
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Stochastic Spiking Neural Networks Enabled by Magnetic
Tunnel Junctions: From Nontelegraphic to Telegraphic

Switching Regimes
Chamika M. Liyanagedera, Abhronil Sengupta, Akhilesh Jaiswal, and Kaushik Roy

Phys. Rev. Applied 8, 064017 — Published 15 December 2017
DOI: 10.1103/PhysRevApplied.8.064017

http://dx.doi.org/10.1103/PhysRevApplied.8.064017


Magnetic Tunnel Junction Enabled Stochastic Spiking Neural Networks: From
Non-Telegraphic to Telegraphic Switching Regime

Chamika M. Liyanagedera,∗ Abhronil Sengupta, Akhilesh Jaiswal, and Kaushik Roy
Purdue University, West Lafayette, IN 47906

(Dated: November 27, 2017)

Stochastic Spiking Neural Networks based on nanoelectronic spin devices can be a possible path-
way at achieving “brain-like” compact and energy-efficient cognitive intelligence. The computational
model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural com-
ponents to perform learning or inference. However, there has been limited analysis on the scaling
effect of stochastic spin devices and its impact on the operation of such stochastic networks at the
system level. This work attempts to explore the design space and analyze the performance of nano-
magnet based stochastic neuromorphic computing architectures for magnets with different barrier
heights. We illustrate how the underlying network architecture must be modified to account for the
random telegraphic switching behavior displayed by magnets with low barrier heights as they are
scaled into the superparamagnetic regime. We perform a device to system level analysis on a deep
neural network architecture for a digit recognition problem on the MNIST dataset.

I. INTRODUCTION

Emulating the computational primitives of neural net-
work based machine learning approaches by the inherent
device physics of nanoelectronic components have proven
to be useful in reducing the area and energy requirements
of the underlying hardware fabrics. To that effect, sev-
eral post-CMOS technologies like phase change memories
[1], Ag-Si devices [2], spintronic devices [3] among others
have shown to exhibit neural and synaptic functionali-
ties at the intrinsic device level. In this work, we focus
on spintronic technologies, in particular, due to the low
current and energy requirements of such devices in com-
parison to traditional memristive technologies.

While traditional neuromorphic computing models
have been based on deterministic neural and synap-
tic primitives, recent efforts have been directed towards
adapting such computing schemes to stochastic models.
This has been driven primarily by two factors: (1) De-
terministic neural or synaptic models are characterized
by multi-bit resolution. However, as device dimensions
of nanoelectronic neurons or synapses are scaled down,
they might lose the multi-bit resolution capacity. In con-
junction, such devices are expected to exhibit increased
stochasticity during the switching process. For instance,
spintronic devices exhibit stochasticity due to thermal
noise at non-zero temperatures. Consequently, com-
putational models that leverage the underlying device
stochasticity are being recently explored. Information
encoding over time due to probabilistic synaptic or neu-
ral updates also enables state compression of neural and
synaptic units, thereby allowing them to be implemented
by single-bit technologies. (2) The human brain, the
main inspiration behind such neuromorphic computing
models, is characterized by stochastic neural and synap-
tic units. As a matter of fact, neuroscience studies have
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indicated cortical neurons generate spikes probabilisti-
cally over time [4]. Consequently, stochastic neural com-
puting models can potentially enable “brain-like” cogni-
tive computing. In this work, we will focus on stochastic
neural inference in deep neural networks for typical pat-
tern recognition tasks [5]. However, the analysis can be
easily extended to stochastic synaptic units [6], or even
other unconventional computing platforms that require
stochastic switching elements like Ising computing [7, 8],
Bayesian inference, among others.

Spintronic devices have recently found wide applica-
tion in large scale neuro computing hardware owing to
their scalability and low power requirements. Spin-
torque memristors with magnetic domain walls have been
shown to be a suitable candidate for implementing multi-
level neuro-synapses [9] and integrate and fire spiking
neurons [3].Another study demonstrated that the inher-
ent magnetic dynamics of a MTJs can be used to emu-
late the functionality of biologically inspired leaky inte-
grate and fire spiking neurons [10]. In [11], spin-transfer
torque Magnetic Tunnel Junctions (MTJs) are used as
stochastic binary synapses, where the stochastic effects
of the devices are used to performed unsupervised learn-
ing. It was also demonstrated that MTJs can be used
as binary elements to implement long-term short-term
stochastic synapses to improve the learning efficiency of
a neural network [6]. A review on bio-inspired neuromor-
phic computing platforms based on spintronic devices can
be found in [12].

As mentioned previously, spintronic devices display a
stochastic switching nature due to thermal noise. Given
a particular duration of write current flowing through
the device, a magnet exhibits a particular probability of
switching during that corresponding write cycle. Con-
secutive write and read cycles can be used to generate
an output pulse stream whose average value depends on
the magnitude of the input stimulus. While stochastic
neural networks based on spintronic devices have been
explored previously [5, 13], there has been limited anal-
ysis on the scaling effects of these devices. It is generally

mailto:cliyanag@purdue.edu


2

expected that as the magnet dimensions scale down, the
device would exhibit increased stochasticity. Further, the
operating current or voltage ranges required for operat-
ing such devices in the probabilistic regime would reduce.
However, as the scaling tends to the superparamagnetic
regime the magnets undergo random telegraphic switch-
ing with low data retention time, making the device prac-
tically volatile in nature. Utilizing such a device as a
biased random generator require re-thinking of the pe-
ripherals and the underlying network architecture, since
parallel read and write operations of the nano-magnets
are now required. However, adaptation of such low en-
ergy superparamagnets as neural components come at
the expense of reduced error resiliency. This is mainly
because the gradient or the rate of change of switching
characteristics of such magnets in response to input cur-
rent magnitude is extremely high. This article attempts
to address the different schemes of operation of stochas-
tic Spiking Neural Networks (SNNs) for magnets in non-
telegraphic to telegraphic regime and analyze its associ-
ated energy-accuracy tradeoffs at the system level.

II. MAGNETIC TUNNEL JUNCTION AS A
STOCHASTIC SWITCHING ELEMENT

An MTJ is a magneto-resistive device that consists of
a tunneling oxide sandwiched between two magnetic con-
tacts. One of the contacts is magnetically hardened and
is called the pinned layer, while the direction of magne-
tization of the other contact, called the free layer, can be
switched. In a spin-Hall effect based MTJ (SHE-MTJ),
the direction of the free layer is switched by passing a
charge current through an underlying heavy metal (HM),
as shown in Fig. 1. The passage of the charge current
(Icharge) through the HM layer induces a resulting spin
current (Ispin) flowing perpendicular to the planes of the
magnetic layers of the MTJ. This spin current can switch
the direction of magnetization of the free layer, making
it parallel (P) or anti-parallel (AP) to that of the pinned
layer, through the well known spin-orbit torque mecha-
nism [14, 15]. Due to the magneto-resistance effect, the
SHE-MTJ exhibits a lower resistance (RP ), when in the
P state and a higher resistance (RAP ), when in the AP
state. Thus, the SHE-MTJ shown in Fig. 2, exhibits
decoupled read and write current paths. Write operation
can be achieved by a charge current flowing through the
HM layer, while the read operation can be accomplished
by sensing the resistance of the MTJ in a direction trans-
verse to the plane of the magnetic layers.

It is to be noted that the switching process of the
nanoscale free layer is influenced by thermal noise at non-
zero temperatures. Thermal noise results in a stochastic
switching behavior, wherein, for a given current flowing
through the HM layer, the MTJ switches with a cer-
tain probability. Moreover, the probability of switching
can be controlled by the magnitude of the current flow-
ing through the HM. The dynamics of the magnetization
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FIG. 1. (a) High resistive anti-parallel state of an MTJ, (b)
Low resistive parallel state of an MTJ, and (c) A SHE-MTJ
device structure where the MTJ is switched by passing charge
current through the underlying heavy metal. The charge cur-
rent flowing through the heavy metal leads to spin splitting,
thereby creating a perpendicular spin current, switching the
magnetization direction of the free layer.

vector in presence of the HM layer current is given by the
stochastic Landau-Lifshitz-Gilbert-Slonczewski (LLGS)
equation and can be written as [16],

∂m̂

∂τ
= −m̂× ~HEFF−αm̂×m̂× ~HEFF+

1

|γ|
(αm̂× ~STT+ ~STT )

(1)

where τ is |γ|
1+α2 t.

Here, α is the Gilbert’s damping constant, γ is the gy-
romagnetic ratio, m̂ is the unit vector in the direction of
the magnetization, t is the simulation time and HEFF

is the effective magnetic field including the demagnetiza-
tion field and the interface anisotropy field. A detailed
description of the various fields included in HEFF can

be found in [16]. ~STT in equation (1) is the term repre-
senting the torque due to the SHE effect (modeled as a
spin-transfer torque term) and can be written as follows
[17],

~STT = |γ|β(m̂× (εshem̂× m̂p)), β =
~Jq

2eµoMStFL
(2)

where, m̂p is the magnetization of the pinned layer, e
is charge of an electron, µo is the permeability of vacuum,
~ is modified Planck’s constant, tFL is the thickness of
the free layer and MS is saturation magnetization. Jq
is the charge current density flowing through the heavy
metal. εshe is the spin polarization efficiency (defined as
the ratio of the spin current generated due to the charge
current flowing through the HM layer) and can be written
as [18],
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FIG. 2. Decoupled read and write current paths of the MTJ
with HM. Output of the inverter will be high if the MTJ is
in the P state, and low if the MTJ is in the AP state.
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FIG. 3. The two operating states of an MTJ. The two states
are thermally stable if the barrier height of the magnet, EB ,
is large enough.

εshe =
Ispin
Icharge

=
πw

4t
θshe

(
1− sech

(
t

λsf

))
(3)

where, w is width of free layer, t is thickness of heavy
metal, θshe is spin hall angle, λsf is spin flip length.

The random switching process due to the effect of the
thermal noise can be included in the LLGS equation

through a stochastic field ~Hthermal in ~HEFF [19],

~Hthermal = ~ζ

√
2αkBT

|γ|dtMSV ol
(4)

where, kB is the Boltzmann constant, T is the temper-
ature, V ol is volume of the free layer magnet and dt is the

simulation time step. The ~ζ term in eqn. 4 is a Gaussian
random variable with zero mean and a standard deviation
equal to 1. The inclusion of thermal noise turns the LLG
equations into a stochastic differential equation (SDE).
We used the Heun’s method to integrate the stochastic
LLG equation. The details of applying Heun’s method to
stochastic LLG equation can be found in [19], [20]. The
total Field acting on the nano-magnet HEFF is given by,

~HEFF = ~Hthermal + ~Haniso + ~Hexternal (5)

where ~Haniso is the anisotropy field and in in-plane mag-
nets its is dominated by the demagnetization field arising
due to the shape of the magnet and is given by

~Hdemag = −MS [Nxxmxx̂, Nyymy ŷ, Nzzmz ẑ] (6)

whereNxx, Nyy, Nzz are the demagnetization factors that
were calculated based on the analytical equations pre-
sented in [21], and mx,my,mz are the magnetization
components of the nano-magnet in the x̂, ŷ and ẑ direc-
tions. The presence of any external field can be included

through the term ~Hexternal.

A. Stochasticity in Non-Telegraphic Regime

The parallel and anti-parallel states of the MTJ is sta-
bilized by an energy barrier, EB , that is defined as the
product of the magnetic anisotropy and volume (Fig. 3).
The retention time for the magnetic state of a nano-
magnet is given by [22],

TRETENTION = τ0exp(
EB
kBT

) (7)

where, τ0 is a characteristic time constant in the range
1ps−100ps [22]. The retention time or the lifetime of the
magnet varies exponentially with the barrier height. The
non-volatility of the magnet enables such devices to be
used in synchronous clocked systems where the device is
operated in successive write and read phases. During the
write cycle, a current pulse of fixed duration is passed
through the HM layer, that can switch the MTJ from
one state over the barrier to the other stable state. The
switching probability of the magnet varies with the mag-
nitude of the current pulse flowing through the underly-
ing HM layer. During the read phase, a small current is
passed through the MTJ-Rref (can be implemented by
another MTJ whose state is not disturbed by the small
read current) voltage divider circuit (refer Fig. 2) and
the MTJ state is read at the output of the inverter. The
read current should be sufficiently small such that it does
not disturb the state of the MTJ during the read phase.
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FIG. 4. (a) Switching characteristics of an MTJ with varying EB at T = 300K for a write cycle duration of 0.5ns, (b) MTJ
switching probability characteristics as a function of I−Ibias, normalized by a factor Io. The data closely resembles the sigmoid
function, (c) Variation of the bias current, Ibias, and the normalizing factor, Io, with varying EB . Both Ibias and Io decrease
with decreasing EB , (d) Failure probability during a read cycle of 1ns (in logarithm scale) with varying EB .

TABLE I. Device Parameters

Parameter
Values

1KBT 2KBT 10KBT 20KBT

Free Layer Width, WMTJ 10nm 17nm 30nm 40nm
Free Layer Length, LMTJ 25nm 42.5nm 75nm 100nm
Free Layer thickness 0.8 nm 1.2 nm
Saturation magnetization, Ms 750 KA/m 1000 KA/m
Heavy metal thickness 2nm
Spin-Hall Angle, θshe 0.3 [15]
Gilbert’s damping factor, α 0.0122 [15]
Temperature, T 300K

Since the voltage difference at the voltage divider output
for the parallel and anti-parallel states is generally small,
multiple stages of inverters are required to obtain a full
swing at the output.

Fig. 4(a) illustrates the variation of the MTJ switching
probability with the amplitude of the current pulse being
passed through the HM layer for different EB . The de-
vice parameters used for simulations are enlisted in Table
I. Note that the barrier height of the magnet was varied
by scaling the area of the magnets appropriately. It can
be shown that the probabilistic switching characteristics
of the MTJ holds a sigmoidal relationship to the write
current by describing the SHE layer current I, with two
different parameters, namely Ibias and Io. Ibias is the dc
current required to bias the switching probability of the

MTJ to 0.5, and Io is the scaling factor used to map the
swing of the switching probability around the bias cur-
rent to the sigmoid curve. Fig. 4(b) depicts the variation
of the switching probability of the MTJ with I − Ibias,
normalized by a factor Io. Io can be found by fitting
the switching probability characteristics (Psw()) to the
sigmoid function such that (refer Fig.4 b),

sigmoid(
I − Ibias

Io
) ≈ Psw(I) (8)

As shown in Fig. 4(a), when EB and hence, the device
dimensions are scaled down, the current range required
for stochastic switching decreases, thereby reducing the
write current requirements of the device. Fig. 4(c) de-
picts that both the components, Ibias and Io, reduce with
reduction in the barrier height. Reduction in Io implies
that the current range that can be utilized for stochas-
tic MTJ switching reduces, thereby increasing the rate of
change of switching probability with varying input cur-
rent. Consequently the computing system becomes more
prone to variations in the MTJ input current and exhibits
less error resiliency with the reduction of Io. These con-
siderations will be highlighted in the next section.

Note that, if EB is not sufficiently large, the state of the
magnet can switch during the read operation due to very
small TRETENTION . The retention failure probability
PF,RETENTION , of an MTJ within a given read access
time is given by,
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FIG. 5. Switching characteristics of an MTJ with 1kBT barrier height: (a) When the current flowing through the HM is zero,
the MTJ is equally likely to be in the parallel or anti-parallel state, (b) When −1.5µA is flowing through the HM layer, the
MTJ is more likely to be in the anti-parallel state, (c) When 1.5µA is flowing through the HM layer, the MTJ is more likely
to be in the parallel state.

PF,RETENTION = 1− exp(−tread/exp(∆)) (9)

where, PF,RETENTION is the retention failure prob-
ability of the MTJ during a read time of tread in nano-
seconds, and ∆ is the EB of the MTJ in kBT . In order to
find the necessary tread for correct read operation, SPICE
simulations (with a Verilog A model for the MTJ [23])
were performed in IBM 45nm technology node. Simula-
tion results show that the required read time is around
0.2ns for the nominal corner and 1ns for the worst case
corner (with 2σ variations in the threshold voltage of the
CMOS transistors). Hence, for retention failure probabil-
ity calculations the required read time is taken to be 1ns
to ensure that a correct read can be achieved even at the
worst corner. As illustrated in Fig. 4(d), retention failure
probability increases exponentially as the MTJ is scaled
down. In order to keep the retention failure probability
smaller than 1%, the EB of the magnet should be kept
greater than 4.6kBT . When the MTJs are scaled further
they enter the superparamagnetic regime where the mag-
nets are no longer thermally stable during the read cy-
cle. Hence, parallel read-write operations are required for
magnets in the superparamagnetic regime (EB < 5kBT )
to realize stochastic switching elements.

B. Stochasticity in the Telegraphic Regime

For low barrier height nano-magnets (EB ∼ 1kBT ),
even with zero charge current flowing through the HM

layer, the MTJ will exhibit random telegraphic switch-
ing between the two equilibrium states (Fig. 5(a)) due
to thermal noise. The random switching characteristics
of such scaled devices in the superparamagnetic regime
can be still manipulated by passing a charge current
through the HM layer. For instance, Fig. 5(a)-(c) repre-
sents the in-plane magnetization of the MTJ in presence
of 0, 1.5,−1.5µA write current flowing through the HM
layer of a 1kBT magnet. The dwell time of the MTJ in
either of the two stable states can be modulated by the
magnitude and direction of the input write current.

The volatility of these devices entails a rethinking of
the manner in which such nano-magnets can be operated
with peripherals to realize a stochastic computing ele-
ment. Due to device volatility and low retention time,
such devices cannot be operated with separate write and
read phases. Consequently, the write and read terminals
of the MTJ are activated simultaneously and the device
state is read while an input bias current flows through
the underlying HM layer of the MTJ. For high energy-
barrier MTJs the effect of read current on the switching
characteristics is not a design issue since read and write
cycles are de-coupled in time. However, for MTJs in the
telegraphic switching regime, the read current can bias
the switching characteristics since the read and write op-
erations occur in parallel. Further, since the devices are
highly scaled, the write (for stochastic switching) and
read currents fall in the same order of magnitude (un-
like high barrier height magnets where the write current
for stochastic switching is higher). Hence the resistive
divider of the read circuit (Fig. 2) needs to be highly op-
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FIG. 6. (a) Average inverter output over a duration of 2µs with and without the impact of the read current, (b) Variation
of the inverter average output over a duration of 2µs with magnitude of the write current for different EB values, (c) Inverter
average output over a duration of 2µs for nominal corner and for the worst case conditions of ±1σ and ± 2σ variations in
the threshold voltages of the transistors, (d) A typical plot of the output voltage of the inverter stage of the read circuit as a
function of time under zero external input current.

timized such that the read current is maintained at the
minimal value. SPICE simulations reveal that the read
current can be minimized to 100nA while having min-
imal effect on the MTJ switching characteristics. Fig.
6(a) depicts the average output of the inverter stage over
a duration of 2µs with and without the read current.
The case “with read current” is simulated by considering
the additional spin-orbit torque induced by the 100nA
read current flowing through the HM layer while the case
“without read current” ignores the effect of the additional
read current. As can be observed from Fig. 6, the read
current has minimal impact on the MTJ switching prob-
ability. Further, effect of device dimension variations (or
equivalently EB variations) and read circuit variations
(±1σ and ± 2σ variations in the threshold voltages of
the CMOS transistors) was shown to have minimal effect
on the stochastic switching behavior of the nano-magnets
(Figs. 6(b)-(c)). Fig. 6(d) represents a typical plot of the
voltage output of the inverter stage as a function of time
with no input current flowing through the underlying HM
of the MTJ.

Note that the switching characteristics of superparam-
agnetic MTJs are highly sensitive to any change in the
magnitude of the write current. As depicted in Fig. 6(a),
the switching probability of the MTJ shifts from 0.5 to
0.85 for a 1µA change in the write current. Hence, the
impact of variations in the input current provided to a
network of such scaled MTJs can be significant, and will
be analyzed in more details in the next section. We
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FIG. 7. Crossbar architecture connecting the inputs of one
layer to the neurons of the corresponding layer. Horizontal
bars provide the input voltage for the synapses. The sum-
mation of weighted synaptic currents along the columns of
the crossbar array are then provided as inputs to the MTJ
neurons.

would like to conclude this section by mentioning that
parallel read-write operation is not suited for magnetiza-
tion switching in the non-telegraphic regime (10−20kBT
barrier height magnets) since the telegraphic switching
would occur in timescales of ∼ µs−ms, thereby, result-
ing in enhanced delay for the computing process.
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C. Stochastic Neuromorphic Computing

A neural network is essentially a collection of lay-
ers of neurons interfaced through a network of weighted
synapses. A particular input to a neuron is first scaled
by the corresponding synaptic weight of the synapse be-
fore they are accumulated and processed by the neuron.
Neurons with sigmoid like transfer functions have been
shown to be appealing for implementing deep spiking
neural networks [5], making SHE-MTJ structures ideal
for realizing energy efficient neuromorphic hardware. In
the stochastic neural network being considered in this
work, the MTJ neurons generates an output spike prob-
abilistically depending on the instantaneous magnitude
of the resultant weighted synaptic input [5]. This com-
puting framework can be directly translated to the re-
sistive crossbar architecture illustrated in Fig. 7, where
the synaptic weights are mapped into the resistive ele-
ments between the horizontal and vertical metal lines.
Note that resistive crossbar arrays based on memristive
devices like phase change materials [1], Ag-Si devices [2]
and spintronic devices [24] have been proposed and ex-
perimentally demonstrated [25]. Two horizontal lines
are used for each input connected to the crossbar ar-
ray to implement the functionality of positive and neg-
ative weights. An input spike provided to the network
will activate the corresponding access transistors supply-
ing a voltage to the horizontal lines V+ (positive volt-
age) and V− (negative voltage), which is translated to
a current through the vertical columns (weighted by the
conductances of the resistive elements). The current ac-
cumulated in the vertical columns are then supplied as
the write currents to the stochastic neurons of the corre-
sponding layer. If the weight connecting an input m to
a neuron n is negative, then the corresponding resistive
element connecting the positive horizontal line and the
vertical column (Gm,n+ ) is programmed to a high re-
sistive ‘off’ state and the weight connecting the vertical
column and the negative horizontal line is programmed to
a conductance given by Gm,n− = wm,nGo and vice versa.
Here, wm,n is the synaptic weight between the input m
and neuron n and Go is the mapped conductance for
unity weight. The conductances of the resistive elements
are selected by scaling the synaptic weights by a factor

Go given by,
Io
δV

, where δV is the magnitude of the sup-

ply voltage driving the rows of the crossbar array and Io
is the current scaling factor of the stochastic MTJ men-
tioned previously. Assuming that the magneto-metallic
spin devices have low input resistance in comparison to
the cross-point resistances of the crossbar array, the neu-
rons will receive a weighted summation of spike inputs
in a particular layer and produce output spikes proba-
bilistically over time that will drive the fan-out neurons
of the next layer. For magnetic neurons operating in the
non-telegraphic regime, the read circuit can be interfaced
with a latch that stores the inverter output during the
read cycle, which will drive the next stage of neurons

during the following write cycle (hence synchronous op-
eration). For magnetic neurons operating in superpara-
magnetic regime, the inverter output can directly drive
the neurons in the next stage (hence asynchronous op-
eration). Note that the high barrier-height magnets are
also driven by a current source to bias it at a switching
probability of 0.5 unlike MTJs in the superparamagnetic
regime. Due to the small input current and the zero bias
current of magnetic neurons operating in the superpara-
magnetic regime, asynchronous architectures will grant
significant power savings in the neurons and the resistive
crossbar array. However, as shown later, asynchronous
implementation will incur significant power loss at the
read circuit, owing to the continuous switching activity
of the inverters.

III. DESIGN CONSIDERATIONS:
SYNCHRONOUS AND ASYNCHRONOUS

NEUROMORPHIC SYSTEMS

A. Device to System Simulation Framework

In order to analyze the design considerations for syn-
chronous and asynchronous stochastic SNNs, a hybrid
device-circuit-system co-simulation framework was devel-
oped for this work. Stochastic LLGS simulation for MTJs
with different barrier heights was used to evaluate the
probabilistic switching behavior of magnets operating in
non-telegraphic to telegraphic regime. In this work, we
use magnets of barrier height 10kBT and 20kBT for non-
telegraphic regime and magnets of barrier height 1kBT
and 2kBT for telegraphic regime. The device parameters
used for simulations are summarized in table I. SPICE
level simulations based on a Verilog-A model of the MTJ
was used to evaluate the performance of the stochastic
MTJ along with associated peripherals.

In order to perform a system-level analysis, the per-
formance of the network was assessed for a large scale
deep learning network architecture (28x28-6c5-2s-12c5-
2s-10o) on a standard digit recognition problem based
on the MNIST dataset [26]. The network consists of al-
ternate layers of convolutional and subsampling opera-
tions. The dimensions of the input MNIST images are
28x28, which were applied as input to the convolutional
layer consisting of 6 convolutional kernels of size 5x5.
The subsampling kernel was of size 2x2, and was fol-
lowed by another convolutional layer comprising of 12
output maps, which in turn, was followed by another sub-
sampling layer. The final layer consisted of 10 neurons,
each of which represented one of the ten digit classes.
Once the training was accomplished, the learnt weights
are mapped to the synaptic conductances using a value of
Go = 5µS which is a typical resistance range of memris-
tive synaptic devices. The same resistive crossbar ar-
ray was used for all the different barrier height neu-
ronal devices. The supply voltage δV was adjusted in
each case to satisfy the relationship, δV = Io

Go
, as ex-
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FIG. 8. Variation of classification accuracy of the proposed
network with time for (a) Synchronous, and (b) Asynchronous
implementations.

plained previously. The supply voltages δV , was calcu-
lated to be 0.1V ,0.11V ,1.05V and 2V for nano-magnets
of barrier height 1KBT ,2KBT ,10KBT and 20KBT re-
spectively. The sigmoid characteristic curves for the mag-
nets operating in the telegraphic regime was obtained by
averaging the output voltage of the read inverter circuit
over a period of 2µs (for 1kBT ) and 5µs (for 2kBT ).
More information about the structure of the simulated
network , the training methodology [27], and a brief in-
troduction to neural networks [28][29][30] can be found
in the supplementary section provided with this article
[31].

B. Performance and Energy Estimation

Fig. 8 depicts the temporal evolution of the clas-
sification accuracy of the stochastic SNN for the syn-
chronous and asynchronous designs. For the 10KBT and
the 20KBT synchronous designs the classification accu-
racy reaches 98.1% and 97.6% respectively, while it sat-
urates at 97.5% and 97.2% for the 1KBT and 2KBT
asynchronous designs. Both synchronous networks sur-
pass an accuracy of 95% just under 20ns, whereas the
two asynchronous networks require 80ns (for 1KBT ) and
250ns (for 2KBT ) to reach the same accuracy. In the
asynchronous implementation, the high frequency tele-

graphic switching of the nano-magnets are translated into
voltage spikes at a lower frequency due to gate capaci-
tance charge delays of the CMOS devices, which explains
the slower response of the asynchronous networks com-
pared to the synchronous designs. Also as the EB of the
nano-magnets are increased (for the superparamagnetic
regime), the retention time of the nano-magnets increase,
decreasing the spiking frequency at the output of the in-
verters. Hence as the results show, for asynchronous de-
signs, the time required for a network to reach a target
accuracy increases with the EB of the nano-magnets used
in the design. For the synchronous networks the duration
of one time-step was selected to be 4ns, which includes
a write time of 0.5ns, a rest period of 2ns, a read time
of 1ns followed by a reset period of 0.5ns. The duration
of the time-step for the asynchronous networks were de-
termined by measuring the average duration of a voltage
pulse at the output of the inverter read circuit at zero
write current, and was calculated to be 8.2ns and 27.5ns
for the 1KBT and 2KBT networks, respectively.

Fig. 9 summarizes the energy consumption observed
for different components of the network (both syn-
chronous and asynchronous) corresponding to a target
classification accuracy of 96%. Neuron energy (Fig.
9(a)) refers to the energy dissipated in the MTJ neuron
due to the write/reset currents flowing through the HM
layer. The neuron energy consumption is lowest for the
1KBT asynchronous design with an energy consumption
of 1.15pJ per image classification, and increases with the
size of the magnets, up to 37.8pJ per image classification
for the 20KBT synchronous design. This trend can be
explained by the increasing write current requirements
of the nano-magnets as their sizes are increased. Since
the current flowing through the HM layer are first routed
through the resistive cross-bar network (synapses), the
energy consumption in the synapses (Fig. 9(c)) show a
similar trend, increasing with the size of the magnets.
Also the bias current required in the synchronous designs
to bias the switching probability of the MTJs to 0.5,
adds to the power dissipation in the HM layer and the
synapses. The energy consumption in the synapses per
image classification are 0.27nJ and 0.74nJ for the 1KBT
and 2KBT asynchronous designs and, 1.3 nJ and 6.5nJ
for the 10KBT and 20KBT synchronous designs. The
read energy consumption, illustrated in Fig. 9(b), is the
summation of the power dissipated in the MTJ due to the
read current passing through and the power dissipated
in the CMOS interface circuitry. As the results indicate,
the read energy consumption per image classification
are larger for the asynchronous implementations (3.3 nJ
for the 1KBT and 8.95nJ for the 2KBT ) compared to
the synchronous implementations (2.1nJ for the 10KBT
and 2.75nJ for the 20KBT ). The majority of the read
power dissipation in asynchronous networks occur at
the CMOS inverters, which are required to operate
continuously due to the parallel read/write nature of
the neurons. In synchronous networks, however, the
CMOS inverters are only required to operate during
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FIG. 10. Average classification accuracy (measured over 50 independent Monte Carlo simulations) with variations in the
resistive synapses (%σ variations) for the (a) synchronous design, (b) asynchronous designs.

the read cycle, and can be deactivated at other times
using access transistors to save power. For both designs
the power dissipated in the neurons are an order of
magnitude smaller compared to the power dissipated
in the synapses and the read circuit, owing to the low
resistance of the HM layer. As depicted by Fig. (9(d)),
the 10KBT synchronous network shows the minimum
energy requirement per image classification (3.4nJ),
closely followed by the 1KBT asynchronous network
(3.6nJ). The 2KBT asynchronous network exhibit an
energy consumption of 9.7nJ per image classification
followed by the 20KBT synchronous network with an
energy consumption of 9.28nJ . For the synchronous
networks, the energy consumption associated with

the clocking circuitry is negligible, especially since a
classification accuracy of 96% can be achieved under 10
clock cycles, and hence is not considered in this analysis.

C. Effect of Variations

Most of the computations of the proposed network oc-
curs in the resistive cross bar array. Hence, any varia-
tions in the resistive elements of the crossbar array can
result in a significant degradation of the classification ac-
curacy. To measure the effect of such variations, separate
experiments were performed allowing variations with a
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standard deviation up to 20% in the resistive elements.
According to the results (refer Fig. 10), for variations in
the synapses with a standard deviation of 20%, the ac-
curacy loss is only 2.8% for the synchronous designs and
5.32% for the asynchronous designs. The slightly higher
accuracy degradation observed in the asynchronous de-
signs in comparison to the synchronous designs can be
explained by the increased sensitivity of the MTJ switch-
ing probability in response to the write current at the
superparamagnetic regime.

Due to the low operating currents of the nano-magnets
used in the asynchronous design, the operating voltage of
the crossbar architecture given by δV = Io

Go
can be very

small for low KBT magnets. Hence any variation in the
supply voltage can potentially result in a large deviation
in the write current magnitude, influencing the classi-
fication accuracy of the network. Fig. 11 depicts the
behavior of the classification accuracy of the two designs
in the presence of supply voltage variation. As shown by
Fig. 11(a), due to the larger supply voltages used in the
synchronous designs, 10KBT and 20KBT synchronous
implementations are resilient to supply voltage variations
up to 25mV . The asynchronous implementations, on the
order hand, exhibit an accuracy degradation of 6.1% un-
der 25mV variation in the supply voltage.

As explained in section II, the CMOS inverter read
circuit for the asynchronous implementation must be de-
signed carefully so that the average magnetization of the
nano-magnet is properly reflected on the average output
of the inverter. Any variation in the CMOS circuitry
can offset the average output of the inverters, adversely
affecting the classification accuracy of the network. As
depicted by Fig. 12, the classification accuracy of the
1KBT asynchronous network decrease by 3% and the ac-
curacy of the 2KBT asynchronous network decrease by
0.7% at the worst case corner with 2σ variations in the
CMOS read circuit. The synchronous networks are re-
silient towards such CMOS variations since the read time
is selected to be adequate for a correct read even at the
worst cell corner.

D. Effect of Temperature

In this work, the switching characteristics of the MTJs
were varied between the telegraphic and non-telegraphic
regime by adjusting the width of the FL appropriately.
However, the switching characteristics of the MTJs can
significantly deviate from design values as the operating
temperature changes. Fig. 13) depicts how the classifi-
cation accuracy of the two designs vary as the operating
temperatures are changed from 200K to 400K. As ob-
served by the simulation results, the two synchronous
networks are resilient to variations in temperature and
shows an error degradation less than 0.4% at 400K. The
two asynchronous networks on the other hand are not as
resilient to variations in temperature. The 1KBT net-
work display an accuracy degradation of 0.71% at 400K
and 0.6% at 200K, while the 2KBT network display an
accuracy degradation of 2.8% at 400K and 3.2% at 200K.
The higher temperature dependency of the 2KBT net-
work can be explained by the change in the switching
characteristics of the MTJs at different temperatures. As
illustrated by Fig. 14) the average inverter output of the
2KBT magnet displays a larger shift compared to the
1KBT magnet with temperature, resulting in a higher
accuracy degradation.
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corner, with variations in the CMOS read circuit (upto ±2σ
variation) for the asynchronous design.
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IV. SUMMARY

In conclusion, we outline the design considerations
for MTJ based stochastic SNNs with varying barrier
heights. We showed that the reduced energy con-
sumption of low barrier height magnets is achieved at
the expense of reduced error and variation tolerance
and constrained design space of CMOS peripherals.
We further showed that, in contrast to the popular
belief that superparamagnetic MTJs would be more
energy-efficient in comparison to high barrier-height
magnets, parallel and always ON “read” and “write”
operations in superparamagnets causes the peripheral
“read” circuit energy consumption to dominate the
network energy consumption profile. While scaling
in the peripheral CMOS technology will reduce the

peripheral energy consumption, reduced error tolerance
might still be a concern for spin-based neuromorphic
hardware design. The analysis performed in this work
can be easily extended to other applications that require
probabilistic inference, for example Bayesian networks
and Ising computing.
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