compared to the original double-dot hybrid qubit.  Different from the 

all-exchange qubit in which the middle dot symmetrically couples to the neighboring 

two dots, our qubit works in the asymmetric region without an external magnetic field.  

Both ground and excited states in our case are coupled to the initial state, so that there 

is no spin blockade, and the pulse repetition rate we employed is as fast as that of a 



10 
 

charge qubit. 

B. Discussions 

To compare our simple model with the key experimental observations, let us first 

summarize the facts.  First, coherent oscillations can be observed within the (7,1,3) 

charge configuration when the triple dot system is prepared in the (6,2,3) 

configuration.  Second, the frequency of the coherent oscillation depends sensitively 

on the exchange coupling between the middle and the right dot ( MRJ , or J ) but 

insensitive to the exchange coupling between the middle and the left dot ( LMJ , or j ).  

Third, the outcome can be measured quickly using a charge sensor as the system is 

driven back to the (6,2,3) regime. 

The coherent oscillation is observed within the (7,1,3) [or effectively, (1,1,1)] 

charge configuration.  Therefore the oscillation cannot correspond to a charge 

oscillation between dots.  Instead it has to be between two states of the same charge 

configuration that can both be populated by the initial state in the (6,2,3) [effectively 

(0,2,1)] configuration.  Our simple model is consistent with this observation since 

both g  and e  couple to the initial state. 

The tunability and charge sensitivity of the coherent oscillation also come out 

naturally from our simple model, where the oscillation frequency between g  and

e  is given by 22 LMMR JJjJ −=− at the lowest order accuracy.  The only 

assumption we need to make here is that LMMR JJ >> .  As long as this 

approximation holds, the oscillation frequency will have a sensitive dependence on 

the detuning between the middle and right dot, which determines MRJ .  Similarly, the 

change of pulse height pε , which determines how far the system is pushed into the 

(7,1,3) regime, modifies LMJ .  Since the energy splitting is dominated by MRJ , 

changing LMJ  would not affect the oscillation frequency significantly.  This is thus 
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consistent with the results presented in Fig.2. 

Lastly, our measurement protocol is that for a charge qubit, in the sense that the 

measurement time is only 30 ns.  Therefore the mechanism of measurement cannot 

be spin blockade.  Instead the most likely scenario is the differential tunneling rate 

between the two (7,1,3) states.  In this respect, in our simple model measurement can 

certainly be accommodated reasonably. 

In short, with jJ >> we can explain the experimental observations and 

understand the fast measurement and initialization.  We thus believe this model is a 

reasonable qualitative representation of our experimental study. 

IV. CONCLUSIONS 

In conclusion, we have demonstrated a tunable hybrid qubit in a triple quantum 

dot.  The coherent oscillations we observe are results of free evolution between two 

energy levels insensitive to the left-middle detuning, while highly tunable by the 

right-middle detuning.  If a sweet spot can be found for the right-middle exchange 

coupling, this design has the potential of being widely tunable, highly coherent, and 

easily controllable.  We hope that the results and discussions presented here 

stimulate further explorations into the quantum coherent dynamics in the few-electron 

regime for semiconductor quantum processors and nanoelectronics. 
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APPENDIX: THEORETICAL METHODS 

As we discussed in the main text, the qualitative features of many-electron states 

of the (7,1,3) and (6,2,3) charge configurations are similar to those of the (1,1,1) and 

(0,2,1) configurations.  Since the observed coherent oscillations occur in the (7,1,3) 

regime, we attempt to understand these oscillations by examine the states of the 

equivalent (1,1,1) regime. 

In the (1,1,1) charge configuration, the spin Hamiltonian for the three electrons is 

MLLMRMMR SSJSSJH
rrrr

⋅+⋅= . 

When LMMR JJ >> , we can treat the second part of the Hamiltonian as a 

perturbation, and start with the eigenstates of the first part of the Hamiltonian.  Thus 

for basis of expansion we use product states of the single-spin eigenstates in the left 

dot and two-spin eigenstates of the middle and right dots ( MRS  and MRT ). In the 

z 1 2S =  manifold, these states are: 

1| 0 | | |
2L MRS〉 =↑〉 〉 = ↑↑↓ − ↑↓↑〉  

0
1 1|1 | | 2 | | = | 2
3 6L MR L MRT T+
⎡ ⎤〉 = ↑〉 〉 − ↓〉 〉 ↑↑↓ − ↓↑↑ + ↑↓↑〉⎣ ⎦  

0
1 1| 2 | | + | | = |
3 3L MR L MRQ T T+
⎡ ⎤〉 = ↑〉 〉 ↓〉 〉 ↑↑↓ + ↓↑↑ + ↑↓↑〉⎣ ⎦ . 

Since | 0〉  and |1〉  do not couple to | Q〉  even when we introduce MLLM SSJ
rr

⋅  

coupling, we can focus on | 0〉  and |1〉 . 

The total spin Hamiltonian in the (1,1,1) charge configuration is:  

.
44

0 HH

jJ
SSJSSJH

LMRM

MLLMRMMR

δ

σσσσ

+=

⋅+⋅=

⋅+⋅=
rrrr

rrrr

 

Notice we have replaced MRJ  by J  and LMJ  by j  for a more concise notation.  
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Here 0H  have eigenstates | 0〉  and |1〉  with energies of 3
4

J−  and 
4
J

respectively.  On the other hand, 0| | 0 0Hδ〈 〉 = , 1| |1 -
2
jHδ〈 〉 =  and 

30| |1
4

H jδ〈 〉 = .  Thus we can write the Hamiltonian as: 

0

3 3-
4 4=
3 3 1

4 4 2

J j
H H H

j J j
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟= +
⎜ ⎟

−⎜ ⎟
⎝ ⎠

. 

The resulting eigenenergies of the H  are: 

( ) ( )
2

2 21 1 1 1= 1
2 2 2 2

j jJ j J J j j J j J
J J

λ
⎡ ⎤⎡ ⎤ ⎛ ⎞⎢ ⎥= − + ± − ⋅ + − + ± − + ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

. 

Since jJ >> , using Taylor expansion, the eigenenergies can be written as: 

( )
21 1 1 3

2 2 2 4
jJ j J j
J

λ
⎡ ⎤⎛ ⎞

= − + ± − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, 

and the eigenstates of the total Hamiltonian in the (1,1,1) regime are:

| | 0 |1g α β〉 = 〉 + 〉  and | | 0 |1e β α〉 = − 〉 + 〉  with = 3 j
J

β α− .  The energy 

difference between the two eigenstates, at the lowest order, is given by jJ
2
1− . 

The initial state in the (0,2,1) regime is | | |M Ri S〉 = 〉 ↑〉  assuming that the 

middle-right-dot coupling is relatively small compared to the exchange spitting within 

the middle dot.  When the voltage pulse is applied, it projects the initial state i  to 

| g〉  and | e〉  in the (1,1,1) regime through tunneling.  Neglecting possible spin 

flips during the tunneling process, and keeping only the lowest-order single-electron 

tunneling, we can establish how the initial state is projected into the new eigenstates 

by examining the branching ratio.  The matrix elements of single-particle 

Hamiltonian between | | |M Ri S〉 = 〉 ↑〉 , which is in the (0,2,1) charge configuration, 
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and | 0〉  and |1〉 , which are in the (1,1,1) configuration, are 

( )[ ]LMRMLM StiH ↑↓ ++−= εε
2

10  

( )[ ]LMRMLM StiH ↑↓ ++= εε
2
31  

where LMt  is the single-electron tunnel coupling between the ground orbital states of 

the left and middle dot, LMS  is the single-electron wave function overlap between 

the ground orbital states of the left and middle dots, and ↓Mε  and ↑Rε  are the 

single-electron energies of the ground orbitals with different spins in the middle and 

right dot, respectively.  The tunneling matrix elements above indicate that there is a 

branching ratio of 3−  between 1  and 0 .  In other words, starting from the 

initial state i , one electron tunnels from the middle to the left dot, so that the 

three-electron state becomes: 

1
2
30

2
1 +−⇒i  

In the basis of | g〉  and | e〉 , the three-electron state becomes: 

egi ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−⇒ αββα

2
3

22
3

2
. 

Denoting the energy splitting between the system excited state | e〉  and the ground 

state | g〉  by ωh , during the evolution in the (1,1,1) regime the spin wave function 

can be written as: 

( ) 3 3| | |
2 2 2 2

i tt g e eωα βψ β α
⎛ ⎞ ⎛ ⎞

〉 = − + 〉 + + 〉⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Here tω  indicates the accumulated phase between | g〉  and | e〉  during the pulse.   

At the end of the pulse, the system shifts back to the (0,2,1) regime, and ( )| tψ 〉 is 

projected back to | i〉 : 
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Since αβ << , we can make our estimate at the limit 0≈β , 1≈α for the probability 

to find the system in the initial state i , which is the ground state in the (0,2,1) regime, 

as: 

( )tpi ωcos
8
3

8
5 += . 

This indicates that the return probability is between 1 and 1
4

.  

We note that both | g〉  and | e〉  couple to the initial state | i〉 , so that there is no 

spin blockade.  Instead, the two states have different overlap with | i〉 , thus have 

different rates of returning to | i〉 .  This difference in returning rates causes the 

system to stay in the (7,1,3) charge configuration with duration.  In other words, the 

system spends different average time in (6,2,3) relative to (7,1,3), which causes a 

change in the average QPC signal. 
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Fig. 1 (a) Scanning electron microscopy image of the device structure, where red 
dashed circles indicate the approximate quantum-dot positions.  (b) Charge stability 
diagram of the triple quantum dot.  Three dashed lines indicate three charging lines 
with different slopes.  The solid circle indicates the area in which we perform our 
experiment.  The pink arrow indicates the detuning direction.  (c) Anti-crossing 
area indicated by the solid circle in (b), after applying a repeated pulse sequence.  
The inset schematically depicts the pulse sequence in the experiment. 
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Fig. 2 (a) Coherent charge oscillations as a function of detuning ߝ  and pulse 
duration time ݐ.  (b) Two highlighted oscillation patterns for clarity of the same 
data in (a) using pink and green lines.  The inserted arrows indicated as 2πN 
indicate the accumulated total phase.  (c) Fast Fourier transform of the data in (a).  
The dashed guideline indicates frequency variations.  (d) Results for the dashed line 
in (a), after subtraction of a smooth background.  The red solid line is a numerical fit, 
which yields ଶܶ4.0 = כ ns. 
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Fig. 3 Coherent charge oscillations as a function of detuning ߝ and pulse duration 
time ݐ for four different values of ܸ.  The oscillation frequency clearly increases 
with increasingly positive ܸ. 
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Fig. 4 (a) Charge oscillation frequency and decoherence time as a function of VD6, 
extracted from the data of red dashed lines in Fig. 3.  (b) Schematic diagram of the 
energy levels variation when changing VD6.   
 


