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By contrasting the performance of two quantum annealers operating at different temperatures,
we address recent questions related to the role of temperature in these devices and their function as
‘Boltzmann samplers’. Using a method to reliably calculate the degeneracies of the energy levels of
large-scale spin-glass instances, we are able to estimate the instance-dependent effective temperature
from the output of annealing runs. Our results corroborate the ‘freeze-out’ picture which posits two
regimes, one in which the final state corresponds to a Boltzmann distribution of the final Hamiltonian
with a well-defined ‘effective temperature’ determined at a freeze-out point late in the anneal, and
another regime in which such a distribution is not necessarily expected. We find that the output
distributions of the annealers do not in general correspond to a classical Boltzmann distribution for
the final Hamiltonian. We also find that the effective temperatures at different programming cycles
fluctuate greatly, with the effect worsening with problem size. We discuss the implications of our
results for the design of future quantum annealers to act as more effective Boltzmann samplers and
for the programming of such annealers.

I. INTRODUCTION

A handful of recent studies suggest that quantum an-
nealers may be well suited to function as fast thermal
samplers [1–4]. By taking advantage of their finite tem-
perature nature [3–7], potentially they may sample from
Boltzmann distributions of certain cost functions more
efficiently than can be done classically. Such a capa-
bility opens up the exciting possibility of applications
of quantum annealing to so-far-uncharted avenues of re-
search, with immediate applications to domains such as
deep learning networks and restricted Boltzmann ma-
chines [2, 3, 8].

The main mechanisms that determine the distributions
from which output configurations are drawn are thus far
unclear. Further insights into the role of temperature,
and the capabilities of experimental quantum annealing
optimizers to quickly thermalize, are challenging to ob-
tain due to the limited ability to probe the inner workings
of these machines, as well as the lack of control over most
operating parameters [3, 4, 8].

To circumvent these difficulties, we devised an exper-
iment, directly comparing the performance of two com-
mercially available quantum annealers operating at dif-
ferent temperatures (we shall refer to those as ‘hot’ and
‘cold’ henceforth). This key difference, together with a
newly devised method to accurately calculate the degen-
eracies of certain large-scale spin-glass instances, offers us
a unique opportunity to study the effects of temperature.
Our results indicate that these instances do not in general
equilibrate at Boltzmann distributions corresponding to
the final classical Hamiltonian, but are significantly af-
fected by nonzero quantum fluctuations and noise. Our
results corroborate the ‘freeze-out’ picture [1, 2, 9], which
posits one regime in which the final state corresponds
to a Boltzmann distribution of the final Hamiltonian
with well-defined ‘effective (classical) temperature’ de-

termined at a generally unknown freeze-out point late in
the anneal, and another regime in which such a distribu-
tion would not necessarily be expected. While providing
evidence for this picture, our results speak against the
hypothesis that most instances fall in the first regime.

We find that these effective temperatures fluctuate
greatly at different programming cycles, with the effect
worsening with problem size. We discuss factors po-
tentially contributing to this adverse effect, including
so-called J-chaos in which control errors and other
sources of noise mean that the problem run on the
machine is different from the one programmed in. We
discuss the implications of our results for the design of
future quantum annealers to act as efficient Boltzmann
samplers and for the programming of such annealers.

A. Quantum annealing and quantum annealers

Standard transverse field quantum annealing works by
evolving the system over rescaled time s = t/T ∈ [0, 1]
where t is time and T is the overall runtime of the an-
nealing process. The total Hamiltonian of the system is
given by

H(s) = A(s)Hd +B(s)Hp , (1)

where Hp =
∑
〈i,j〉 Jijσ

z
i σ

z
j +

∑
i hiσ

z
i is the pro-

grammable Ising spin-glass problem (the final Hamilto-
nian) to be sampled defined by the parameters {Jij , hi},
and Hd = −

∑
i σ

x
i is a transverse-field Hamiltonian

which provides the quantum fluctuations (the initial
Hamiltonian). We identify two dimensionless scales as-
sociated with the annealing, namely, the one associated
with quantum fluctuations Q(s) = A(s)/B(s) and the
scale associated with thermal fluctuations kBT/B(s),
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both of which are shown in Fig. 1 for both the ‘hot’ and
‘cold’ processors.

Current quantum annealers suffer from intrinsic con-
trol errors (ICE) [6, 10] such as imperfect digital-to-
analog conversion when programming the problem pa-
rameters onto the machine, and 1/f -noise whose ef-
fect is parameter changes even within a single program-
ming cycle (a consecutive batch of anneals run on the
machine) [11, 12]. For both contrasted quantum an-
nealers, these random errors may be approximated as
normally distributed according to ∼ N (0, 0.05J) [resp.
∼ N (0, 0.03h)] where J (resp. h) is the maximal value
over all the programmed Jij (resp. hi). Some prob-
lems have resilience to such errors [5, 13], whereas others
are susceptible to a phenomenon referred to as J-chaos,
in which output ‘solutions’ correspond to the wrong, or
malformed, problem, generally reducing the success prob-
ability [6, 13–17].

FIG. 1. Dimensionless annealing schedules and tem-
peratures of the hot and cold DW2 processors. We
plot quantum fluctuations Q(s), and thermal fluctuations
kBT/B(s), as a function of rescaled annealing time, s, for
each machine. An example of freeze-out is shown; the distri-
bution approximately halts at some fixed, instance-dependent
value of Q∗ := Q(s∗) (dashed black line) which corresponds
to a freeze-out point s∗ (denoted s∗C , s

∗
H) and dimensionless

effective temperature kBT/B(s∗) (squares), for each machine.
The solid black lines illustrate that freeze-out may correspond
to different effective temperatures.

B. Freeze-out conjecture

If problems thermalized instantly, quantum annealers
would return configurations sampled from a Boltzmann
distribution, in which each configuration c has weight

proportional to e−β
eff
idealEc , where Ec is the configuration’s

classical cost (under Hp) and βeff
ideal ≡ B(1)/kBT is an

effective dimensionless inverse temperature, with T be-
ing the operating temperature of the machine [18]. It is
known, however, that effective inverse-temperatures βeff

extracted from experimentally sampled distributions are
usually lower than βeff

ideal, and that the observed inverse-
temperatures differ across problem instances [1–3].

The freeze-out conjecture [1, 2, 9] explains these high
observed effective temperatures by positing a “small Q
regime” in which the evolution is quasi-static, returning
a final population that is close to a Boltzmann distri-
bution of Hp with a well-defined effective temperature,
and a regime in which the final population would not
necessarily be of this form. In the first regime, the final
distribution is determined by a ‘freezing’ of the evolu-
tion (after which no dynamics occur) at an unknown,
instance-dependent, but physical-temperature indepen-
dent, ‘freeze-out’ point s∗ where thermal fluctuations,
whose strength is coupled to the quantum fluctuations
Q(s∗) driving the system, become negligibly small [19].

As illustrated in Fig. 1, the freeze-out point is con-
jectured to happen at a temperature-independent (but
instance-dependent) value s∗ [1]. Only when Q(s∗) at
the freeze-out is small is the final distribution expected
to be a classical Boltzmann distribution for Hp with
(dimensionless) effective temperature βeff = B(s∗)/kBT ;
otherwise, the resultant distribution will generally not
correspond to an equilibration at any given point,
but may instead result from different parts of the sys-
tem equilibrating at different temperatures and times [1].

C. High-level approach

We proceed by taking as a working hypothesis that
most instances have a well-defined freeze-out point in the
range A(s)� B(s). We work through the implications of
this hypothesis, and demonstrate empirically that it does
not hold for the majority of instances. We do so by esti-
mating a freeze-out point from the data for each instance,
and then checking whether or not that point falls in the
A(s)� B(s) regime. Most instances fail this consistency
check. Outside of that regime, the freeze-out conjecture
does not predict a well-defined freeze-out point; different
parts of the system may freeze at different times, and
even if an instance does have a well-defined freeze-out
point outside A(s) � B(s), the distribution would have
a strong quantum component (from Hd), so would be
a distribution of quantum states, and not of the form

e−β
effHp . These results are consistent with the freeze-

out conjecture, but not with the hypothesis that most
instances fall within the freeze-out regime that yields a
classical Boltzmann distribution.

II. EXPERIMENT AND METHODS

We make use of two 512-qubit D-Wave Two (DW2)
quantum annealers [20]. The mean temperatures of the
‘hot’ and ‘cold’ machines were about 16.0 mK and 13.2
mK, respectively (further details are provided in Ap-
pendix A).

We designed 1300 random spin-glass instances of the
planted-solution type [21] for each of seven different prob-
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lem sizes corresponding to L×L grids of 8-qubit cells of
the hardware DW2 Chimera graph with L = 2 . . . 8 (see
Fig. 2). We generated these instances as per Ref. [21]
(the reader is referred to Appendix B for more details).
This class of instances is particularly suitable for our pur-
poses for two main reasons: i) the ground state energies
of the generated problems are known in advance, and ii)
the exact degeneracies of the ground and first excited
states are computable [4]. These two facts allow us to,
with high accuracy and confidence, measure βeff, as will
be explained below. We generated instances on the inter-
section of the two hardware graphs (501 qubits) in order
to avoid biases associated with malfunctioning qubits on
either machine (as shown in Fig. 2).

To gather our statistics, each instance was run 440,000
times over 22 ‘programming cycles’ on each machine,
with anneal times in range [20-40] µs. A programming
cycle consists of running the same instance sequentially
on a single machine up to (as chosen by the user) 20,000
times, from which statistics are returned; from each pro-
gramming cycle we obtained the ground state success
probability (how often the ground state of the problem
was found). We use this data to estimate βeff.

To evaluate βeff we employ two independent, comple-
mentary, techniques, which together allow us to estimate
with high accuracy and confidence the degeneracies of
the energy levels of the problem instances. The first, the
well-known Wang-Landau (WL) entropic sampler [22],
statistically estimates the degeneracy of the energy lev-
els (see Appendix C for technical details). Since the WL
algorithm is prone to statistical errors as well as false
convergences, we employ in parallel a newly-devised al-
gorithm that uses the feature that planted-solution in-
stances can be written as a sum of local terms [4]. The
algorithm computes the degeneracies of the ground and
first excited states exactly. When the WL estimate is
outside ±5% of the exact value for either the ground or
first excited state, we discard this instance as we know
it has not converged properly. The combination of these
two algorithms allows for the faithful estimation of the
degeneracies. We show in Fig. 3 an example of a suc-
cessful implementation of these two algorithms, where
the Wang-Landau ground and first excited estimates are
within 5% error of the exact values.

The above procedure yielded some 2200 instances in to-
tal, for problem sizes up to 282 qubits, for which we were
able to accurately calculate the degeneracies. The dif-
ficulty in obtaining an accurate measurement, especially
for the larger problems, was due mainly to i) the D-Wave
machine not being able to solve many of the ‘hard’ prob-
lems, ii) there were too many degenerate states for the
exact counter to enumerate (exceeded our chosen cut-off
value of 107 ground states, which become prohibitively
expensive to compute), or iii) Wang-Landau estimate de-
viated too far from exact counter results (generally from
under-sampling the low energy states).

Armed with these degeneracies, we estimate the
inverse-temperature βeff for each instance by minimizing
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FIG. 2. Intersected Chimera. Intersection of the two D-
Wave Chimera graphs, with 501 operating qubits. Red disks
denote non-operational qubits on one (or both) of the two
machines. We denote the size of a square subgraph by an
integer L ≤ 8.

the distance between the observed ground state success
probability P0 and the predicted one (i.e., the conjectured
Boltzmann distribution):∣∣∣∣∣∣P0 −

(∑
k=0

gk
g0
e−β

eff(Ek−E0)

)−1
∣∣∣∣∣∣ . (2)

Here, {gk, Ek} are the degeneracy and energy of the k-
th level, respectively. The total number of instances for
which βeff was successfully estimated, for each problem
size L = 2 . . . 8, is [664,745,449,266,38,0,0].
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FIG. 3. Degeneracy counting. Main figure: The degen-
eracies of the first five energy levels of two of the 282-qubit
problem instances as found by the Wang-Landau algorithm
(error bars represent 95% confidence interval). The WL de-
generacies of the first two levels lie on top of the computable
exact values (solid circles). Inset: Degeneracies of all levels
as a function of energy, for the same instances, as obtained
by the WL algorithm.

III. RESULTS AND ANALYSIS

A. Thermalization

Figure 4 (top) plots the median inverse temperature
βeff for each instance and machine. Error bars indicate
the maximum and minimum value of βeff over all pro-
gramming cycles. Evident is the overall strong linear
correlation between the (inverse) effective temperatures
of the two machines (Pearson coefficient 0.94). Most in-
stances fall within, or near, the ‘thermal range’ (see cap-
tion) predicted by the ratio of physical temperatures of
the machines [see yellow band in Fig. 4 (top)], illustrat-
ing the key functional role of temperature in the success
probability of these problems. If the instances were ther-
malizing at the end of the anneal, however, we would
expect to observe βeff

ideal of 9.7 and 11.7 (shown in Fig. 4)
for the hot and cold machines, respectively. Instead, the
values we observe are well below this mark: βeff ∈ [2, 7].
Thus, we are finding effective temperatures up to six
times higher than would be expected from a simple ther-
malization picture. Moreover, the median ratio of βeff

for the two machines, Rβ = 1.11± 0.05 (95% confidence
interval) [23], is well below the ratio of the physical tem-
peratures, Rideal

β = 1.21 ± 0.02 indicating an effective

average temperature ratio of about 92% of the ‘thermal’
ratio of s = 1. We now examine the extent to which the
freeze-out picture can explain these discrepancies.

FIG. 4. Top: Effective inverse temperatures. Compari-
son of effective inverse temperatures on the set of instances for
both the hot processor, βeff

H , and the cold processor, βeff
C . Er-

ror bars represent the highest and lowest values found over all
programming cycles. The yellow band represents the range of
physical temperature fluctuations between the devices, given
by the linear relationship y = Rideal

β x (defined in main text).

The blue diamond represents βeff were (classical) thermaliza-
tion to take place at the end of the anneal. Different problem
sizes have different colors (see legend). Bottom: Quantum
fluctuations at freeze-out. Scatter plot of the extracted
Q∗ := Q(s∗) strengths (blue) for each instance. Ideally, both
machines would yield the same value for each instance (red
y = x line). Median ratio is Rsmall

Q = 1.01 for small Q(s∗)
values (within the green square). The outputs are strongly
correlated (Pearson coefficient 0.92). Error bars represent the
range of Q∗ over all programming cycles.
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B. Freeze-out

While the freeze-out point for each instance is un-
known, its temperature independence means the esti-
mates for the freeze out point should be the same whether
from the cold machine or hot machine data. Using the
estimated βeff = B(s∗)/kBT , from which we can obtain
a freeze-out point s∗ given the known operating tem-
peratures and annealing schedules, we directly calculate
Q(s∗). We then check whether the freeze-out point for
each instance is the same for the two machines. We plot
Q(s∗) for each instance in Fig. 4 (bottom). For instances
with small Q (we take Q < 10−1), we find excellent cor-
respondence between the two machines, with an average
ratio of Rsmall

Q = 1.01 ± 0.06 (95% confidence interval),
in agreement with the freeze-out picture, suggesting a
meaningful βeff, which implies final classical Boltzmann
distributions, in this regime. Only a small fraction of the
instances, however, correspond to a negligible Q(s∗).

For the majority of instances, Q(s∗) > 1, and thus con-
tradicts our working hypothesis that most instances fall
in the regime in which one would expect a well-defined
freeze-out point and a final classical Boltzmann distribu-
tion. working assumption that the instances thermalize
according to Hp. The ratio RQ over the the entire data
set is RQ ≈ 1.20, substantially higher than the ‘ideal’
RQ = 1. Compared to the rest of the instances, the small
Q(s∗) problems are typically easier to solve and are dis-
proportionately smaller in problem size (see e.g. Fig. 16
in Appendix D). The freeze-out picture can also explain
the lower-than-ideal effective inverse-temperature ratio
Rβ = 1.11 (and higher RQ ≈ 1.20). The existence of sig-
nificant quantum fluctuations outside A(s)� B(s) leads
to an overestimation of thermal fluctuations in both ma-
chines, i.e., to higher effective temperatures, as we indeed
observe.

C. High variability in inverse temperature
estimates

The magnitude of the error bars on the effective in-
verse temperatures per instance shown in Fig. 4 (top)
reflect the large fluctuations in success probabilities be-
tween programming cycles. We discuss various factors
that contribute to that variance.

It is known that the location of the freeze-out point
(and hence the success probability) has a weak loga-
rithmic dependence on the annealing time [1, 6], with
longer anneal times having later freeze-out points be-
cause there is more time for fluctuations to take place.
We indeed find such an effect (see Figs. 11, 12 of Ap-
pendix D), though our results show that this typically
accounts for less than a 1% variability between different
anneal times and therefore does not explain the spread
we observe. If the variation were due purely to statis-
tical variations from cycle to cycle, one would expect
statistical fluctuations in success probability P0 on the

order of δP0 =
√
P0(1− P0)/Nanneals. Fig. 5 (top) shows

R∆/δ = ∆P0/δP0, the ratio of typical magnitude of ac-
tual fluctuations in success probabilities ∆P0 to the ex-
pected magnitude of purely statistical fluctuations δP0.
We find that only around 20% of the instances exhibit
fluctuations of success probability R∆/δ below 1. For
most instances, typical fluctuations are about an order
of magnitude greater than statistical fluctuations, with
some fluctuations being considerably greater. We at-
tribute these large ratios, to J-chaos [6] from ICE and
other noise, which affect the local fields and coupling pa-
rameters within and between cycles. Noise unrelated to
programming parameters may also play a role.

Figure 5 (bottom) shows, as a function of problem size,
the average variation in βeff, as measured by the ratio of
the 95th to 5th percentile values found over all program-
ming cycles. The larger the problem size, the greater the
size of the fluctuations. This trend is expected as larger
problems, with more couplings, have more potential to
be adversely affected by control errors, and other sources
of noise [24]. It is critical to understand why these fluc-
tuations scale with problem size, and their root cause, so
as to devise strategies to keep these errors from becoming
unmanageable as chip sizes increase. For a fixed prob-
lem size, we do not observe a clear correlation between
success probability and the variance in the βeff estimates
(Fig. 6), providing evidence that the fluctuations we ob-
serve in Fig. 5 (bottom) are indeed due to differences in
problem size and not problem difficulty (though of course
the two are related) [25].

IV. CONCLUSIONS

By conducting parallel experiments on two quantum
annealers, each operating at a different temperature, we
studied key mechanisms determining their output distri-
butions. In particular, we tested the freeze-out conjec-
ture [1, 2, 9] by comparing the performance of the two
machines on certain Ising problems, making use of a re-
cent method to accurately estimate the degeneracies of
such problems. With a working hypothesis that the out-
put distribution is indeed a Boltzmann distribution of the
classical problem Hamiltonian, we calculated the effective
inverse temperatures for each instance and machine, βeff,
from which we calculated the freeze-out point.

For instances which our results show exhibit neg-
ligible quantum fluctuations (small Q), we find a
well defined temperature-independent (i.e., machine-
independent) freeze-out point, in agreement with the
prediction of the freeze-out hypothesis for the small Q
regime. This agreement suggests for these instances the
output distribution is indeed a classical Boltzmann dis-
tribution for Hp, with well defined effective temperature.

Our results also show, however, that for the majority
of instances, the estimated freeze-out point is not in the
regime of negligible quantum fluctuations, and therefore
does not have a well-defined effective temperature, nor
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FIG. 5. Top: Ratio of magnitude of actual fluctua-
tions in success probabilities to magnitude of statis-
tical fluctuations, R∆/δ, for the various instances on
the hot and cold processors. For most instances, the fluc-
tuations in success probabilities over programming cycles is
far greater (by an order of magnitude) than what one might
expect from fluctuations of a purely statistical nature. Bot-
tom: Typical spread of effective inverse temperature
as a function of problem size. Our measure for spread
is the 95th to 5th percentile mean ratio of βeff averaged over
instances of each problem size. We take the ratio to over-
come any bias from the cold chip recording higher values of
βeff (see inset). We find both devices follow a nearly identical
trend: fluctuations increase and βeff decreases with problem
size. Inset: Median βeff for each problem size. 95% confi-
dence interval error bars obtained by bootstrapping over the
instances of each particular N .

0 0.2 0.4 0.6 0.8 1

P0

1

1.1

1.2

1.3

1.4

1.5

-
e, 0:
95

-
e, 0:
05

FIG. 6. Variance with success probability. Spread of
effective inverse temperature as a function of success proba-
bility, as determined by the 95th to 5th percentile ratio of βeff

over all programming cycles, for N = 70 (we pick this prob-
lem size as it is the one for which we have the most number
of instances with reliable data). Data from the hot machine.

is there any reason to believe the output should follow a
classical Boltzmann distribution.

Moreover, we also observed that the effective temper-
atures at different programming cycles can wildly fluc-
tuate. Our data indicates that this effect worsens with
larger problem size. These observations show that for
future quantum annealers to be effective as Boltzmann
samplers, designers must take into account these results,
and find ways to ensure that instances thermalize in the
A(s)� B(s) regime, and such that the effective tempera-
tures are more stable. Moving forward, it would therefore
be worthwhile to have additional estimators of tempera-
ture, and more robust ways to reconstruct the Boltzmann
distribution (i.e., the one we conjecture for small Q) [26].

Promising directions include reducing sources of noise
that contribute to intrinsic control errors (ICE) in quan-
tum annealing hardware, and exploring alternate anneal-
ing schedules and non-standard drivers to enable more
instances to equilibrate at a unique point late enough in
the anneal that the quantum fluctuations are negligible.
For machine learning, another approach is possible. It is
not clear how accurately one needs to sample from Boltz-
mann distributions for machine learning, or even that
Boltzmann distributions are optimal for this purpose. A
tantalizing research direction is the use of distributions
that have a large quantum component [2], particularly
given that certain distributions generated by quantum
Hamiltonians are believed to have no efficient classical
sampling mechanism [27, 28]. A deeper understanding of
these processes will have profound implications for the
design of future annealers and the prospects of utilizing
quantum annealers as efficient Boltzmann samplers for
machine learning and beyond.
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Appendix A: The Google-NASA-USRA (‘cold’) and
Lockheed-Martin-USC (‘hot’) D-Wave Two

processors

The quantum annealer used in our work is the D-
Wave Two (DW2) device [29]. This device is designed
to solve optimization problems by evolving a known ini-
tial configuration — the ground state of a transverse field
Hd = −

∑
i σ

x
i , where σxi is the Pauli spin-1/2 matrix act-

ing on spin i — towards the ground state of a classical
Ising-model Hamiltonian which serves as a cost function
that encodes the problem that is to be solved:

Hp =
∑
〈i,j〉

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i . (A1)

The variables {σzi } denote either classical Ising-spin vari-
ables that take values ±1 or Pauli spin-1/2 matrices, the
{Jij} are programmable coupling parameters, and the
{hi} are programmable local longitudinal fields. The N
spin variables are realized as superconducting flux qubits
and occupy the vertices of the D-Wave ‘Chimera’ hard-
ware graph [29, 30]. Here, 〈i, j〉 denotes summation over
the edges of the graph. The union of the two D-Wave
Chimera graphs is given in Fig. 2 – this is the graph all
of our problem instances were defined on.

These machines evolve the full Hamiltonian via

H(s) = A(s)Hd +B(s)Hp . (A2)

The way in which the strength of the initial (Hd) and final
(Hp) Hamiltonians evolve is given by the parameters A(s)
and B(s), where s = t/T ∈ [0, 1] is the annealing time.
Here, T is the total annealing time, ranging between 20µs
and 20ms on these devices. The annealing schedule is
given in Fig. 7 for each machine.

In Fig. 8 we show the temperature log of the D-Wave
chips during the time which we collected our data.

FIG. 7. Annealing schedules of the USC (hot) and
NASA (cold) DW2 processors. Annealing schedule [see
Eq. (A2)] in GHz as a function of dimensionless annealing
time s = t/T . We also plot the temperatures (~ = 1) of the
devices (see legend).

Appendix B: Generation of instances

For the generation of instances, we have chosen in
this work to study problems constructed around ‘planted
solutions’ – an idea borrowed from constraint satisfac-
tion (SAT) problems [31, 32]. In these problems, the
planted solution represents a ground state configuration
of Eq. (A1) that minimizes the energy and is known in
advance. This knowledge circumvents the need to verify
the ground state energy using exact (provable) solvers,
which rapidly become too expensive computationally as
the number of variables grows, and which were employed
in earlier benchmarking studies [33, 34]. Moreover, these
problems are known to possess different degrees of ‘tun-
able hardness’, achieved by adjusting the amount of frus-
tration (see Ref. [35]) which we will use. Last, studying
this type of problems allows us to devise an algorithm
to find all minimizing configurations of the generated in-
stances. Knowledge of both energy levels as their degen-
eracies is essential for the calculation of effective temper-
atures of the instances.
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FIG. 8. Temperature logs. Temperature log for the USC
(hot) and NASA (cold) machines during the period of time we
performed our experiments. The dashed black lines represent
the mean of the data sets. The mean temperature of the
‘hot’ USC machine was about TH = 16.0 mK, and the mean
temperature of the ‘cold’ NASA machine was about TC = 13.2
mK, with ratio TH/TC ≈ 1.21. Note, the temperature data
is sparse, sampled only twice per 24 hours.

To generate the instances for the experiment we fol-
low the guidelines introduced in Ref. [21]. We generate
13 groups of 100 instances, for each of 7 different sub-
Chimera sizes with L = 2 . . . 8, see Fig. 2 (i.e., 9100 to-
tal instances). These 13 groups differ in the ratio α of
number of clauses (or loops) to number of qubits con-
tained in each instance. For every fixed ratio α the
range of integer-valued Jij ’s, which we denote by Jmax is
fixed across the different problem sizes. D-Wave further
rescales all coupling values such that the encoded values,
J̃ ∈ [−1, 1] which implies that for every fixed α both the
range of J-values as well as the spacings between them
is identical across different problem sizes.

Appendix C: Wang-Landau entropic sampler

As explained in the main text, we employed a Wang-
Landau entropic sampler to estimate the degeneracy of
the energy levels for our generated planted-solution in-
stances. This algorithm performs essentially a random
walk over the energy landscape, where updates at each
step in the algorithm are such that an approximately flat
histogram of visited energies is produced. We follow the
same methodology as originally described in [22]. Our
histogram was considered ‘flat’ when the lowest sampled
energy level has been visited at least 80% of the mean of
the entire histogram.

We performed 20 independent Wang-Landau runs,
each up to 109 steps for each of our instances. We then
averaged over these 20 runs which provided our estimate
of degeneracies for each instance. We then discarded

any instances for which the ground or first excited state
degeneracies did not match that for the exact solution
counter (up to 5% error). This meant we had accurate
degeneracy data for problems up to 282 qubits in size.

Appendix D: Effects or lack thereof of additional
experimental parameters

1. Success probabilities

In Fig. 9 we show the histogram of the success proba-
bilities for the two machines, for all of the instances. We
see the cold (NASA) machine clearly outperforms the hot
(USC) machine–we expect, due to the colder operating
temperature.

2. Programming cycles

In Fig. 10 we compare two different programming cy-
cles (from different days) on the same machine, showing
consistency over different runs.

3. Anneal times

We also study the effect of varying anneal time on suc-
cess probability in Figs. 11 and 12. We see that there
is only a very weak (logarithmic) dependence on anneal
time, in accordance with [1, 6], and moreover, it is seem-
ingly not correlated with problem size.

4. Ratio of number of clauses to number of qubits

Fig. 13 shows that (within error bars) our computa-
tion of the inverse temperature ratio between the two
machines is unaffected by changing the ratio of number
of clauses (or loops) to number of qubits α, and more-
over, that the thermal ratio is well above the measured
ratio (far outside of the error bars mostly).

Appendix E: Additional data

Relating to Fig. 4 of the main text, we produce a ‘heat
map’, Fig. 14, for βeff, and for Q∗ (defined in main text),
for each machine, which shows the number of instances
found in each small region. We notice that in the upper
figure that the larger the effective inverse temperature,
more instances fall within the ‘thermal region’, indicat-
ing a stronger dependence on the temperature for these
instances. These instances correspond to the ones which
freezeout at a later point in the anneal, and thus a smaller
Q∗ in the lower figure. In this lower figure, we observe
the fit is closer to the ‘ideal’ y = x for smaller Q∗, and it
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FIG. 9. Success probability. Probability of success (how
often the ground state energy is correctly identified) of all
instances and programming cycles on the two machines (‘hot’
USC machine PH , and the ‘cold’ NASA machine PC). Each
point is a randomly chosen programming cycle (for the same
instance on each machine). Number of qubits given by legend.

FIG. 10. Machine correlation. We compare the results of
two programming cycles for each instance on each machine.
We see the data aligns nicely along y = x, albeit with siz-
able fluctuations (as one would expect). Compare this with
Fig. 9, where data clearly deviates from y = x. The ‘hot’
USC machine is on the left, and the ‘cold’ NASA machine on
the right.

FIG. 11. D-Wave success with anneal time. Aver-
age probability of success, P0 (for the hotter USC machine),
against anneal time (log scale), for different problem sizes (see
legend). Each point averaged over two programming cycles,
of Nanneals = 20, 000 anneals each. The black dash lines corre-
spond to the value of P0 for t = 20 µs. One can see in general
a slight increase in success probability with t.

FIG. 12. D-Wave success with anneal time, for sin-
gle problem size. Average probability of success, P0 (for
the hotter USC machine), against anneal time (log scale), for
problem size 70 (L = 3). Note the approximate linear re-
lationship. Inset: Difference in success probability between
t = 40 and t = 20 µs as measured by P (40) − P (20), where
P (t) is defined as P0 for anneal time t.
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FIG. 13. Effective inverse temperature ratio against
clause density. As explained in the text, we generated many
problems for each graph size L = 2, . . . , 8. We picked fixed
and identical values of α (the ratio of the number of loops to
the number of qubits) for each qubit size. We find that α has
(within the 95% confidence interval error bars obtained from
bootstrapping the data) mostly no effect on the effective tem-
perature ratio we measured from our data (1.11, calculated
as the median over all instances), and that it is much below
the thermal ratio value of 1.21. Note the smallest α = 0.1
instances are very easy to solve (P0 ≈ 1), making it hard to
distinguish performance (hence temperature) differences be-
tween the machines.

deviates above this line for larger Q∗ (we discuss in more
detail in the main text).

Also relating to Fig. 4 of the main text, we produce
Figs. 15, 16, which plot βeff, and Q∗, for each machine,
but split up by problem size. One can see that typically
the larger problems exhibit lower values of βeff, and like-
wise, larger values of Q∗, indicating these are in fact not
thermalizing according to a Boltzmann distribution.
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FIG. 14. Density plots for βeff and Q∗. The corresponding
‘heat map’ for Fig. 2 of the main text. Color indicates the
number of points in each region (given by color bar on the
right hand side). Top: Red dash line is the ‘ideal’ thermal
ratio (i.e. if the ratio of the effective inverse temperatures
were the same as the physical ‘thermal’ inverse temperatures).
The variance in physical temperature fluctuations is given by
the red semi-transparent region. Bottom: Red dash line is
y = x.
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FIG. 15. βeff for different problem sizes. These plots
show the effective inverse temperature found by each ma-
chine (and for each instance), for the 5 different problem
sizes (see legend) for which we have reliable degeneracy data.
White dash line is the ‘ideal’ thermal ratio (i.e. if the ra-
tio of the effective inverse temperatures were the same as
the physical ‘thermal’ inverse temperatures). The variance
in physical temperature fluctuations is given by the yellow
semi-transparent region.

FIG. 16. Q∗ for different problem sizes. These plots show
the median Q∗ found by each machine (and for each instance),
for the 5 different problem sizes (see legend) for which we have
reliable degeneracy data. Red dash line is y = x.
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