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We have demonstrated basic operations of a two-component superconducting gravity gradi-
ometer (SGG) that is constructed with a pair of magnetically levitated test masses coupled to Su-
perconducting Quantum Interference Devices (SQUIDs).  An innovative design gives a potential 
sensitivity of 4 1/21.4 10 E Hz− −×  ( 9 21 E 10  s− −≡ ) in the frequency band of 1 to 50 mHz and better 
than 5 1 22 10  E Hz− −×  between 0.1 and 1 mHz for a compact tensor SGG that fits within a 22-cm 
diameter sphere.  The SGG will have the capability of rejecting the platform acceleration and jit-
ter in all six degrees of freedom to one part in 910 .  Such an instrument has applications in preci-
sion tests of fundamental laws of physics, earthquake early warning, and gravity mapping of 
Earth and planets. 

I.  INTRODUCTION AND BACKGROUND 

Precise gravity measurements are required to study the fundamental nature of gravitation.  
Measurements of gravity can also provide a better understanding of Earth and planets, help find 
natural resources, and improve inertial navigation and surveying. To distinguish gravity from 
platform accelerations, the Equivalence Principle requires a differential measurement.  A gravity 
gradiometer detects a spatial derivative of the gravitational field and ideally is immune to the vi-
brations of the platform.   

Several versions of the superconducting gravity gradiometer (SGG) have been developed at 
the University of Maryland (UM) with support from NASA and other funding agencies [1-3]. A 
three-axis diagonal-component SGG with a baseline of 19 cm and mechanically suspended test 
masses, reached a performance level of 1/2 9 20.02 E Hz  (1 E 10  s ,− − −≡  E (e�tv�s) is a unit of 
gravity gradient) in the laboratory, which is three orders of magnitude more sensitive than dem-
onstrated to date by other gradiometers, including atom-interferometer gravity gradiometers [4-
7].  The SGG was used to set the best limit of Newton’s inverse-square law (ISL) at 1 m, at the 
level of 2 parts in 410  [8].  An off-diagonal SGG was also developed for an airborne application 
[9]. 

Time-variable gravity measurements from space are essential to address the causes and con-
sequences of climate change [10].  The first satellite-to-satellite tracking (SST) mission, Gravity 
Recovery and Climate Experiment (GRACE), proved the importance of global gravimetric mea-
surements from satellites to observe and understand mass transports driven by climatic, tectonic 
and anthropogenic forces [11]. The first space-borne gradiometer, Gravity field and steady-state 
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Ocean Circulation Explorer (GOCE) [12], demonstrated that satellite gradiometer data can sub-
stantially advance our knowledge on the static gravity field to higher spatial resolution [13].     

To improve our knowledge of the gravity field for Earth and planets to beyond that achieved 
by other missions, we are developing a more sensitive SGG based on levitated test masses [14].  
By replacing the relatively stiff mechanical springs used to suspend the test masses in the earlier 
devices with soft magnetic levitation, the sensitivity of the SGG could be improved by two to 
three orders of magnitude.  An innovative levitation scheme, which simplifies the design and 
construction of the advanced SGG, was demonstrated [15].  We have constructed and tested a 
prototype two-component SGG based on this levitation scheme, and demonstrated common-
mode (CM) rejection, the most essential characteristic of an SGG. 

Unlike SST, where the gravity signal is deduced from orbital motions of two satellites, a gra-
diometer directly measures the gravitational field over a short baseline within a spacecraft.  In 
addition, the SGG measurements have full 3-D observability and are not limited to along-track 
observations, as in the case of the SST system [16].  A very attractive feature of the new SGG is 
the tunability of the measurement band and sensitivity in-flight by changing its resonance fre-
quency, which allows measurements of both static and time-variable gravity fields from the same 
mission (see Fig. 9).  Decade-long gravity missions would require space-qualified cryocoolers.  
A 4-K cryocooler has already flown on the International Space Station [17] and other cryocoo-
lers with negligible vibration levels are under development [18-20]. 

In this paper, we will discuss the design and operating principle of the new SGG, report the 
first demonstration of the SGG constructed with levitated test masses, and compute its potential 
sensitivity.  We will also discuss applications of the SGG technology in Earth and planetary 
sciences as well as in fundamental physics.   

II.  DESIGN AND OPERATING PRINCIPLE OF THE NEW SGG 

A. Principle of Gravity Gradiometry 

The second spatial derivatives of the gravitational potential ( , )ix tφ form a gravity gradient 
tensor ijΓ : 

2

.ij
i jx x
φ∂Γ ≡ −

∂ ∂
           (1) 

ijΓ  is symmetric and its trace is proportional to the local mass density ρ  due to the ISL: 

 2 4 .iji
Gφ π ρΓ = −∇ =∑          (2) 

This leaves five independent components for the tensor: two diagonal and three off-diagonal.  A 
diagonal-component gradiometer can be constructed by differencing signals between two linear 
accelerometers whose sensitive axes are aligned along their line of sight.  Likewise, an off-
diagonal-component gradiometer can be constructed by differencing signals between two con-
centric angular accelerometers whose moment arms are orthogonal to each other.  
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In a diagonal-component gradiometer, linear and angular accelerations of the platform couple 
to the gradiometer through departures from parallelism and concentricity of the sensitive axes of 
the accelerometers, respectively [1].  There are like error sources in an off-diagonal-component 
device.  A departure of the rotation axes from parallelism provides coupling to angular 
acceleration, and an asymmetric mass distribution in each moment arm causes linear acceleration 
to couple to the gradiometer [9].  For a review of superconducting accelerometry and gravity 
gradiometry, see Ref. [21].  

B. SGG with Levitated Test Masses 
New levitation scheme.  A magnetically levitated mass requires five or six degree of freedom 

(DOF) control, which generally requires levitation coils of elaborate design [22].  A simple, in-
novative, levitation scheme, which provides stiff suspension for unwanted DOF while permitting 
complete compliance along and about the sensitive axis, has been devised and demonstrated at 
UM (see Appendix A).   

Figure 1 illustrates the principle of levitation by a current induced along a superconducting 
tube.  Inside the levitation tube, each of N-turn wires carries current .LI   This induces a screen-

ing current on the tube, LNI , to flow along the inner surface of the tube and return along the out-
er surface.  The current density on the outer surface is uniform, independent of the current distri-
bution inside the tube.  This generates a cylindrically symmetric magnetic field, which falls off as 
1/ r , as shown in Fig. 1(a).  A tube-shaped superconducting test mass with a larger diameter sur-
rounds the levitation tube.  When the test mass is concentric with the levitation tube, the field is 
uniform around the levitation tube and does not exert a net force on the test mass.  However, if 
the test mass is displaced radially, as shown in Fig. 1(b), the field becomes stronger at P and 
weaker at Q, resulting in a radial restoring force. 

Two-component SGG.  A prototype two-component SGG with levitated test masses has been 
constructed and tested [14].  The guiding principle in designing the SGG for laboratory test is the 
capability to levitate the test masses in 1-g.  This leads to a test mass design using thin vanes to 
produce a light mass ( 0.10 kg)m = .  Figure 2 is a perspective view of two niobium (Nb) test 

masses levitated by a current along a single hori-

FIG. 1.  Principle of levitation by current induced 
on a superconducting tube. 

 
FIG. 2.  Two superconducting test masses levitated 
around a single superconducting tube. 
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zontal Nb tube.  Each test mass has two wings 180º apart, which provide a moment arm about 
the tube axis (x).  A balancing screw is provided at the end of each wing to adjust the center of 
mass (c.m.) position and bring it to the rotation axis.  The current flowing along the tube pro-
vides stiff suspension in the radial directions (y and z), but leaves the test masses to translate 
freely along the axis and rotate freely about the same axis. 

On the ground, still a large levitation current 3( ~ 10  A)LNI  is required to levitate the test 
masses against Earth’s gravity, and the SGG suffers g-related errors, such as sensitivity to tilt.  In 
zero-g, the levitation and alignment can be achieved with much smaller currents and g-related er-
rors disappear; thus it should be much easier to reach the intrinsic noise level of the SGG. 

Figure 3 shows the test mass and sensing coil configuration for the SGG.  For the diagonal 
component, pancake-shaped Nb coils ( 1, 2, 1, 4)ijL i j= = K are placed near the disk faces of the 

test masses to detect their translational motion, as shown in Fig. 3(a).  For the off-diagonal com-
ponent, pancake-shaped coils ijL are located near the rectangular surfaces of the test masses to 

detect their rotational motion, as shown in Fig. 3(b).  
Figure 4(a) is the gradient sensing circuit of the diagonal component.  Persistent currents I1 

and I2 are stored in the superconducting loops formed by L11 and L12, and by L21 and L22, respec-
tively.  The linear acceleration signals from the two test masses are differenced in the SQUID to 
detect gravity gradient Γxx.  In an ideal gradiometer with perfectly matched test masses and sens-
ing coils, setting I1 = I2 would give perfect rejection of the CM in the differential-mode (DM) 
output.  In a real device, there are mismatches and I2/I1 is adjusted to maximize the CM rejection 

 
FIG. 3.  Test mass and sensing coil configuration for (a) the diagonal-component and 
(b) the off-diagonal-component SGG.   

 
FIG. 4.  (a) Gravity gradient and (b) linear acceleration sensing circuit of diagonal-component SGG.   
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ratio (CMRR).  Figure 4(b) is the CM sensing circuit.  With the sense of I2 reversed, the linear 
acceleration signals are summed in the SQUID to detect linear acceleration ax.   

Circuit diagrams for off-diagonal-component gradient Γyz and angular acceleration αx are 
identical to those in Figs. 4(a) and 4(b).  The rotation of test masses 1 and 2 modulates the cor-
responding inductances in the same way as the translation of the test masses in Figs. 4(a) and 
4(b). 

Scale factor and null stability.  Signal differencing by means of stable persistent currents 
before detection is a unique feature of the SGG.  This assures excellent null stability of the 
device, which in turn improves the overall CM rejection.  Further, the SQUID sees only a small 
differential signal, thereby reducing the dynamic-range requirement on the amplifier and signal-
processing electronics.  The mechanical stability of materials at cryogenic temperatures 
guarantees that misalignments are also stable.  These error coefficients can therefore be 
measured once and for all during the initial setup, multiplied by the proper acceleration 
components, and subtracted from the gradiometer output.  By applying this ‘residual CM 
balance’ [23], the acceleration error coefficients have been reduced effectively to 710−≤  and 

910−≤  for the diagonal and off-diagonal components, respectively, in our previous devices [3, 9]. 
The SGG is a completely passive system.  Due to the extreme stability of persistent currents 

and the mechanical stability of materials at low temperatures, once persistent currents are stored 
in the levitation and sensing coils, the positions and orientations of the test masses with respect 
to the coils, as well as the accelerometer scale factors, remain constant.  Hence there is nothing to 
control actively, except for the temperature.  This greatly simplifies the design and operation of 
the SGG.  

III.  INSTRUMENT NOISE AND ERRORS OF THE SGG 

 Intrinsic instrument noise.  The instrument noise power spectral density (PSD) limit set by 
thermal force noise and readout noise for a diagonal component is given by 

2 2 2

2 2

( )8( ) ( ) ,
2

D D
B A

D D

S f k T E f
m Q

ω ω ω
βηωΓ

⎡ ⎤−= +⎢ ⎥
⎣ ⎦l

       (3) 

where m  and l are the mass of each test mass and the gradiometer baseline; Dω  and DQ  are the 
(angular) resonance frequency and Q of the DM; β  and η  are the electromechanical energy 

coupling and energy coupling efficiency from circuit to SQUID; and ( )AE f  is the energy 
resolution of SQUID at signal frequency f , respectively.  The instrument noise PSD for an off-
diagonal component is given by 

2 2 2

2 2

( )2( ) ( ) ,
2

D D
B A

D D

S f k T E f
J Q

ω ω ω
ξ βηωΓ

⎡ ⎤−= +⎢ ⎥
⎣ ⎦

           (4) 

where ξ is the gradient-to-angular-acceleration conversion factor and J  is the moment of inertia 
of the rotating arm.  Equations (3) and (4) have been generalized from those derived by Chan and 
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Paik [2], and by Moody, Paik and Canavan [24] to allow .Df f<    

In the SGG with mechanically suspended test masses, β  is given by 

,e

e m

k
k k

β =
+

           (5) 

where ek  and mk  are the electrical and mechanical spring constants, respectively.  In the SGG 

with levitated test masses, 0,mk =  therefore, β  should be unity.  In practice, the levitation field 
may provide parasitic stiffness, causing 1,β <  which must be investigated.  The circuit energy 
coupling efficiency η  is given by  

,i

p i

L
L L

η =
+

           (6) 

where 1 1 1 1 1
11 12 21 22( )pL L L L L− − − − −≡ + + +  is the parallel combination of the four sensing coil induc-

tances and iL  is the inductance of the SQUID input coil.  For our earlier models of SGG, ( )S fΓ  

was dominated by the SQUID noise.  In the present device, 
1/2 ( )S fΓ  is reduced by over two or-

ders of magnitude by replacing the stiff mechanical spring ( ~ 10 Hz)Df  with a soft magnetic 

spring ( 0.1 Hz).Df ≤   

Table I summarizes design parameters of our prototype SGG.  Substituting these values, 
along with 4.2 K,T =  and 31 1( ) (1 0.1 Hz / ) 5 10  J HzAE f f − −= + ×  (commercial dc SQUID), 

into Eqs. (3) and (4), we find 
1/2 ( )S fΓ = 4 1/21.4 10  E Hz− −×  for the diagonal components and 

4 1/23.5 10  E Hz− −×  for the off-diagonal components in the frequency band of 1 to 50 mHz.  
Below 310−  Hz, the SGG exhibits a 1 f  power noise.  The sensitivity of this compact SGG will 
exceed that of the much larger SGG with mechanically 
suspended test masses by two orders of magnitude.  

Temperature sensitivity. The enhanced displace-
ment-to-acceleration sensitivity (by 2

Dω ) gives another 
important advantage: reduced sensitivity to temperature 
change.  Due to the dependence of the superconducting 
penetration depth on temperature, the SGG is sensitive to 
temperature fluctuations through modulation of sensing 
coil inductances [1].  For the SGG to reach the 

5 1 23 10  E Hz− −×  sensitivity, temperature needs to be con-
trolled to 5 1 22 10  K Hz ,− −×  well within the capability of 
germanium (Ge) thermometers.  Although the gradient 
sensitivity increases by two orders of magnitude from 
that of the mechanically suspended SGG, the tempera-

TABLE I.  SGG design parameters. 

Parameter Diagonal  Off-diagonal 
(kg)m  0.10  

(m)l  0.135  

2(kg m )J   58.1 10−×  
ξ   0.96 

(Hz)Cf   0.1 0.1 

CQ  104 104 

(Hz)Df  0.02 0.02 

DQ  2 × 106 2 × 106 

β  1 1 

η  0.4 0.4 
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ture control becomes easier by an order of magnitude [3]. 
Patch fields.  Electrostatic patch fields apply parasitic forces to the test masses.  The resolu-

tion of the GP-B mission was severely compromised by this error [25].  The patch effect is also 
an important error source for the LISA test masses [26].  However, unlike GP-B and LISA, 
which require disturbance-free gyros or reference masses, the SGG uses test masses suspended 
with relatively stiff magnetic springs from the spacecraft.  This implies that the residual motion 
of the test masses is small relative to the gap, hence the spatial variability of patch fields is less 
of a concern.  However, the nonlinear modulation of the gap produces acceleration noise that 
cannot be removed by the CM balance.  The patch fields will also interact with the fluctuating 
charge of the isolated test mass.  This will lead to a charge control requirement. 

Here we estimate the noise generated by modulation of the patch fields on the diagonal com-
ponent xxΓ .  The test mass response to the platform acceleration in the radial direction is negligi-
ble due to the very stiff (> 10 Hz) radial suspension provided by the levitation current.  The plat-
form acceleration ap(ω) along the sensitive axis causes the test mass to be displaced with respect 
to the sensing coils by x(ω) = ap(ω)/(ω2 − ωC

2)  where ωC  is the CM (angular) resonance fre-
quency.  The patch potentials produce a force gradient [27] given by 

     

2
0

3 ,AF
x d

ε νκ∂ =
∂           (7) 

where A is the area, ε0 is the permittivity of vacuum, v is the rms potential fluctuation, d is the 
gap, and k is a dimensionless constant between −1.2 and −1.8, depending on the assumed form of 
the voltage distribution.  Substituting d + x into d, expanding and integrating over x, we find 

 

32 2
20 0

0 3 4

3
2

Av Av xF F x x O
d d d

κε κε ⎛ ⎞⎛ ⎞= + − + ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  .      (8) 
The first-order term modifies the CM spring constant: 

2
2 0

3C
Avk m

d
κεω= −

.         (9) 
The second-order term represents the nonlinear coupling to the platform noise.  By dividing plat-
form acceleration PSD Sa (f) by the CM frequency response function and Fourier transforming, 
we obtain autocorrelation function of displacement Rx(τ).  By Fourier transforming [Rx(τ)]2 again 
with the aid of Eq. (8), we find the gravity gradient noise PSD due to the patch fields: 

( ) ( )

2
2

2π 2π '0
, 4 24 2 2

( ')1 3 1( )  '
2π 2 2π ' '/

i f i fa
pf

C C C

Av S fS f d e df e
m d f f if f Q

τ τκετ
∞ ∞−

Γ −∞ −∞

⎧ ⎫⎪ ⎪= ⎨ ⎬
− +⎪ ⎪⎩ ⎭

∫ ∫ l
.   (10) 

By evaluating the f’ and τ integrals, we obtain 

( )
( ) ( ) ( )

2
2

0
, 5 2 24 2

2π3 1 1( )
2 22π 2 2 /

a C C
pf

C C C C C

S fAv QS f
m d f f f f f Q

κε
Γ

⎡ ⎤
= ⎢ ⎥

− +⎢ ⎥⎣ ⎦l
.       (11) 
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, ( )pfS fΓ  peaks at f = 2fC and becomes a white noise at f sufficiently far away from 2fC.  We ex-

pect that the patch potentials will produce similar errors for the off-diagonal component channels. 
For high-purity Nb with which the test masses are constructed, v = 0.33 V [28].  With the pa-

rameter values listed in Table I as well as A = 5 × 10−4 m2 and d = 5 × 10−4 m into Eq. (9), we 
find 6(0.16 8 10 )k −= + ×  N m−1.  This small modification of the spring constant is inconsequen-
tial since the spring constants of the two test masses are matched precisely in the CM balancing 
procedure.  Substituting the parameter values and 15 2 4 1(0.1 Hz) 1 10  m  s  HzaS − − −= ×  into Eq. (11), 

we obtain 1/2 5 1/2
, ( ) 3 10  E HzpfS f − −

Γ = ×  at f = 0.01 Hz.  This is smaller than the scale factor nonli-

nearity error by a factor of 3.  We aim to reduce the nonlinearity errors by two orders of magni-
tude by measuring and compensating for the nonlinear response of the instrument (see Table II).  

Other noise and errors.  Many other types of noise must be suppressed for the SGG to reach 
the intrinsic instrument noise limit.  To eliminate coupling to the external magnetic fields, a mu-
metal shield is provided for the cryostat and the superconducting circuit is completely shielded in 
a superconductor.  The SGG platform needs to be sufficiently rigid for its own thermal noise to 
be negligible and to allow a high degree of CM balance.  Techniques to mitigate these noise and 
other errors of the instrument have been studied extensively and documented [2, 3]. 

Table II lists major errors (in addition to the intrinsic noise) of the diagonal-component chan-
nels of the prototype SGG in the ground laboratory.  The off-diagonal-component channels have 
similar errors.  The third column shows the coupling constant to various types of environment 
noise times the degree of compensation applied.  The angular rate error multiplied by Earth’s 
spin rate produces centrifugal acceleration error.  The attitude error modulates Earth’s gravity 
gradient as well as gravity field gE.  In the SGG orientation chosen (two axes horizontal and one 
axis vertical), the gravity gradient error becomes a second order error and is negligible.  The 
scale factor nonlinearity error was computed by assuming the same nonlinearity coefficient in 
displacement as in our mechanically suspended SGG.  The linear acceleration PSD caused by the 
attitude error was entered as the ambient level for both types of nonlinearity errors.  The SGG 
will have sufficient rejection/compensation capability to keep each error below the intrinsic noise 
level.   

TABLE II.  Expected errors of the diagonal component channels in the ground laboratory at 0.01 Hz. 

Error source Ambient level  Coupling⋅compensation Error  

Linear acceleration 1 × 10−8 m s−2 Hz−1/2 (1 × 10−5 )⋅(1 × 10−4 ) 1.3 × 10−7 E Hz−1/2 
Angular acceleration 3 × 10−9 rad s−2 Hz−1/2 (1 × 10−5 )⋅(1 × 10−4 ) 5 × 10−9 E Hz−1/2 

Angular rate 5 × 10−8 rad s−1 Hz−1/2 (7 × 10−5 rad s−1)⋅(1 × 10−4) 5 × 10−7 E Hz−1/2 

Attitude 8 × 10−7 rad Hz−1/2 (73 s−2)⋅(1 × 10−5 )⋅(1 × 10−4 )  6 × 10−5 E Hz−1/2 

Scale factor nonlinearity  1 × 10−14 m2 s−4 Hz−1 (90 m−2 s2 Hz1/2) ⋅(1 × 10−2) 9 × 10−6 E Hz−1/2 

Patch field nonlinearity 1 × 10−14 m2 s−4 Hz−1 (30 m−2 s2 Hz1/2) ⋅(1 × 10−2) 3 × 10−6 E Hz−1/2 

Temperature fluctuations 2 × 10−5 K Hz−1/2 (1.5 E K−1)⋅(1 × 10−2) 3 × 10−7 E Hz−1/2 
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IV.  CONSTRUCTION AND TEST OF THE NEW SGG 

Construction of two-component SGG.  Each test mass was constructed by snugly-fitting a 
Nb tube into a precision hole drilled through the central axis of the test mass body.  For ease of 
winding the levitation coil, two separate levitation tubes were used, one for each test mass, in-
stead of using a common levitation tube for the pair as shown in Fig. 2.  Each levitation coil was 
wound with 160 turns of Nb wire, 40 turns on each quadrant of the levitation tube.  The return 
wires were routed on the outside of a superconducting shield enclosing the test mass and sensing 
coils, to prevent the magnetic field arising from the current in the returning wires from canceling 
that produced by the levitation current.   

Figure 5 shows our prototype SGG mounted on the 
cryostat.  The cross-shaped housing facing the front is one 
of the two Nb housings for the two test masses.  The other 
one (hidden from view) is mounted on the opposite face 
of a precision titanium (Ti) cube, 10.2 cm per side.  The 
Ti cube was polished to make the surfaces parallel or per-
pendicular to two parts in 510 .    

Dynamics of levitated test masses.  The test masses 
were levitated with 31.1 10  A. LNI = ×   To free the test 
masses, we had to apply a relatively large asymmetric 
current in the rotation sensing coils since mass balance 
had not been applied to the test masses yet.  With the ro-
tation sensing coils dedicated to freeing the test masses, it 
was not possible to demonstrate the off-diagonal-
component SGG.  

Our model indicates that the c.m. of one test mass is 
offset by 80 μm away from the rotation axis, which is 
consistent with the machining precision of the prototype 
SGG.  This c.m. offset will be reduced to < 1 μm by adjusting the balancing screws iteratively 
(see Fig. 2).  At the pressure 610−<  torr, the transla-
tional mode exhibited Q of 43.6 10 ,×  which is quite 
remarkable for a single mass with no CM balance. 

Figure 6 shows the observed resonance frequen-
cy squared versus the sensing current squared for the 
translational mode of one test mass.  The excellent fit 
of the data points to a straight line shows that the ac-
celeration-to-current transfer function is highly li-
near.  The non-zero y intercept, corresponding to 1.4 
Hz, however, indicates that there was parasitic stiff-

 
FIG. 5.  Two-component SGG mounted 
on the cryostat.   

FIG. 6.  Frequency squared vs. current squared 
for the translational mode. 
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ness.  A similar plot for the rotational mode does 
not show such stiffness.  The parasitic stiffness 
in the translational mode appears to be coming 
from coupling of the levitation current to the 
translation DOF.  For a detailed discussion, see 
Appendix B.     

Common mode balance.  A unique characte-
ristic of an SGG is its ability to balance out the 
CM sensitivity by adjusting persistent currents, 
thus achieve extreme null stability.  This has 
been demonstrated in our new SGG.  Figure 7 
shows the SQUID response to an applied CM acceleration plotted against the ratio of the sensing 
currents in the two accelerometers.  The CM balance has been achieved with the current ratio of 

2 1 0.37.I I = −  

Without a provision to measure linear and angular accelerations in the other two axes, the 
CMRR in this device was limited to 310  due to misalignment of the sensitive axes.  This did not 
permit demonstration of the sensitivity of the new SGG since the DM output was dominated by 
uncompensated dynamic noise of the laboratory.   

V.  FUTURE MODIFICATIONS AND IMPROVEMENTS 

Elimination of parasitic stiffness.  As shown in Appendix B, the parasitic stiffness was 
caused by magnetic fields produced by screening currents on the outer surface of the test masses 
induced by the strong levitation field.  We have found a simple solution to eliminate the parasitic 
stiffness.  We will insert a thin insulating layer between the center tube and the rest of the test 
mass body, thus prevent the screening currents from coupling to the translational motion.   

Mass balance and sensitive axis alignment.  Our CMRR goal for the new SGG is 910 , by 
combining an initial balance to one part in 510  with persistent currents and alignments, and a re-
sidual balance to one part in 410 .  To meet this goal, the mass balance of the test masses must be 
improved by a factor of 100.  We plan to improve the balance of the test masses at room temper-
ature by a factor of 10 by trimming the mass.  The remaining factor of 10 improvement will be 
achieved by iteratively adjusting the balancing screws and testing the balance at 4.2 K. 

The alignment of the levitation tubes was limited to 310−  rad in our prototype SGG.  To 
achieve the initial balance to one part in 510 , alignment must be improved to 510−  rad.  We will 
investigate the possibility of implementing an in-situ axis alignment system by using the cryo-
genically proven PiezoKnobs, manufactured by Janssen Precision Engineering 
(www.janssenprecisionengineering.com).  These piezoknobs have a minimum step of 1-5 nm at 
4 K and can potentially provide 710−  rad alignment.  

Tensor SGG.  We plan to expand the SGG to a full tensor instrument.  Figure 8 is a partially 

 
FIG. 7.  CM acceleration to SQUID transfer 
function versus the ratio of sensing currents. 
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exploded view of our future tensor SGG.  Six 
identical accelerometers are mounted on the Ti 
mounting cube.  The entire SGG assembly will 
weigh 12 kg and fit within a sphere of 22 cm in 
diameter.   

The device will measure all six components 
of the gradient tensor, as well as all six compo-
nents of the linear and angular accelerations of 
the platform.  The acceleration components will 
be used to achieve the overall CMRR of 910 .    

Expected sensitivity of spaceborne SGG.  
For Earth science missions, the SGG will be 
scaled up to 1.0 kgm =  and 0.20 m=l  to im-
prove the sensitivity by a factor of 5 over the 

values computed above.  Figure 9 shows the intrinsic noise spectral densities 
1 2 ( )S fΓ  for two dif-

ferent values of Df .  With Df  tuned to 20 mHz, the SGG will have a wide bandwidth up to 0.5 

Hz, permitting a high spatial-resolution of gravity.  With Df  tuned to 0.2 mHz, the sensitivity 
below 1 mHz will be improved by an order of magnitude.  The sensitivities indicated by the red 
and blue curves correspond to two to three orders of magnitude improvement over those 
achieved by GOCE [29] and GRACE [13], respectively.  The typical acceleration level encoun-
tered in a low-Earth orbit, 6 2 1/21 10  m s  Hz− − −× , will produce a gradient error of 

6 1/28.7 10  E Hz− −× , one order of magnitude below the target sensitivity of the SGG for Earth 
gravity missions.  In zero-g, the attitude modulation of gravity field, which is the largest error in 
the ground laboratory, is absent.  If the spacecraft vibrations and jitter are controlled to within ten 
times above the levels of the ground laboratory 
listed in Table II, the CMRR of 910  will make 
drag-free control unnecessary, except in the 
along-track direction as in GOCE. 

It is interesting to compare the expected 
sensitivity of our spaceborne SGG with the 
demonstrated sensitivity of LISA Pathfinder 
(LPF) [26].  The LPF test masses weighed 1.93 
kg each.  Between 0.7 and 20 mHz, LTF 
reached differential acceleration noise of 

15 2 1/25.6 10 m s Hz− − −× , which corresponds to 
5 1/22.8 10  E Hz− −×  when divided by the SGG 

baseline, l = 0.20 m.  This is basically identical 

 
FIG. 8.  Partially exploded view of the tensor SGG. 

 
FIG. 9.  Intrinsic noise of SGG for Earth science 
missions.  The red and blue curves represent the in-
strument noise corresponding to fD = 20 mHz and 
0.2 mHz, respectively.   
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to the sensitivity of the SGG tuned to Df = 20 mHz (red curve in Fig. 9).  It is remarkable that 
LPF achieved this sensitivity at room temperature with test masses only twice as heavy as those 
of the SGG.  However, to achieve this sensitivity, LPF was sent to the first Lagrange point (L1), 
about 1.5 million kilometers from Earth, and had to be in a drag-free satellite.  The SGG does not 
require a full drag-free satellite.  Its sensitivity below 1 mHz improves by an order of magnitude 
if Df  be tuned to 0.2 mHz.  The SGG sensitivity could be improved further by using a two-stage 
SQUID with proven lower noise [30].  So the SGG could potentially reach sensitivity two orders 
of magnitude beyond that achieved by LPF.     

VI.  CONCLUSION AND DISCUSSIONS 

Highly sensitive SGGs were developed at UM in the 1980’s and early 1990’s.  The first gra-
diometer developed at UM in the early 1980’s demonstrated a gradient resolution of 1 20.7 E Hz−  
[2], a level yet to be surpassed by a room-temperature device on Earth.  A later version has dem-
onstrated CM rejection to better than one part in 710 ,  which led to a demonstrated noise level of 

1 20.02 E Hz−  [3].  The SGG has a unique capability of rejecting CM accelerations to one part in 
710  or better owing to the extreme stability of persistent currents combined with mechanical sta-

bility of the platform at cryogenic temperatures. 
While convenient for ground-based testing, mechanical springs reduce the inherent sensitivi-

ty of the SGG.  By replacing the relatively stiff mechanical springs used in the earlier devices 
with soft magnetic levitation, the sensitivity of the device could be improved by two to three or-
ders of magnitude.  We have designed, constructed and tested a prototype two-component SGG, 
one diagonal and one off-diagonal, by combining a pair of levitated test masses, each with two 
DOF.  Both masses were successfully levitated and CM rejection was demonstrated for the first 
time with levitated test masses.  We have found parasitic stiffness in the diagonal-component 
channel due to the magnetic field produced by the levitation current coupling to the translational 
motion.  We were able to identify the cause of the problem and found a way to eliminate this 
stiffness by a straightforward modification of the test masses. 

For NASA’s Earth science and planetary science applications, we plan to construct a full ten-
sor SGG by combining six levitated test masses [14, 31].  A compact design with each test mass 
weighing 0.10 kg and a baseline of 0.135 m yields an intrinsic noise level of 4 1 21.4 10  E Hz− −×  
for the diagonal components and 4 1 23.5 10  E Hz− −×  for the off-diagonal components in the fre-
quency band of 1 to 50 mHz.  This represents over two orders of magnitude improvement 
beyond what has been demonstrated with the much larger SGG with mechanically suspended test 
masses.  The measurement bandwidth and sensitivity of the SGG can be tuned in-flight to detect 
both static and time-variable gravity fields from the same mission [14].  The SGG mission would 
be like GRACE and GOCE combined, with the sensitivity improved by two to three orders of 
magnitude in all frequencies.   

Sensitive SGGs with levitated test masses will find useful applications in many precision 
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gravity experiments, such as a satellite test of the Equivalence Principle [22], and detection of 
gravitomagnetic fields in Earth orbit [32].  A scaled-up version of the tensor SGG could detect 
transient gravity signals from an earthquake rupture at the speed of light.  A network of such de-
tectors could determine the magnitude and the epicenter of the earthquake and issue a more 
prompt warning of the earthquake than is possible with a seismometer network [33, 34].   

The present ground-based laser interferometer GW detectors cover a frequency band from 10 
Hz to several kilohertz [35], whereas a future space mission like LISA will cover from 0.1 mHz 
to 0.1 Hz [36].  Recently, a new type of ground-based GW detector, called “SOGRO (Supercon-
ducting Omni-directional Gravitational Radiation Observatory),” was proposed to cover a mid-
frequency band of 0.1 to 10 Hz [37].  SOGRO is basically an enormously scaled-up version of 
the tensor SGG to a baseline of 30-50 m with each test mass weighing 5 tons,  The target sensi-
tivity of SOGRO is 20 1 210  Hz− − .  

The absolute stability of the superconducting sensing circuit, which utilizes flux quantization, 
and the enhanced stability of the mechanical platform at cryogenic temperatures render the SGG 
a unique capability of rejecting the platform vibrations to one part in 910  or better.  This gives 
the SGG a tremendous advantage over other systems in detecting tiny gravity signals at low fre-
quencies ( 1 Hz),f <   where vibration isolation becomes extremely difficult.  These advantages 
will be fully utilized in gravity mapping missions for Earth and planets and in the proposed SO-
GRO detector.   
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APPENDIX A:  LEVITATION BY CURRENT ALONG A TUBE 

A.1  Levitation Force and Resonance Frequency 
Consider an inner superconducting tube (levitation tube) of radius 1R  with wires inside it 

carrying a net current I, and an outer superconducting tube (test mass) of radius 2.R   When the 
tubes are centered, the surface currents on the inner tube are distributed such that the magnetic 
field outside it is uniformly centered about the tube from Ampere’s law, as in Fig. 1(a), 
regardless of the location of the wires within the tube.  However, if the outer tube is displaced, as 
shown in Fig. 1(b), the magnetic field above the inner levitating tube is compressed while the 
field below it is expanded.  This provides a restoring force on the outer tube.  

To estimate the restoring force, we use the image current method since the Lorentz force 
between two current-carrying wires obeys the same equation as the Coulomb force between two 
line charges (except for the sign).  From electrostatics [38], we know that the equipotentials 
between two equal and opposite line charges are circular cylinders.  The force between the two 
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tubes is the same as the force between the line current inside the 
levitating tube and its image current.  The location of the tubes 
and the line-currents is shown schematically in Fig. 10.  Solving 
for the equipotential between two line charges separated by a 
distance 2a, we obtain the following relations: 

  1 1 2 2 1 2csch , csch , (coth coth ),R a U R a U D a U U= = = −   (A1) 
    1 02 ,U Vπε λ=        (A2) 

where V is the potential and λ  is the line charge per unit length.  
Combining these equations, we get 

2 2 1 2 2 2 1/2
2 1( ) ( ) .D R a R a= + − +     (A3) 

The force between two currents separated by a distance 2a can 
be expressed as 

2
0 ,

2 2r
IF l
a

μ
π

=        (A4) 

where l is the length of the outer tube (i.e., test mass).  For the 
case where the two cylinders are nearly concentric, we have 

1 2,D R R<< .  Equations (A3) and (A4) then yield 
2 2
2 1 ,
2

R Ra
D
−=           (A5) 

2
0

2 2
2 1

.
2r

IF Dl
R R

μ
π

=
−

      (A6) 

This method establishes the spring constant and hence the frequency of radial oscillation of the 
test mass in zero-g, where the test mass is concentric with respect to the levitation tube.  
Dividing by the mass of the test mass m gives the radial resonance frequency: 

2
2 0

2 2
2 1

.
2r

I l
R R m

μω
π

=
−

                (A7) 

Now, we consider the case where the test mass sags with respect to the levitation tube due to 
gravity.  When the levitating tube rests horizontally on the earth, the outer tube is initially at rest 
on top of it.  As the levitation current is increased, it experiences a repulsive force and begins to 
rise above the levitating tube and approaches the concentric position as the current goes to 
infinity.  When the two cylinders are not concentric, the equations of force have to be solved to 
obtain the restoring force: 

2
0

2 2
2 1

.
2r

IF Dl mg
R R

μ
π

= =
−

         (A8) 

The general form of the solution for the distance between the tubes can be expressed as 

 
FIG. 10.  Schematic of the test
mass and levitation tube. 
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As the test mass is a free rigid body, it will have six DOF.  It should have three linear modes 
and three angular modes, which are all distinct.  To calculate the frequencies of the linear modes 
of the test mass, we invoke the principle of flux conservation in the levitating coil:   

0 ( ) .T S L L LL L I L IΦ = + =          (A10)
 

where TL  is the inductance due to the magnetic field between the two tubes, SL  is the stray 

inductance arising from the field elsewhere, LL  is the total inductance of the levitation coil, and 

LI  is the persistent current in the coil ( ).LI NI=   To calculate the frequency of the vertical mode, 
we need to express the inductance in terms of the separation D between the centers of the test 
mass and the levitating tube.  This can be done by calculating the magnetic flux in the region 
between the tubes as  

0
.

D

T LL I l Bdz= ∫            (A11) 

The field can once again be calculated using the image current method described earlier.  We get 

0 0 0

0 0

( )(2 )ln ,
2 (2 )T

l r D a rL
a r D r

μ
π

⎡ ⎤+ −= ⎢ ⎥− −⎣ ⎦
        (A12) 

where 

1 1
0 coth csch .Rr R a a

a
−⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦   

          (A13)   

The total stored energy can be expressed as 
2
0 .

2 L

E
L

Φ=            (A14) 

The restoring force and the spring constant are given by 
2
0
2 ,

2
L

v
L

dLdEF
dD L dD

Φ= − = −
 

                (A15)
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         (A16) 

using the fact that SL  is not modulated by D.  Substituting 0 L LL IΦ = , we get 

 

22 2
2

2

2 .
2

v L T T
v

L

k I dL d L
m m L dD dD

ω
⎡ ⎤⎛ ⎞= = −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
            (A17) 

The vertical mode frequency of the test mass is 2 .v vf ω π=  
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A.2  Demonstration of New Levitation Scheme 
To test this levitation principle, we developed 

the simple setup shown in Fig. 11.  A Nb tube of 4.78 mm O.D. was used as the levitating tube.  
The test mass consisted of a Nb tube of 6.35 mm O.D., 12.7 mm length and 0.38 mm wall thick-
ness, weighing 0.78 g.  Since there is no magnetic restoring force along a straight levitation tube, 
we introduced a slight curvature in the levitating tube to have gravity provide the restoring force 
as in a pendulum.  A Nb wire was looped through the levitating tube 49 times ( 49).N =   A small 
pancake coil located beneath the test mass was connected to a SQUID to sense its motion. 

As LI  was increased to 1.8 A (total levitation current: 88 ALNI = ), there appeared two low 
frequency modes and several high frequency modes.  In particular, the lowest observed frequen-
cy, 0.34 Hz, agreed with the expected frequency of the sliding mode, in which the test mass 
slides along the levitating tube and is trapped in the gravitational potential well created by the 
curvature of the tube.  Figure 12 shows 2

vf  versus 2.LI  The line represents the 2-D model derived 
in Appendix A.1 and is computed numerically using Eq. (A17).  It is remarkable how well the 
experiment agrees with our simple theory.  When the test mass is barely levitated, vf  is very high 
(~ 100 Hz),  since the magnetic field above the levitation tube (point P in Fig. 1b) is much 
stronger than below (point Q).  As LI  increases to 3.5 A ( ~170 ALNI ), vf  is reduced to a mini-
mum (~ 50 Hz) because the magnetic field becomes more uniform around the levitation tube, as 
the test mass becomes more concentric with the levitation tube.  With a continued increase of LI , 

vf  increases again, as the magnetic field increases everywhere. 

Equation (A12) yields TL  = 0.42 μH for D = 0.36 mm, and SL  = 0.05 μH is obtained from 

our best fit of the data.  However, the values of TL  and SL  are expected to change substantially 
in a more realistic 3-D model. 

 
 FIG. 11.  Test setup for new levitation scheme.  

FIG. 12.  Vertical mode frequency squared ver-
sus levitation current squared. 
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APPENDIX B:  PARASITIC STIFFNESS 
AGAINST TRANSLATIONAL MOTION 

B.1  Origin of Parasitic Stiffness 
The magnetic field from the levitation current 

induces a current that flows along the inner surface 
of the central tube of the test mass and returns 
through the outer surface of the test mass.  Figure 
13(a) shows the current (blue) that flows through 
the outer surface of the test mass and the resulting 
magnetic field (red).  Figure 13(b) shows the side 
(cross-sectional) view of the magnetic field that 
wraps around the center tube and the two wings.  
On the outer surface of the test mass, the current 
splits into three paths: one along the center tube 
and the other two to the two wings.  The magni-
tude of the current along each path should be in-
versely proportional to the inductance of that path.  Each wing is connected to the center tube by 
two narrow bridges ( ).b bw h r× ×    

The observed parasitic stiffness against the translational mode appears to arise mainly from 
the strong magnetic field that wraps around the narrow bridges.  Due to the current continuity, 
the current that flows out across one bridge must be the same as the current that flows in across 
the other bridge.  If the test mass undergoes a translational motion x along the tube axis, the gap 
between the two edges of the test mass and the superconducting shield is modulated in the oppo-
site direction: ,ed x±  so the total inductance of the bridge-wing-bridge path, thus the current 
along that path, will not change to the first order.  However, the magnetic fields are modulated in 
the opposite directions in the two gaps, therefore, must produce a net restoring force.   

Let a fraction η  of the total current I cross one bridge: .b LI Iη=   The magnetic field pro-
duced by this current in close proximity to the bridge can be estimated from Ampere’s law: 

0(2 2 ) ,b b bB d B h w Iμ η⋅ = + =∫
uur uur

l             (B1) 

where bw  is the width of bridge and h is the height of the bridge.  This gives 

0 .
2( )b

b

IB
h w
μ η=

+
          (B2) 

As the test mass is displaced, bB  is modulated by, ( ),b b eB B x dδ = ±  producing a restoring force: 
2 2 2

2 2

0 0

21( ) 1 1 ,
2

b
b b

e e e

B Ax xF x B B A x
d d dμ μ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − − + = −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

        (B3) 

where 2 bA r h=  and br  is the length of the bridge.  From 2( ) ,tF x m xω= −  

FIG. 13  Induced current on the test mass surfac-
es and the resulting magnetic fields. 
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With numerical values: 0.2,η ≈ 1200 A,I = 0.51 cm,h = 0.20 cm, bw = 0.4 cm,br =

0.23 cm,ed = 22 0.41 cm ,bA r h= =  and 0.1m =  kg, we find 1.8 Hzrf ≈ .  This is very close to 
our observed frequency.   

B.2  Hardware Modification to Eliminate Parasitic Stiffness 
The original test mass was constructed by snugly-fitting a Nb tube into a precision hole 

drilled through the central axis of the Nb test mass (see Fig. 2).  One simple solution to eliminate 
the parasitic stiffness is: inserting a thin insulating layer between the center tube and the rest of 
the test mass body.  This would prevent the returning currents on the outside of the test mass 
from branching to the two wings through the narrow bridges, thus eliminate the strong magnetic 
field that wraps around the narrow bridges.  This is one of the modifications being made to im-
prove the performance of our SGG.  
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