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Thermoelectric power generation has been recognized as one of the most important technologies,
and high-performance thermoelectric materials have long been pursued. However, because of the
large number of candidate materials, this quest is extremely challenging, and it has become clear
that a firm theoretical concept from the viewpoint of band-structure engineering is needed. In
this study, we theoretically demonstrate that pnictogen-dichalcogenide layered compounds, which
originally attracted attention as a family of superconductors and have recently been investigated
as thermoelectric materials, can exhibit very high thermoelectric performance with elemental sub-
stitution. In particular, we clarify a promising guiding principle for materials design and find that
LaOAsSe2, a material that has yet to be synthesized, has a powerfactor that is six times as large
as that of the known compound LaOBiS2 and can exhibit a very large ZT under some plausible
assumptions. This large enhancement of the thermoelectric performance originates from the quasi-
one-dimensional gapped-Dirac-like band dispersion, which is realized by the square-lattice network.
Our study offers one ideal limit of the band structure for thermoelectric materials. Because our
target materials have high controllability of constituent elements and feasibility of carrier doping,
experimental studies along this line are strongly awaited.

I. INTRODUCTION

Exploring high-performance thermoelectric materials
is of crucial importance for the efficient use of renew-
able heat energy. The efficiency of thermoelectric con-
version is evaluated by the dimensionless figure of merit,
ZT = σS2Tκ−1, where σ, S, T , and κ are the electrical
conductivity, Seebeck coefficient, temperature, and ther-
mal conductivity, respectively. A considerable number of
studies have been conducted to increase the ZT value,
e.g., by nanostructuring [1–3] and by the search for ap-
propriate materials. Although the great importance of
this quest has been widely recognized, it is extremely
challenging to find favorable materials among the large
number of candidates. For this purpose, a firm theo-
retical concept based on band-structure engineering is
needed. It is also important for candidate materials to
have large degrees of freedom, such as for elemental sub-
stitution and carrier doping, because of the high sen-
sitivity of the thermoelectric performance to the band
structure in a narrow energy window around the chemi-
cal potential, which often requires fine-tuning of the band
structure and carrier concentration to maximize the per-
formance.
One promising strategy is to reduce the dimensional-

ity of the electronic structure because a low-dimensional
electronic structure can simultaneously host a large den-
sity of states (DOS) and high group velocity along
specific directions, both of which are advantageous for
high-thermoelectric performance [4–6]. These studies
noted that the thermal conductivity is also suppressed
for low-dimensional materials. Indeed, some high-
performance thermoelectric materials, such as Bi2Te3 al-
loys [3, 7], BiCuSeO [8], and NaxCoO2 [9], have lay-
ered structures. Recent findings of high-thermoelectric
performance in (quasi-)one-dimensional materials such
as silicon nanowires [1], carbon nanotubes [10, 11],

In4Se3−δ [12], SbCrSe3 [13], and Ta4SiTe4 [14], are also
encouraging. Along this line, one promising candidate
is pnictogen-dichalcogenide layered compounds [15–19],
which originally attracted attention as a family of lay-
ered superconductors and have recently been observed
to exhibit favorable thermoelectric performance [20]. Al-
though many studies have focused on their supercon-
ducting properties [17–19, 21, 22], there have thus far
been few experimental [23–30] or theoretical [31, 32] in-
vestigations on their thermoelectric properties. Never-
theless, a relatively high ZT value ∼ 0.36 with a low
thermal conductivity κ ∼ 1 W m−1 K−1 has already
been reported for LaOBiSSe at ∼ 650 K [26]. Although
this ZT value is not very high compared with those of
materials currently used in industry, the rich variety of
constituent elements of pnictogen-dichalcogenide layered
compounds [17–19], a large part of which remains un-
explored, offers a promising opportunity for improving
their thermoelectric performance. Moreover, some theo-
retical studies have shown that a quasi-one-dimensional
band structure is realized in these compounds [33], which
can be a promising platform for high-thermoelectric per-
formance.

In this study, we uncovered a promising guiding prin-
ciple for improving the thermoelectric performance of
pnictogen-dichalcogenide layered compounds by careful
theoretical analysis. In particular, we discovered that
a material that has yet to be synthesized, LaOAsSe2,
can exhibit distinguished thermoelectric performance.
The square lattice therein offers an ideal arena for the
quasi-one-dimensional gapped-Dirac-like band dispersion
and therefore for high-thermoelectric performance. This
study offers not only an important clue for optimizing the
thermoelectric performance of pnictogen-dichalcogenide
layered compounds but also a valuable example of mate-

rials design to improve their functionality, which has re-
ceived increased attention today as a result of the rapid
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development in materials informatics.
This paper is organized as follows. Section II presents

a detailed procedure of our calculation and a brief de-
scription of the Boltzmann transport theory used in our
study. We present the basic thermoelectric properties
of a prototypical pnictogen-dichalcogenide compound,
LaOBiS2, in Sec. III A. Our theoretical analysis of several
factors that dominate the thermoelectric performance
of Bi-chalcogenide layered compounds is presented in
Sec. III B. Based on the guiding principle for improv-
ing their performance, which is observed in Sec. III B, we
compare the thermoelectric performance of some compo-
sitions in Sec. III C. Additional discussion on the ideal
condition for the band structure we found is presented in
Sec. III D. Section IV is devoted to the conclusion of this
study.

II. METHODS OF CALCULATION

For first-principles band structure calculation, we used
the modified Becke–Johnson (mBJ) potential proposed
by Tran and Blaha [34, 35] and the full-potential lin-
earized augmented plane-wave method, as implemented
in the wien2k code [36]. The experimental crystal struc-
ture of LaOBiS2 was taken from Ref. [37] (a = 4.05 Å,
c = 13.74 Å). Although slight symmetry reduction was
experimentally observed [38], we assumed the tetrago-
nal crystal structure (space group: P4/nmm) for sim-
plicity. This treatment suffices for our aim of obtain-
ing a theoretical guiding principle for materials design
of pnictogen-dichalcogenide layered compounds, many of
which have the tetragonal symmetry. Short discussions
regarding the symmetry reduction of the crystal struc-
ture are presented in the APPENDIX. We also took the
experimental crystal structures of NdOBiS2 (a = 4.00
Å, c = 13.46 Å) and NdOSbS2 (a = 3.98 Å, c = 13.80
Å) from Refs. [39] and [40], respectively [41], both of
which belong to the space group P4/nmm. To represent
the strongly localized 4f orbitals of Nd atoms, we em-
ployed the open-core treatment where the 4f3 states are
included into the core states, i.e., not explicitly treated
as the valence states. The RKmax parameter was set to
8.00. Because LaOAsSe2 has yet to be synthesized to our
knowledge, we determined its crystal structure through
structural optimization using the projector augmented
wave method [42] and the Perdew–Burke–Ernzerhof pa-
rameterization of the generalized gradient approximation
(PBE-GGA) [43] as implemented in the vasp code [44–
47]. For the structural optimization, we employed a
plane-wave cutoff energy of 600 eV, a 24×24×6 k-mesh,
and the convergence criterion for the Hellmann–Feynman
force on each atom of 0.01 eV/Å without the inclusion
of the spin–orbit coupling (SOC). We also assumed the
space group P4/nmm there. The obtained lattice pa-
rameters were a = 3.99 Å and c = 14.33 Å.
After the first-principles band structure calculation,

we extracted the Wannier functions from the calculated

band structures using the Wien2Wannier and Wan-

nier90 codes [48–51]. In this study, we took the px,y,z
orbitals of all the Bi (Sb, As), S (Se), and O atoms as
the Wannier basis set. Here, we considered both the
valence and conduction band dispersions by accounting
for these atomic orbitals while we concentrated on the
electron-carrier doping, which is feasible in experiments.
This is because the bipolar conduction can have a sizable
contribution to the transport properties at high temper-
atures for small-band-gap materials, a category to which
our target materials can belong, as we shall see later in
this paper. We did not perform the maximal localiza-
tion procedure for the Wannier functions to prevent or-
bital mixing among the different spin components and
to allow for a more intuitive understanding of the hop-
ping parameters. We used an 8 × 8 × 8 k-mesh for con-
structing the Wannier functions. Then, we constructed
the tight-binding model with the obtained hopping pa-
rameters among the Wannier functions and analyzed the
transport properties using this model. For this purpose,
we employed Boltzmann transport theory [52], where the
transport coefficients Kν are represented as follows:

Kν = τ
∑

n,k

vn,k ⊗ vn,k

[

−
∂f0
∂ǫn,k

]

(ǫn,k − µ(T ))ν , (1)

by using the Fermi–Dirac distribution function f0, chem-
ical potential µ(T ), energy ǫn,k and group velocity vn,k

of the one-electron orbital on the n-th band at some k-
point and the relaxation time τ , which was assumed to
be constant in this study. Here, µ(T ) was determined
to provide a given carrier density against the tempera-
ture change for calculations with the fixed carrier density.
The electrical conductivity σ, Seebeck coefficient S, and
electrical thermal conductivity κel are expressed as fol-
lows:

σ = e2K0, S = −
1

eT
K

−1

0
K1, (2)

κel =
1

T

[

K2 −K1K
−1

0
K1

]

, (3)

where e (> 0) is the elementary charge. The powerfac-
tor PF is defined as PF = σS2 for the diagonal compo-
nents of these tensors. For the transport calculations,
we used our own code. Note that the tetragonal crys-
tal structure, on which we focused here, forces the off-
diagonal components of the transport coefficients to be
zero. We assumed the thermal conductivity can be repre-
sented as the sum of the electrical thermal conductivity
κel and the lattice electrical thermal conductivity κlat,
namely, κ = κel + κlat. To simulate the carrier doping,
we adopted the rigid band approximation, as it has been
validated by theoretical observation that the electron-
carrier doping does not have a large effect on the band
structure of LaOBiS2 [53]. In this study, we investigated
the transport properties at T = 300 K unless noted oth-
erwise. To achieve sufficient convergence, we employed a
240× 240× 60 k-mesh for calculating the transport coef-
ficients, whereas a 480× 480× 60 k-mesh was used only
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FIG. 1: (a) Crystal structure of tetragonal LaOBiS2 and (b)
the square lattice therein with the definition of some hop-
ping amplitudes. The crystal structures were depicted us-
ing VESTA software [55]. (c) Electronic band structures ob-
tained using first-principles calculations (black dotted lines)
and model calculations (red solid lines). The energy of the
valence band maximum was set to zero. (d) DOS, (e) Fermi
surface at µ =1.34 eV, which is close to the vHs, and (f) trans-
port properties calculated using the tight-binding model. The
three arrows in the upper half of (f) correspond to those shown
in (c) and (d). All the calculations in this figure include the
SOC.

for evaluating the ZT values in Sec. III C, where a lower-
temperature region was also investigated. We note that
the phonon drag effect, which is beyond the scope of our
present study, can affect the thermoelectric properties in
the low-temperature regime, whereas it is expected to be
suppressed in the high-temperature regime where the ZT
value increases. All the results, except those in Figures
1(a)–(b), 2(c), and the black dotted lines in Figures 1(c),
2(a), and 5(k), were calculated using the tight-binding
model, and therefore, the 4f bands do not appear there.

III. RESULTS AND DISCUSSION

A. Thermoelectric properties of LaOBiS2

Figure 1 presents the crystal structure, basic electronic
structure, and transport properties of LaOBiS2, which we
adopted here as a typical pnictogen-dichalcogenide lay-
ered compound. First, we briefly review the basic elec-
tronic structure of LaOBiS2 but refer the readers to sev-
eral review articles [17–19] for more details. As observed
in Figure 1(a)–(b), the square lattice consisting of Bi and
S atoms and the blocking layers consisting of La and O
atoms are alternatively stacked. In Figure 1(c), the band
structure calculated using the tight-binding model with
the spin–orbit coupling is marked with red solid lines to-
gether with the first-principles marked with black dotted
lines. It is apparent that our tight-binding model well
reproduces the first-principles band structure. The band
gap calculated using the mBJ potential, 0.6 eV, is fairly
consistent with the experimental ones, 0.7 [56], 0.8 [57],
and 1.0 [58] with different rates of F substitution and dif-
ferent measurement methods, whereas the popular PBE-
GGA calculation provides a greatly underestimated value
of 0.2 eV [59].
Figure 1(d) shows the DOS for the conduction bands,

which consist of Bi and S states. Here, we focus on the
conduction band dispersion because the electron carri-
ers are doped into pnictogen-dichalcogenide layered com-
pounds, e.g., by (partial) substitution of F atoms for O
atoms in experiments. Three characteristic DOS peaks
are indicated by arrows in this figure. The two arrows
with dotted lines at the energy levels of approximately
0.6 and 1.8 eV indicate the two band edges around the
X point, and the most prominent DOS peak at the en-
ergy level of approximately 1.4 eV corresponds to the
van Hove singularity (vHs). The Fermi surface at the
energy level near the vHs is shown in Figure 1(e). As
observed in this figure, the conduction band dispersion is
almost flat along the z-direction because of the existence
of the blocking layers. This feature can also be verified
through the Fermi surfaces at different energy levels that
were shown in previous studies, e.g., Ref. 54. We note
that the k-points corresponding to the vHs are positioned
roughly around k = (±π/2,±π/2). It is also characteris-
tic that the band splitting induced by the inter-BiS2-layer
coupling is small [33, 60, 61], which enhances the thermo-
electric performance of these materials by increasing the
DOS through the weak degeneracy for two BiS2 layers.
Next, we move on to the thermoelectric properties.

The calculated PF/τ , S, and σ/τ are presented in Fig-
ure 1(f) as a function of the chemical potential µ. We
only show the in-plane diagonal components of the trans-
port quantities, e.g., S = Sxx = Syy, throughout this pa-
per because the off-diagonal elements vanish under the
tetragonal symmetry and the conductivity along the z-
direction is too small to employ as the thermoelectric
energy conversion. The powerfactor PF is defined as PF
= σS2. By comparing the transport properties shown
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in Figure 1(f) with the band structure and DOS shown
in Figure 1(c)–(d), one can immediately associate the PF
peaks with the characteristic band structure and the DOS
peaks, as indicated by the three arrows. It is usually the
case in many materials that the PF peak exists near the
band edge, where the Seebeck coefficient increases, which
corresponds to the PF peak near µ = 0.6 eV in our case.
It is also a typical behavior that the second-lowest band
edge near the X point, which lies far away from the con-
duction band bottom, has a very small effect on the PF
because of the small Seebeck coefficient. However, it is
interesting that the vHs produces the other PF peak near
µ = 1.4 eV because of its large DOS even though the en-
ergy difference between the conduction band bottom and
vHs is rather large. Although the PF peak value near
the vHs is a bit smaller than that at the conduction band
edge in LaOBiS2, it can be expected that the former peak
will be greatly strengthened by making the energy differ-
ence between the vHs and conduction band edge smaller.
This is one of the basic strategies to enhance the thermo-
electric performance in pnictogen-dichalcogenide layered
materials, which we shall investigate in further detail in
the following subsections.

Before proceeding to the next subsection, we make a
few comments on the correspondence between our the-
oretical results and experimental observations. Some
experimental studies have reported the thermoelectric
properties of LaOBiS2 without the F substitution [23,
24, 28]. Here, we note that LaOBiS2 even without the
F substitution is known to possess a small number of
electron carriers. In Ref. 23, S ∼ −70 µV K−1 was
reported, and the carrier concentration was not mea-
sured. In Refs. 24 and 28, S ∼ −120 µV K−1 with
the electron carrier number n ∼ 2 × 10−3 electron
f.u.−1 (1.6 × 1019 electron cm−3) and S ∼ −60 µV
K−1 with n ∼ 4 × 10−2 electron f.u.−1 (3 × 1020 elec-
tron cm−3) were reported based on the measurement of
the Hall coefficient, respectively. However, our calcula-
tion gives (Sxx, Szz) ∼ (−280,−220) and (−40,−30) µV
K−1 for n ∼ 2 × 10−3 and 4 × 10−2 electron f.u.−1, re-
spectively. Although these calculation results were ob-
tained for the tetragonal structure, we also obtained
similar values, (Sxx, Syy, Szz) ∼ (−250,−240,−200) and
(−60,−50,−50) µV K−1 for n ∼ 2× 10−3 and 4× 10−2

electron f.u.−1, respectively, for the monoclinic structure
(see the APPENDIX for details of the calculation for the
monoclinic structure). The discrepancy between the ex-
periments and our calculations can be understood within
the large error bar in the Hall coefficient. In addition, all
the samples are polycrystals; therefore, a rough corre-
spondence exists between theory and experiment.

A more interesting issue is whether the experiments
observe the theoretical PF peak near the doping rate of
0.4 electron f.u.−1, which corresponds to the vHs of the
DOS. The thermoelectric properties of LaO1−xFxBiS2
were measured in one of the above experimental stud-
ies [23] with x = 0, 0.05, 0.25, and 0.5. However, be-
cause the samples with x = 0.25 and x = 0.5 exhibit

very similar values both for the Seebeck coefficient and
electrical conductivity, it appears that the actual dop-
ing rate does not reach 40% of electron doping, which
should give the aforementioned theoretical PF peak. In
fact, the observed PF monotonically decreases upon in-
creasing the value of x in that reference. However, be-
cause there is a very good agreement between the theo-
retical band structure and that obtained in the ARPES
expreiments [57, 62], the interesting reascending of PF,
as observed in Figure 1(f) (or the similar behavior for
the monoclinic structure shown in the APPENDIX) is
expected to be observed provided that a further amount
of electron carriers would be successfully doped.

B. Key factors for the thermoelectric performance

Based on the observation made in the previous subsec-
tion for LaOBiS2, one can notice some key factors that
determine its thermoelectric performance. In this sub-
section, we carefully investigate each of these factors to
pursue possible enhancement of its thermoelectric per-
formance.

1. Spin–orbit coupling

One of the key factors is the SOC. Figure 2(a)–(b)
presents the band structure and DOS for LaOBiS2 with-
out the SOC. By comparing them with those obtained
with the SOC as shown in Figure 1(c)–(d), two important
changes are observed. One is the decrease of the energy
difference between the conduction band bottom near the
X point and the vHs, from 0.8 to 0.5 eV. The other one is
the considerable reduction of the band splitting between
the lowest and second-lowest conduction bands at the X
point, from 1.2 to 0.4 eV. Both of these features are ad-
vantageous for the thermoelectric performance because
they augment the DOS in the low-energy region of the
conduction bands.
The physics behind these characteristic changes can be

naturally understood using the schematic figure in Fig-
ure 2(c). First, it is known that the Bi-px and Bi-py
orbitals mainly constitute the Bloch states in the low-
est and second-lowest conduction bands at the X point,
respectively, when the SOC is switched off [60]. How-
ever, the SOC introduces the coupling between these
two states and then enlarges the energy splitting between
them. However, at the k-points that correspond to the
vHs, the lowest conduction band lies far from the second-
lowest one with respect to their energy levels, as observed
in Figure 2(a). This large separation reduces the effect
of the SOC, and therefore, the energy level of the vHs is
expected to change less than those at the X point. As a
result, the relative energy level of the vHs to the lowest
energy level at the X point increases with the SOC.
Figure 2(d) presents the thermoelectric properties with

and without the SOC for LaOBiS2. To demonstrate
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FIG. 2: (a) Electronic band structures obtained using first-
principles calculations (black dotted lines) and model calcu-
lations (red solid lines), and (b) DOS for LaOBiS2 without
the SOC. The three arrows in (b) correspond to those in (a).
(c) Schematic figure showing the effect of the SOC on the en-
ergy levels indicated by the three arrows in (a). (d) Transport
properties calculated with and without the SOC. The defini-
tion of ‘w/o SOC (*)’ calculation is presented in the main
text.

the effect of the second-lowest conduction band at the
X point on the transport properties, we also calculated
the transport quantities using only the lowest conduc-
tion bands (to be more precise, the lowest two conduc-
tion bands with the small bilayer splitting), which we
denote as ‘w/o SOC (*)’ in the figure. In this calcula-
tion, we used the chemical potential µ(T ) determined by
the full inclusion of all the band dispersions, which we
denote as ‘w/o SOC’ in the figure, to make comparison
between them. As expected from the above discussion,
the PF dramatically increases in a wide range of the car-
rier doping rate when the SOC is switched off. Because
the ‘w/o SOC’, ‘w/o SOC (*)’, and ‘w/SOC’ results ex-
hibit sizable differences, the energy lowering of both the
vHs and second-lowest band edge near the X point are
found to contribute to the thermoelectric performance.
In particular, the second-lowest band begins to enhance
the PF above the carrier numbers of approximately 0.2
electron f.u.−1, which can be verified by the difference
between the ‘w/o SOC’ and ‘w/o SOC (*)’ results. Al-

FIG. 3: Band structure colored by Bi orbital weight (a) along
some k-paths and (b) on the kz = 0 plane, which were cal-
culated without the SOC. In (b), only the lowest conduction
band is depicted. (c),(d) The same plots for the calculation
with the SOC.

though the vHs is higher than the second-lowest band
edge near the X point, the energy lowering of the vHs
also contributes to the PF for much lower carrier con-
centration, as demonstrated by the difference between
the ‘w/o SOC’ and ‘w/SOC’ results. This finding is ob-
served because the energy lowering of the vHs increases
the DOS between the vHs and the lowest band edge, as
evidenced in Figures 1(d) and 2(b).

2. Interatomic hopping amplitudes

Figure 3(a) and (c) presents the Bi orbital weight on
the band structure of LaOBiS2 calculated using our tight-
binding model without and with the SOC, respectively.
We can see that both the vHs point indicated by the ar-
rows and the two lowest conduction bands at the X point
have a very large Bi orbital weight regardless of the in-
clusion of the SOC. This situation can be understood
based on the following reasons. (i) Some of the present
authors and their coworker have shown that the in-plane
hybridization among Bi and S orbitals is forbidden at
the X point by the crystal symmetry [60]. Although
the inter-BiS2-layer coupling allows the hybridization be-
tween the Bi and S states, the small bilayer coupling
∼ O(0.1 eV) compared with the onsite energy difference
between the Bi and S atomic orbitals ∼ O(1 eV) results
in a very small weight of the S orbitals there. (ii) The
very large band dispersion along the M–Γ line, as ob-
served in Figure 3(a) and (c), originates from the strong
hybridization between the in-plane nearest-neighboring
Bi and S atomic orbitals (tBi−S

σ,π shown in Figure 1(b)).
Here, stronger hybridization for the Bloch states at each
k-point results in a higher energy level of the conduction
band, which is a general consequence of the bonding–
antibonding splitting. Therefore, the vHs, which corre-
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FIG. 4: (a) Variation of the transport quantities against the
change of the in-plane S-px,y onsite energy shift, ǫSshift, for
LaOBiS2 with the SOC. (b) Band structure calculated with
the tight-binding model with ǫSshift = 2.4 eV.

sponds to the lowest energy along the M–Γ line, should
have (almost) the smallest S weight along this line.
Because of this large Bi weight for the two lowest con-

duction bands at the X point and vHs, the Bi–Bi hopping
amplitudes play a dominant role in determining their en-
ergy levels. In particular, when the Bi–Bi hopping ampli-
tudes become smaller, the energy differences among these
states should also decrease because they all approach
the Bi onsite energy. Therefore, to improve the thermo-
electric performance by increasing the DOS around the
band edge, smaller Bi–Bi hopping amplitudes are advan-
tageous.
As shown in Figure 3(b) and (d), it is quite impres-

sive that the band dispersion exhibits a strong quasi-one-
dimensionality because of the strong Bi–S hopping am-
plitudes, which induce the sharp band dispersion along
the lines kx = ±ky (i.e., along the M–Γ line), and the
relatively weak Bi–Bi hopping amplitudes, which make
the band dispersion along the vertical direction, i.e., the
lines |kx|+ |ky | = π, less dispersive [33]. The quasi-one-
dimensional band structure reconciles the large DOS and
high group velocity and, therefore, is very advantageous
for the thermoelectric performance [4–6]. This concept is
similar to that of the pudding-mold-shaped band struc-
ture [63]. To enhance the one-dimensionality of the band
dispersion, larger in-plane Bi–S hopping amplitudes are
advantageous.

3. Onsite energy difference

The onsite energy difference between the Bi-px,y and
in-plane S-px,y orbitals should also have a large effect on
the thermoelectric property. To demonstrate this effect,
we calculated the transport properties by shifting the in-
plane S-px,y onsite energies by ǫS

shift
for LaOBiS2 with the

SOC, as shown in Figure 4(a). Here, without the onsite

energy shift, the onsite energy difference between the Bi-
px,y and in-plane S-px,y orbitals is 2.1 eV. We can see that
the PF peak value considerably increases by increasing
ǫS
shift

. In Figure 4(b), we show the band structure calcu-
lated with the tight-binding model with ǫS

shift
= 2.4 eV,

where the onsite energy difference becomes much smaller
than the original value. As clearly observed, the band
gap becomes very small ∼ 0.2 eV, and the conduction
band dispersions are sharpened compared with the orig-
inal one shown in Figure 1(c). Because hybridization
between the valence and conduction bands opens a rel-
atively large gap at the X point, the onsite energy shift
also brings the vHs close to the conduction band bottom.
These effects enhance PF. Because we applied a some-
what artificial change of the model parameters here, the
details of the band structure change would be different
in real compounds, where the onsite energy difference is
controlled by elemental substitution. Nevertheless, from
the monotonic increase of PF observed in Figure 4(a),
we can expect that a decrease of the onsite energy dif-
ference will in general largely improve the thermoelectric
performance.

4. Promising recipe for materials design

Here, we summarize the key factors that can improve
the thermoelectric performance of LaOBiS2: (1) small
SOC, (2) small Bi–Bi and large Bi–S hopping amplitudes,
and (3) small onsite energy difference between the Bi-
px,y and in-plane S-px,y orbitals. Surprisingly and for-
tunately, these observations lead us to a rather simple

strategy for materials design: replacing Bi and S atoms
with lighter and heavier elements, respectively, and hence
placing them closer in the periodic table. In fact, when
one replaces Bi atoms with lighter elements, the SOC is
trivially weakened; in addition, the Bi–Bi hopping ampli-
tudes will be reduced because the spread of the Bi atomic
orbitals becomes small. By replacing S atoms with heav-
ier elements, we can further reduce the Bi–Bi hopping by
increasing their distance as a result of the enlarged spread
of the S atomic orbitals. How these changes affect the
Bi–S hopping amplitudes is not trivial, and therefore, we
shall verify this point later in this paper. Moreover, the
Bi (S) onsite energy decreases (increases) by the afore-
mentioned atomic replacement within the same row in
the periodic table, and then, the onsite energy difference
will be reduced.

C. Possible large PF and ZT by elemental

substitution

To investigate the effects of elemental substitution, we
calculated and compared the thermoelectric properties
of NdOBiS2, LaOBiS2, NdOSbS2, and LaOAsSe2. Fig-
ure 5(a)–(h) presents the DOS and v̄2(E) for these four
compounds with and without the SOC, where v̄2(E) is
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FIG. 5: DOS and v̄2(E) (Equation (4)) for (a) NdOBiS2, (b) LaOBiS2, (c) NdOSbS2, and (d) LaOAsSe2 calculated without
the SOC. (e)–(h) The same quantities calculated with the SOC. The transport properties of these four compounds calculated
(i) without and (j) with the SOC. (k) First-principles band structure, (l) (kx, ky, E) plot for the lowest conduction band on
the kz = 0 plane, and (m) estimated ZT values for LaOAsSe2 calculated with the SOC. The As orbital weight is indicated by
the color scale in (l).

(eV) SOC ∆ tBi−S
σ tBi−S

π tBi−Bi
σ tBi−Bi

π E
split

X Ediff
vH

NdOBiS2 no 2.24 2.23 -0.50 0.28 0.13 0.5 0.6
yes 2.20 2.23 -0.50 0.27 0.13 1.3 0.9

LaOBiS2 no 2.16 2.15 -0.47 0.26 0.12 0.4 0.5
yes 2.12 2.14 -0.47 0.27 0.12 1.2 0.8

NdOSbS2 no 1.83 2.18 -0.48 0.21 0.13 0.2 0.4
yes 1.82 2.18 -0.48 0.21 0.13 0.4 0.5

LaOAsSe2 no 0.78 1.92 -0.40 0.11 0.07 0.2 0.2
yes 0.78 1.92 -0.40 0.11 0.07 0.3 0.2

TABLE I: Hopping parameters defined in Figure 1(b) and the
onsite energy difference between the Bi-px,y and in-plane S-
px,y orbitals, ∆. Whereas the Bi and S atoms are replaced
with other atoms for some compounds, we use the notation
‘Bi’ and ‘S’ here for simplicity. The row ‘SOC’ indicates
whether the SOC is included. The energy difference between
the lowest and second-lowest conduction bands at the X point,
E

split

X , and that between the lowest conduction bands at the

X point and at the vHs, Ediff
vH , are also presented.

the averaged value of the square of the group velocity, as

defined by

v̄2(E) =

∑

n,k v
2

n,kδ(E − ǫn,k)
∑

n,k δ(E − ǫn,k)
, (4)

with n and k being the band and k-point indices, re-
spectively. Comparison of Figure 5(a)–(h) reveals that
the DOS peak is closer to the band edge in the order
of LaOAsSe2, NdOSbS2, LaOBiS2, and NdOBiS2. Such
DOS enhancement near the band edge coincides with the
decrease of the Bi–Bi (Sb–Sb or As–As) hopping ampli-
tudes, as observed in Table I, which is precisely the ex-
pected behavior discussed in Section III B 2. The differ-
ence between NdOBiS2 and LaOBiS2 originates from the
lattice constant, where the smaller lattice constants in
NdOBiS2 result in a slight increase of the Bi–Bi hopping
amplitudes. Whereas NdOBiS2, LaOBiS2, and NdOSbS2
have similar Bi–S (Sb–S) hopping amplitudes, LaOAsSe2
has slightly smaller ones, as observed in Table I. How-
ever, the decrease of the hopping amplitudes between Bi
(As) atoms, tBi−Bi, is much larger with respect to the
change ratio. Because of this feature, v̄2(E) near the
band edge has roughly similar values for these four com-
pounds when the SOC is switched off, as observed in
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Figure 5(a)–(d) [64]. Because the group velocity usually
decreases when the DOS increases, the coexistence of the
high group velocity and large DOS in LaOAsSe2 is very
advantageous for the thermoelectric performance, as dis-
cussed in Section III B 2. This advantage originates from
the quasi-one-dimensional band structure, as shown in
Figure 5(k)–(l). The effect of the SOC becomes weaker
with the atomic displacement from Bi to Sb and As, al-
though it still retains a sizable strength for Sb, as ob-
served in Figure 5(c) and (g).

Figure 5(i)–(j) shows the calculated thermoelectric
performance for these four compounds with and with-
out the SOC. The prominent feature here is the distin-
guished PF/τ of LaOAsSe2, 12 × 1015 µW cm−1 K−2

s−1 at its peak value, which is six times as large as that
of LaOBiS2, as shown in Figure 5(j). This considerable
enhancement amounts to PF ∼ 60–120 µW cm−1 K−2

at room temperature when one assumes a typical relax-
ation time τ ∼ 5–10 fs. In addition, we also estimated
the ZT values of LaOAsSe2 at several temperatures, as
presented in Figure 5(m). For evaluation of ZT under
the constant relaxation-time approximation, there is only
one unknown parameter, κlat/τ , because τ in PF and the
electrical thermal conductivity κel are canceled. Some
experimental studies have provided estimations of the
lattice thermal conductivity κlat, ∼ 1 W m−1 K−1 at
300–700 K for LaOBiSSe [26] and ∼ 2 W m−1 K−1 at
50–300 K for LaOBiS2 [24]. Based on these values, we
calculated the ZT value using three ratios for κlat/τ : 0.1,
0.2, and 0.4 W m−1 K−1 fs−1. We note that the experi-
mental thermal conductivities were obtained for (weakly
oriented) polycrystalline samples and thus can be under-
estimated as the in-plane thermal conductivity for single
crystals or highly oriented polycrystals. This is another
reason why we tried several κlat/τ values in estimating
the ZT value here. For all of these three ratios of κlat/τ ,
LaOAsSe2 exhibits very high ZT values, which become
∼ 0.5 near room temperature and reach approximately
two in the high-temperature region. Note that ZT is
maximized at lower doping concentration than the PF
peak because of the increase of the electronic thermal
conductivity by carrier doping. For example, when one
assumes κlat = 1 W m−1 K−1, τ = 5 fs (i.e., κlat/τ = 0.2
W m−1 K−1 fs−1), and T = 300 K, the electronic ther-
mal conductivity κel reaches ∼ 5 W m−1 K−1 for the PF
peak at 0.072 electron f.u.−1 (6 × 1020 electron cm−3),
which is much larger than the lattice thermal conduc-
tivity, whereas ZT is maximized at 0.034 electron f.u.−1

(3× 1020 electron cm−3).

Although the enhancement of PF is not as large as that
in LaOAsSe2, NdOSbS2 also appears to be a promising
material as the PF is much larger than that of LaOBiS2
for a wide range of carrier concentrations. We should
note that NdOSbS2 has already been synthesized [40],
although the carrier doping and measurement of its ther-
moelectric performance have not yet been reported in
experiments. Further experimental study for Sb and
As compounds is strongly awaited. We note that for

LaOAsSe2, replacement only of in-plane S atoms should
suffice for synthesis because the thermoelectric property
is governed by the in-plane atoms.
From the small difference of the thermoelectric per-

formance between NdOBiS2 and LaOBiS2, we can con-
clude that the effect of the blocking layer is not so large,
at least when compared with the effect of the pnictogen
or chalcogen substitution. The selection of the blocking
layer might be, however, rather crucial for synthesizing
intended compounds or stabilizing the tetragonal struc-
ture we assumed in this study (see the APPENDIX for
the effects of the symmetry reduction), or perform carrier
doping by F substitution. In this sense, the large degrees
of freedom for the blocking layer might be very help-
ful for the experimental exploration of high-performance
materials.

D. Relevance to Dirac dispersion

The onsite energy difference of LaOAsSe2 is three times
as small as that for LaOBiS2, as shown in Table I.
This reduction was expected; however, by examining the
band structure and DOS in Figure 5(d), (h), and (k),
which reveal a band gap of approximately 0.3 eV re-
gardless of the presence of the SOC, a further reduc-
tion of the onsite energy difference is expected to even
further enhance the thermoelectric performance. Inter-
estingly, the ‘limit’ along this line leads to Dirac cones
with very strong anisotropy, similar to the observations
for AMnBi2 (A = Sr, Ca, etc.) [65–75] compounds, where
the Bi atoms constitute the square-lattice network. In-
deed, in AMnBi2, it was shown in calculations that the
gap of the Dirac cone closes when the SOC is switched
off [65, 66] because the onsite energy difference, which
exists in LaOBiS2, vanishes here [76]. It is also notewor-
thy that Ta4SiTe4 with one-dimensional Dirac cones was
recently observed to exhibit a very large PF of ∼ 170
µW cm−1 K−1 at 220–280 K [14]. In fact, we can get
a glimpse of the gapped-Dirac-like band dispersions near
the X point and along the Γ–M line for LaOAsSe2 and
for LaOBiS2 with the onsite energy shift in Figures 5(k)
and 4(b), respectively. Because transport properties in-
cluding the thermoelectric performance of the Dirac and
Weyl fermions have attracted much attention [78], the
relation between pnictogen-dichalcogenide layered com-
pounds and anisotropic or one-dimensional Dirac cones is
intriguing. In fact, based on the observation that a sharp
dispersion (i.e., a large group velocity) is favorable for
the thermoelectric performance in the one-dimensional
band structure [6], the Dirac or gapped-Dirac band dis-
persion is desirable because of the large group velocity
near the band edge. We also note that the gap open-
ing for the Dirac cone is important to prevent deterio-
ration of the thermoelectric performance by cancelation
in the Seebeck coefficient between the contribution from
the electron and hole carrier transport [81–83].
Along this line, we note that our target materials ex-
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hibit favorable thermoelectric performance both for the
x and y directions, which is not the case for real one-
dimensional materials such as Ta4SiTe4. This character-
istic is of great importance for technological applications
because not only single crystals but also polycrystals with
high orientation only along the z-direction are expected
to work well because of this two-dimensionality, which
enables two-dimensional conduction. In contrast, real
one-dimensional materials that exhibit good thermoelec-
tric performance only for one direction would not work
well in polycrystals. Therefore, we arrive at the novel
concept of “quasi-one-dimensional gapped-Dirac cones in

two-dimensional materials”, which is considered one of
the ideal conditions for thermoelectric materials.

IV. CONCLUSION

In this study, we investigated the thermoelectric
performance of LaOBiS2 and uncovered a theoretical
strategy for improving its performance. This strategy
works quite well, as demonstrated by the comparison
of four compounds: NdOBiS2, LaOBiS2, NdOSbS2, and
LaOAsSe2. The atomic replacements of Bi with Sb and
As and that of S with Se largely improve the thermoelec-
tric performance, and in particular, LaOAsSe2 exhibits
a remarkably high PF and ZT . This high performance
is attributed to the quasi-one-dimensional gapped-Dirac-
like band dispersion, where the large DOS and high group
velocity can coexist. Here, the square-lattice network of-
fers an ideal arena for such a favorable band structure.
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APPENDIX: Electronic properties of the monoclinic

structure of LaOBiS2

Figure 6 presents the calculated band structure, DOS,
and transport properties of LaOBiS2 with the monoclinic
structure (space group: P21/m). All the calculations
presented in this figure include the SOC. We used the
experimental crystal structure (a = 4.0769(4) Å, b =
4.0618(3) Å, c = 13.885(2) Å, β = 90.12(2)◦) taken from
Ref. 38. For our transport calculations, the x and y axes
were taken to be parallel to the a and b axes, respectively.
Here, we show the diagonal components of the transport
quantities for the in-plane directions.
In Figure 6(a) and (b), we can see that the DOS peaks

are split by the symmetry reduction in the monoclinic

structure. This split is caused by the inequivalency be-
tween the x and y directions, as mentioned above. As
a result, the PF peak values presented in Figure 6(c)
decrease. Based on this observation, the symmetry re-
duction is not desirable for high-thermoelectric perfor-
mance, which is another important guiding principle for
the materials search among pnictogen-dichalcogenide lay-
ered compounds.
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FIG. 6: (a) Electronic band structure obtained from first-principles calculations (black dotted lines) and model calculations
(red solid lines) for the monoclinic structure of LaOBiS2. The k-points are presented with the fractional coordinate multiplied
by 2π. (b) DOS for the monoclinic LaOBiS2 and (c) transport properties calculated using the tight-binding model. In (c), the
diagonal components of each tensor quantities are presented. We note that the x- and y-directions are not equivalent for the
monoclinic structure, unlike for the tetragonal one. All the calculations in this figure were performed including the SOC.
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