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In this work, we propose a flexible architecture of microwave resonators with tunable couplings
to perform quantum simulations of molecular chemistry problems. The architecture builds on the
experience of the D-Wave design, working with nearly harmonic circuits instead of with qubits. This
architecture, or modifications of it, can be used to emulate molecular processes such as vibronic
transitions. Furthermore, we discuss several aspects of these emulations, such as dynamical ranges
of the physical parameters, quenching times necessary for diabaticity and finally the possibility of
implementing anharmonic corrections to the force fields by exploiting certain nonlinear features of
superconducting devices.

I. INTRODUCTION

Among the different controllable quantum systems in
the field of quantum technologies, superconducting cir-
cuits excel at the possibility of establishing intercon-
nected scalable architectures and tuneable long range
couplings. A paradigmatic example of this possibility
is the D-Wave architecture [1], in which arrays of super-
conducting flux qubits are controlled with various pa-
rameters: Qubit frequencies, biases, coupling strengths
between nearest neighbors and connectivities to other
plaquettes [2, 3]. All of these have been achieved in a
recent implementation of adiabatic quantum optimizers
(also known as quantum annealers) [4]. Concerning the
architecture, the focus is currently placed on improving
the quality of qubits, increasing their coherence times
and pushing towards larger system sizes.

In this work we explore alternative routes, where the
capabilities of D-Wave-like superconducting circuits are
leveraged in the context of less demanding applications
in quantum simulation. The key idea is that the D-Wave
circuit can be moved into a regime in which it behaves
as a collection of thousands of resonators with tuneable
frequencies, couplings and nonlinearities. It is a powerful
platform that can be used to study a wide variety of mod-
els. In particular, we show that it can emulate the molec-
ular force fields that govern the vibrational dynamics of
complex molecules, with or without anharmonicities.

The problem we have in mind is sketched in Fig. 1,
which depicts a molecule that undergoes a change in
its force field as a consequence of an electronic transi-
tion. Because of the molecular restructuring, the vibra-
tional modes are displaced, mixed and squeezed through
a Duschinsky rotation, which makes computing the en-
ergy distribution for these modes after a sudden transi-
tion —the Frank-Condon Profile—, a hard problem [5],
even more so if anharmonicities are considered [6].

Here, we show how to map the vibrational structure of
a molecule to a superconducting circuit emulator. This

map allows to imitate interatomic interactions, emulate
sudden, adiabatic or intermediate quenches and experi-
mentally reproduce the Franck-Condon profile in the har-
monic regime, i.e., within a quadratic approximation to
the force field potential; with the possibility hinted below
of including anharmonic corrections to the force field.

FIG. 1. When a molecule is electronically excited, it feels a
sudden change in its force field. This leads to an effective
quench which excites the phonon degrees of freedom. After
this, the molecule may relax to the new ground state by re-
leasing its excess of energy.

Our proposal is complementary to other applications
and proposals for using superconducting circuits [7] and
other quantum architectures [8] to obtain answers to dif-
ferent questions posed in the realm of molecular physics
and quantum chemistry, such as the study of ground state
properties of certain molecules [9] or transport phenom-
ena [10]. It has been already shown that cavity arrays
with qubits and boson-sampling techniques [5] can pro-
vide information about molecular vibrational spectra and
that these may be implemented using superconducting
circuits [11]. We now propose using the same build-
ing blocks in a direct implementation of the molecular
Hamiltonian, which enables the possibility of taking into
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account finite quenching speeds (beyond the adiabatic
and Franck-Condon approximations), and the effects of
other, possibly time-dependent, fields.

This work is structured in three parts. We begin in
Sect. II by introducing the particular problem that we in-
tend to emulate: The computation of the Franck-Condon
profile [5] that describes the distribution of energies in
the vibrational degrees of freedom of a molecule after a
sudden change of its force field. After this, in Sect. III
we move on to discuss from a theoretical point of view
what operations and protocols are needed to simulate the
force field and to reproduce the Franck-Condon profile.
We produce mathematically rigorous bounds for a pos-
sible physical implementation of the emulator, including
preparation, quenching times and measurement proto-
cols. Finally, Sect. IV provides one possible physical im-
plementation of the emulator using a multiply connected
architecture of tuneable microwave resonators, together
with some qubits for measurement purposes. This sec-
tion leverages on our understanding of such architectures
from the realm of circuit-QED and quantum annealers,
and shows the feasibility of implementing hundreds of
vibrational modes together with detailed controls and
measurement schemes. We conclude this work with a dis-
cussion of possible avenues where these simulators may
provide new physical insights, such as the study of non-
linear terms in the molecular force field (see e.g. Ref. [6]),
or applications to other computational problems, such as
spin models with long-range interactions [11, 12].

II. A MOLECULAR PROBLEM:
FRANCK-CONDON PROFILE

When a photoinduced electronic transition takes place
in a molecule, it experiences vibrational transitions
along with the electronic transition (see e.g. Refs. [13–
15]). The molecular process is usually described in
terms of the Born-Oppenheimer potential energy sur-
face V (x1, . . . ,xN ; Θ) of the electronic configuration |Θ〉,
which is a function of the atomic positions {xi}. Here,
the state of the molecule is described by a vibronic wave-
function |Ψ〉 ⊗ |Θ〉, with separable vibrational (|Ψ〉) and
electronic (|Θ〉) components. For a given electronic con-
figuration |Θ〉, the dynamics of the nuclei in the molecule
can be approximated as a set of coupled harmonic oscil-
lators

HΘ =
∑
j

1

2mj
p2
j +

1

2

∑
jk

(xj − vj)TÂ(Θ)
jk (xk − vk) .

(1)
Here, vj is the equilibrium positions of the j-th atom and

Â(Θ) is the quadratic force constant matrix (Hessian).
mj and pj are, respectively, the mass and momentum
corresponding to the j-th atom. A Hamiltonian of this
form describing the mechanical vibrations of the atoms in
a molecule also has an implicit physical symmetry, which
is the translational and rotational invariances associated

to the rigid motions of the molecule.
With the additional assumption (Condon approxi-

mation) of the electronic transition moment d(0,f) =
〈Θf |

∑
j e rj |Θ0〉 (where the vectors rj are the electronic

positions) being considered to be independent of the nu-
clear positions xj , what we are describing here is a sud-
den electronic transition from an initial vibronic state
|Ψ0〉⊗|Θ0〉 to a final state |Ψf 〉⊗|Θf 〉. As a consequence
of the dipole moment d(0,f) being constant, the transition
amplitudes for the nuclear wave function 〈Ψf |Ψ0〉 char-
acterize the transition profile.

After the electronic transition, the nuclei experience a
quantum quench, abruptly feeling a different force field
with a different Hamiltonian (still of the form (1)). The
molecule undergoes a structural deformation as the ini-
tial wave function |Ψ0〉 evolves on a new potential en-
ergy surface. As the final nuclear Hamiltonian HΘf

can
also be approximated by a quadratic interaction Hamilto-
nian of the form (1), it will also have occupation number
eigenstates |n〉 and eigenenergies En =

∑
j ωjnj . Con-

sequently, the state of the system will evolve as

|Ψ (t)〉 = e−i (HΘf
+Eel) t |Ψ0〉 (2)

=
∑
n

〈n|Ψ0〉 e−i(En+Eel)t |n〉 ,

where Eel is the adiabatic electronic transition energy;
this off-set energy can be safely set to be zero in our de-
scription of the transition probability distribution. The
probability distribution P (E) associated to finding the
above nonequilibrium states in a given energy manifold
is called the Franck-Condon profile [16]:

P (E) =
∑
n

δ (E − En) |〈n|Ψ0〉|2 . (3)

The problem of classically reproducing the Franck-
Condon profile, the main physical observable pertaining
these transitions that can be obtained experimentally,
is linked to two different layers of difficulty. The first
one consists in the fact that reconstructing P (E) in-
volves sampling subsets of instances with specific popula-
tion numbers and it is thereby related to the problem of
boson-sampling, which is conjectured to be hard [5, 17,
18]. More precisely, the original boson sampling prob-
lem [19] can appear in the current molecular picture by
setting all normal mode frequencies to be approximately
the same, preparing the initial Fock states and study-
ing the evolution under an arbitrarily complex change of
the force field. The second difficulty lays in the relation-
ship between P (E) and the integer partition problem.
Simply put, a given energy E =

∑
j ωj nj may be ap-

proximated by many different sets of phonon occupation
numbers, and reconstructing the full probability distri-
bution involves counting every such possible configura-
tion and calculating all the possible overlaps in (3) [5].
Both problems combined make the classical estimation
of P (E) arguably hard under general circumstances.
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III. QUANTUM EMULATION PROTOCOL

In this section we analyze the steps necessary to im-
plement a complete emulation of the molecular dynamics
during a quantum quench of its vibrational structure, fol-
lowed by a characterization of the resulting states and a
computation of the Franck-Condon profile. This is a for-
mal section that introduces the required protocols for the
emulation; mathematical operations, preparation, con-
trol and measurement of a particular experimental setup,
and finally interpretation of the results. This discussion
sets up the requirements that have to be matched by the
physical implementation presented in Sect. IV.

It is convenient for practical reasons to work with
Hamiltonians of the form (1) with full-rank coupling ma-

trices Â(Θ). In order to reduce to zero the dimensionality
of the kernel of the coupling matrices, which exists be-
cause of the implicit translational and rotational invari-
ance of A(Θ), we only need to make the substitution

Â(Θ) → Â(Θ) +
∑
j

λ2
j νj ν

T
j , (4)

where the quantities λ2
j are parameters whose associated

frequencies are distinguishable from the physical frequen-
cies of the vibrational model, and the vectors {νj} form
a basis of its null space. Since the Duschinsky rota-
tions that map different coupling matrices to one an-
other do not affect their kernels, these contributions to
the Hamiltonian do not affect the outcome of the exper-
iment, but effectively remove all zero-mode frequencies
from the model and stabilize the following protocols and
experiments.

Our protocol is defined as a series of prerequisites,
some pre-processing phases, some experimental phases
and finally a data-gathering phase.

Protocol 1 (Force field approach). Let us assume a
molecular transition problem defined in terms of the fol-
lowing steps:

1. a set of oscillator masses, that do not change
throughout the experiment, and which form the ma-
trix Mjk = mj δjk,

2. the initial and final configurations of the vibrational
modes defined in terms of the coupling matrices and

displacements,
{
Â(0), v(0)

}
and

{
Â(f), v(f)

}
,

3. the eigenfrequencies associated to these models,{
ω

(0)
n

}
and

{
ω

(f)
n

}
, upper-bounded by ωmax,

4. and an initial state of the molecule, which may be
thermal or a ground state, ρ (0).

Let us assume that we have a quantum device, the emu-
lator, described by a set of coupled harmonic oscillators

HE =
1

2
qT Ĉ−1q +

1

2
φT B̂ φ− φTV , (5)

with canonical variables [φj , qk] = i~ δjk, and with fully
adjustable drivings, Vj, frequencies and couplings, |Bij | ∈
[ 0, Bmax ]. In comparing Eq. 1 and Eq. 5, we can map
the quantum simulation parameters as in the following
steps.

1. Compute the following auxiliary rescaled matrices
and vectors:

B̂(0,f) = κ2 Ĉ1/2M̂−1/2 Â(0,f) M̂−1/2 Ĉ1/2 , (6)

V (0,f) = κ3/2 Ĉ1/2M̂−1/2 Â(0,f) v , (7)

with a possible choice κ = Bmax/ωmax .

2. Prepare the emulator with the couplings B and driv-
ings V given by the previous calculation

B̂start = B̂(0), Vstart = V (0) − V (f) . (8)

3. Prepare the initial state in this emulator, which
may be either a ground state (|0, . . . , 0〉) or a
(Gaussian) thermal state.

4. Abruptly switch, during an appropriate time Tsw,
to the final configuration

B̂end = B̂(f), Vend = 0 . (9)

5. Measure the total energy stored in the whole res-
onator array, E.

6. Based on the previous measurement, gather statis-
tics and reconstruct P (E), including uncertainties
in the estimation of the probability.

As mentioned before, we will discuss the practical as-
pects of this protocol in a later section, where we ex-
plain how to implement the different steps —for instance
model (5) or step 5—, using a particular architecture.
Before that, however, we need to explain the theoreti-
cal considerations behind the protocol, its steps, and the
reasoning behind its design.

1. Model scaling

The first remark is that a molecule and a supercon-
ducting emulator do not share the same energy scale: In
general, the energies of a superconducting implementa-
tion (∼MHz–GHz) will be much smaller than the vibra-
tional energies of a molecule (∼THz or mid-IR). This im-
plies that, for a proper emulation, all the parameters in
the Hamiltonian have to be rescaled accordingly in a way
that takes into account the allowed frequency ranges of
the experiment; both from the point of view of the mea-
surement bandwidth of the emulator, as well as from the
constraints on the temperatures that can be reached in
the emulator.

Step 1 of the protocol accomplishes the task of properly
designing the emulator parameters in whatever chosen
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platform. As discussed in App. A, the transformation in
Eq. 6 is an identity that simply changes the length of the
canonical variables. This produces a Hamiltonian whose
physics is similar, but in which the frequencies have been
rescaled from ωn to Ωn = κωn. All the other observables
may be similarly reconstructed:

Molecule↔ Emulator

p =
1√
κ
M̂1/2 Ĉ−1/2 q , (10)

x =
√
κ M̂−1/2 Ĉ1/2 φ .

Finally, it is important to clarify that the choice of
scaling in Step 1 is not unique. There may be others
that are motivated not by the size of couplings but by
maximum achievable frequencies, setup constraints, etc.

2. Independent resonators and measurement

The second remark is that we have engineered Steps 3
and 4 in Protocol 1 as moving from generic initial (B̂start)

to final (B̂end) coupling matrices, and finally measuring
the total energy contained in the resonator array. This
is indeed possible, as we argue below in Sect. IV, yet in
many circumstances it would be more advantageous to
end up at a configuration such that every normal mode is
associated to an independent resonator through its vari-
ables {qj ,φj}. This is a particularly easy thing to ac-

complish when the “mass” matrix Ĉ in the emulator (5)
is diagonal. If this is achieved, we can provide means to
inquire the populations of these independent resonators
individually —for instance, by coupling qubits or other
detectors to each resonator, as illustrated in Fig. 2—;
thereby obtaining even more information than just spec-
troscopic properties, but also information regarding en-
tanglement properties and correlations between modes,
or full Wigner function representations.

These techniques are discussed in Sect. IV D, requiring
only a slight modification of the protocol.

Protocol 2 (Normal mode approach). This protocol re-
produces the assumptions and steps in Protocol 1, but
replaces the following steps:

1’. Compute the following auxiliary rescaled matrices
and vectors:

B(0,f) = κ2 Ĉ1/2M̂−1/2 Â(0,f) M̂−1/2 Ĉ1/2 , (11)

V (0,f) = κ3/2 Ĉ1/2M̂−1/2 Â(0,f) v , (12)

with a possible choice κ = Ωmax/ωmax .

Diagonalize the target configuration B̂(f) =
Ô Ω(f) ÔT in order to find the final rescaled eigen-

frequencies, Ω
(f)
j = κω

(f)
j and orthogonal transfor-

mation Ô.

2’. Prepare the emulator with the paramters

B̂start = ÔT B̂(0)Ô, Vstart = ÔT
(
V (0) − V (f)

)
. (13)

4’. Abruptly switch, at an appropriate time Tsw, to the
final configuration of uncoupled resonators

B̂end = Ω̂(f), Vend = 0 . (14)

5’. Measure the number of phonons in each of the
decoupled resonators, nj, reconstructing the energy

E =
∑
j

~ω(f)
j nj . (15)

3. Quench times and errors

The final remark is that Step 4 need not be instanta-
neous to succeed —indeed, there exists nothing instanta-
neous in real experimental setups, and real quenches al-
ways involve a finite amount of time Tsw [cf. Sect. IV B].
Fortunately, we can approximately solve the dynamics of
the emulator state during the quench time. Using time-
dependent perturbation theory, we prove analytically in
App. B that there exists an upper bound to Tsw such
that any quench faster than this time will produce a fi-
nal state approximately unperturbed and as close to the
ideal case Tsw → 0 as we wish.

To be more precise, we have proven the following:

Proposition 1. If we adjust the quench time as

Tsw = ε×O

(
min

{
1

Ωmax
,

2

|Ĉ−1/2 Vstart|

})
, (16)

the final state will approximate to the ideal quench
(Tsw → 0) up to errors O (ε), in the (i) first and second
momenta, (ii) total energy and (iii) fidelity of the state.

Which means that, by choosing a quenching time Tsw

that is 1/ε times faster than the bound given by (16),
the relative errors on the fidelity and other observables
of the final state of the system after the quench can be
bounded to be at most of order 1/ε. Notice that the
switching is not only constrained by the fastest timescale
in the Hamiltonian, but also by the initial displacement
of the vibrational modes. The intuition is that, when
the minima of the initial and final configurations are
far apart from each other, the Wigner function of the
quenched state will start far away from the origin and it
will change very rapidly in phase space, with a velocity
∼ displacement× ω.

In order to avoid relevant changes in the quantum state
during the quench time we need that Tsw scales as the
inverse of the average number of photons stored in the
resonator in the quenched state, which is the physical

interpretation of
∣∣∣ Ĉ−1/2 Vstart

∣∣∣. This is the reason why
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the null space is forcibly removed from beforehand in (4):
Modes in the null space of the vibrational Hamiltonian,
which correspond to the rigid degrees of freedom (trans-
lational and rotational) of the molecule, would have a
marginally low frequency in a realistic emulation on a
superconducting architecture. As a consequence, these
modes could host a large population of photons. This is
undesirable as it would decrease the switching times Tsw

necessary to approach the ideal quench, as these pho-
tons could leak into the cavities that represent vibrational
modes through imperfections in the switching off of the
tuneable couplings.

IV. PHYSICAL IMPLEMENTATION

So far, we have introduced the emulation protocol in
a formal way. We will now discuss how every stage of
the emulation, from the initial preparation to the mea-
surement, can be implemented by using superconducting
circuits.

A. Tuneable resonator array

The basic ingredient in our emulation protocol is the
possibility of implementing the model (5) with tuneable

parameters B̂ and V . Our suggestion consists in using
superconducting microwave resonators for this task. A
possible architecture for such ensemble of resonators is
shown in Fig. 2, where we graphically intertwine 9 tune-
able resonators that cross over each other. Note that
these resonators interact with each other at their crossing
points either directly or through circuits implementing an
adjustable mutual inductance.

There exist multiple proposals for implementing both
tuneable resonators and tuneable couplings between
them, which rely on different variations of SQUIDs both
for the tuning [20, 21] and the coupling [22]. We believe,
however, that a promising approach is to revisit the D-
Wave architecture of flux qubits to implement this type of
setups. In particular, D-Wave qubits, when brought back
close to zero flux bias, are nothing but tuneable SQUIDs
in which the plasma frequency can be adjusted with ex-
ternal magnetic fields. Moreover, there exist robust vari-
ations of the SQUID setup that have been proposed and
tested with such qubits [2, 3], both for the purposes of
tuning frequencies and couplings. In contrast with the
qubit regime, our demands for fidelity and dephasing are
much more relaxed. The need for less coupled elements,
as well as ongoing progress in the design of controls for
superconducting circuits, may significantly improve the
switching times for frequencies and couplings, which in
the D-Wave architecture were very long.

Irrespectively of the architecture that is finally used,
the effective lumped element circuit of the resonator ar-

1 2 3 4 5 6 7 8 9

==
==
==
==
==
==
==
==
=== tuneable coupler= tuneable coupler

== = qubit= qubit

= tuneable resonator= tuneable resonator

= tuneable inductance= tuneable inductance

FIG. 2. Schematic representation of a scalable architecture of
superconducting resonators (black tubes) connected by tune-
able interactions at their intersections (red boxes), and with
tuneable inductors to change their frequency (top boxes).
Each resonator may or may not be coupled to an additional
qubit (circle) for preparation and measurement purposes.

ray can always be written in the linear form as

H =
1

2
qT Ĉ−1 q +

1

2
φT L̂−1 φ+ φT L̂−1

ext φext , (17)

where Ĉ and L̂ are respectively the capacitance and in-
ductance matrices, and the last term is the inductive en-
ergy associated to the coupling with external currents.
The terms in the matrix Ĉ come from the local capaci-
tances of each resonator, Cjj , as well as the mutual capac-
itances between neighbors, Cj 6=k � Cjj . The inductance
matrix contains both the diagonal terms that we use to
control the frequency of each resonator, (L̂−1)jj , as well
as the mutual inductances between different resonators,
(L̂−1)j 6=k.

In this setup, the matrices Ĉ, L̂ and the vector I =
L̂−1

ext φext map directly to the equivalent objects Ĉ, B̂ and

V in Eq. 5. All the inductive elements, L̂, and currents,
I, are susceptible to external control when we place tune-
able elements, such as SQUIDs, either at the ends of the
resonators or in the intersections [cf. Fig. 2]. By us-
ing these elements, we can prepare the desired matrices
B̂ ∼ L̂−1 and drivings V .

Note that our formalism for the quantum quenches
considers the possibility of having a capacitance matrix
with non-local interactions, (Ĉ−1)jk 6= 0. As it was dis-
cussed before, the only moment at which this matters
is at the final stages of Protocol 2, when we attempt to
make the matrix B̂final almost diagonal [cf. Step 4’]. If

Ĉ−1 is almost diagonal too, it turns out that we have
N truly decoupled resonators that can be measured in-
dependently using the variant of Step 5’. However, if
there is a residual mutual capacitance Cj 6=k, the final res-
onators will be weakly coupled, and there is a possibility
of cross-talk, for instance, when we place qubits close to
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resonance to measure the number of photons [cf. Fig. 2].
Such an effect can be remedied by choosing a different
B̂final that truly makes the oscillators decouple while the
desired final spectrum of frequencies is preserved.

B. Parameters, frequencies and drivings

As it was mentioned in the prerequisites of the proto-
col, we have to take into account the fact that we may not
implement arbitrarily large or small resonator frequen-
cies. In practice, the emulator will work with a spectrum
of harmonic eigenfrequencies that will be rescaled with
respect to the molecular eigenenergies

Ω(0,f)
n = κ× ω(0,f)

n . (18)

We have to choose the emulator scaling κ such that
the values Ωn fit within experimental constraints. For
instance, the lower frequency limit is typically imposed
by the temperature of the superconducting chip, which
will be of the order of tens of mK. This means that ide-
ally Ωn ≥ Ωmin ∼ 200 MHz if we want to start from the
ground state of the system, or at least a low-populated
state in the least energetic modes. The upper bound, on
the other hand, is given by the Josephson plasma fre-
quencies of the various junctions in the circuitry provid-
ing the adjustable frequencies and couplings, reasonably
assuming Ωn ≤ Ωmax ∼ 20 GHz for state-of-the-art ex-
periments. In this case, to ensure diabaticity we have
to expect that the switching of couplings and frequencies
takes place at a rate 1/Tsw � 20 GHz, which seems a fea-
sible figure as shown by circuit QED experiments [20].

It is interesting to note that, after the quenching win-
dow (bounded by Tsw), the simulation itself is essentially
finished and all that remains to be done is measuring the
number of photons the cavities contain. Even short co-
herence times of tens of ns, such as those attained in cer-
tain quantum annealing architectures comprising a large
number of qubits [1], would be sufficient to guarantee the
correct reproduction of a diabatic quench, which is the
only part of the simulation in which state coherence plays
a role. This relaxation on the demands for state coher-
ence may be useful for experimentalists trying to achieve
the parameters required to realize a simulation.

Once the range of allowed frequencies is known, we
have to adjust the experimental parameters to fit within
this region. Considering the specific pair of coupling
matrices Â(0) and Â(f) which are going to be imple-
mented during a simulation, we extract their associated

spectra, {ω(0,f)
n }. We may now simply take ωmax =

max ({ω(0,f)
n }) and apply a frequency rescaling

κ = Ωmax/ωmax . (19)

Using this scaling we have a dynamical range

ωmax

ωmin
<

Ωmax

Ωmin
∼ 100 , (20)

which safely lays within the working conditions of most
experiments with superconducting circuits. This dynam-
ical range is sufficient for simulating most real molecules,
whose typical vibrational bandwidths are typically lim-
ited o wavenumbers within a range from 300 to 3000
cm−1 (1013 to 1014 Hz) [23–26]. This limitation phys-
ically stems from the notion that atoms are coordinated
with only so many neighbors and have very weak inter-
actions with distant components of a molecule, and is
reflected in the fact that the Duschinsky rotations are
almost diagonal for most molecules (see Fig. 2 in [27]).

Finally, the λj parameters introduced in (4) to prevent
an overpopulation of photons in modes with marginally
low frequencies (as was discussed at the end of Sec. III 3)
have to be chosen in such a way that, after the rescaling,
their frequencies lie in this dynamical range and are dis-
tinguishable from the frequencies associated to physical
vibrational modes.

C. State preparation

If the resonator frequencies are engineered according to
the requirements laid out in the previous subsection and
the dynamical range of the simulated molecule permits
it, it will be possible to prepare the initial state of the
resonators in an almost zero-temperature state. This can
be achieved by simply waiting for a sufficiently long time
until the temperature given by the cryostat sinks into the
circuit. At temperatures Tcryo < ~Ωmin/KB, the number
of photonic excitations will be negligible. Microwave-
induced cooling techniques [28, 29] may also be consid-
ered in flux qubit architectures for zero-temperature sim-
ulations requiring the inclusion of modes with frequencies
lying below the cryostatic range (below 2 GHz for a 20
mK refigerator) or for faster state preparation [30].

However, strictly zero-temperature simulations are not
required. Should we wish to prepare a thermal state, it
can also be achieved in two possible ways. One is to
lower the frequencies of the array so that the effective
temperature of the cryostat populates the resonator. In
other words, we choose κ differently, so that

κ =
Tmolecule

Tcryo
⇔ ~Ω0

KBTcryo
=

~ω0

KBTmolecule
. (21)

The range of temperatures available for our simula-
tor are still within a range of computational hardness.
Assuming a molecule with a typical bandwidth of 1012

to 1014 Hz and a circuit operating up to 20 GHz at
20 mK, the circuit would be simulating a molecule with
Tmolecule ∼ 100 K, which is a moderate temperature with
a small occupation per mode. This would still be a classi-
cally hard simulation: Low occupation numbers in many
but the least energetic modes would still require the use
of integral-based methods, precluding the use of other
approximate techniques [31].

Another possibility would be to couple the resonator
array to a source of incoherent microwave radiation with
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a thermal distribution at the desired effective tempera-
ture. Such drivings, which can be obtained from simple
resistances, have been already demonstrated in the liter-
ature and are routinely used for calibrating tomographic
setups for quantum microwaves [32, 33].

D. Measurement

The final point of the protocol, after having performed
the emulation of the quantum quench, is to extract
from the superconducting cavities that emulate the vi-
brational modes the information necessary to reconstruct
the Franck-Condon profile. A variety of strategies may
be used for the measurement stages, depending on the
physical observables that we intend to characterize. As
far as the simulation scheme is concerned, there is not
a fundamental reason to select one possibility over the
others.

One such possible approach consists on performing
a quantum non-demolition (QND) measurment of the
number of photons in each of the resonators by using
the ancillary qubits depicted in Fig. 2. In the disper-
sive regime, where qubits are far off-resonant from the
resonators, qubits undergo a photon number-dependent
energy splitting [34, 35]

∆n,j = ∆0,j + (2nj + 1)
g2
j

δj
, (22)

where ∆0,j is the bare energy gap of the j-th qubit, gj is
the coupling to the j-th resonator and δj = ∆0,j − Ωj is
the detuning. The qubits associated to the translational
and rotational degrees of freedom may be discarded by
keeping them uncoupled from their respective cavities.

Driving each qubit at a different frequency ∆n,j , we
detect a Stark shift ξ0,j = g2

j /δj on the frequency ωr of
a readout cavity [36, 37]

ω̃rj = ωr + ξ0,j
〈
σzj
〉

, (23)

which depends on the qubit response to the driving field.
If the driving matches the qubit frequency ∆n,j , then〈
σzj
〉

= 0, otherwise
〈
σzj
〉

= −1. By monitoring trans-
mission through the readout cavity, it is possible to infer
the number of photons nj in the j-th tuneable resonator.
When the qubit is driven at the frequency ∆n,j , we mea-
sure a cavity frequency ω̃rj = ωr, and ω̃rj = ωr − ξ0,j
otherwise.

The maximum number of photons that can be resolved
using this technique is given by 2ξ0,j/γj , where γj is
the decay rate of the j-th tuneable resonator. Using re-
alistic values of circuit QED experiments, we get that
nmax ' 6 [35]. This figure is well above the expected
number of phonons that populate the vibrational modes
of a molecule in spectroscopic experiments (nvib ' 3) [5].

a) b)

FIG. 3. (a) Superconducting circuit formed by a couple of
Josephson junctions in a SQUID configuration and an associ-
ated linear inductance. (b) Energy curves of the circuit poten-
tial in Eq. 25, for (L/LJ , Φ/ϕ0) = (0, 0) , (0.5, 0) , (0.7,−π/2)
and (0.9, − π/4), from bottom to top. Curves have been
shifted arbitrarily upwards for better visibility.

V. ANHARMONICITY

One of the most interesting features of the supercon-
ducting architecture is the possibility of emulating molec-
ular systems with full control of nonlinear terms. As
sketched in Fig. 1, general force field potentials are not
exactly quadratic near their global minima. A better ap-
proximation would be a quartic Taylor expansion around
the minimum

V (x0 + δx) ' c2 δx2 + c3 δx
3 + c4 δx

4 +O
(
δx5
)

, (24)

where cn = ∂nxV (x0) /n!. Introducing cubic or quartic
terms in classical simulations of molecular quenches is
extremely difficult, with molecules with a small number
of components already exhausting computational capa-
bilities. This happens because the states involved are no
longer Gaussian and cannot be efficiently approximated
by a first- and second-order moments (see e.g. Ref. [6]).
However, adding such nonlinearities to the superconduct-
ing setup from Fig. 2 is rather straightforward and should
be the subject of future work.

As an example, in this section we discuss how replacing
a simple LC-resonator with the SQUID setup in Fig. 3 al-
lows achieving any effective nonlinearity with reasonable
parameters. We shall work with the inductive energy
around the minimum of

V (φ) = EJ (Φs) cos [(φ− Φ) /ϕ0] +
1

2L
φ2 , (25)

which contains the static contribution of the linear in-
ductor, L, the effective Josephson energy of the SQUID,
EJ , and the external fluxes trapped in the loops, Φs and
Φ. In order to prove universality up to fourth order, we
only have to find the energy minima of V (φ) and verify
that it can be expanded as Eq. 24 with any possible ratio
of c3/c2 and c4/c2.

To achieve this, we will focus on the limit in which
the parabolic term φ2/2L becomes the dominant con-
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tribution, as this can always be achieved replacing the
inductor with a larger junction. The minimal energy
configuration may be obtained by expanding around
φ = 0, which yields the solution φmin ' Φ/ (1 + LJ/L),
where LJ (Φs) = ϕ2

0/EJ (Φs) is the effective Josephson
inductance. Notice that the Taylor expansion around
the energy minimum starts at the second order, with
∂2
φV ∼ 1/L. The cubic and quartic corrections are also

found to be

c3
c2
' 1

1 + LJ/L

Φ

ϕ2
0

, (26)

c4
c2
' − L

LJ

1

ϕ2
0

. (27)

Since LJ ∝ cos (Φs) can be changed in sign and mag-
nitude independently from Φ, we have that c3/c2 and
c4/c2 may be tuned separately in order to approximate

anharmonic potentials up to order O
(

(φ− φmin)
5
)

.

The flexibility of this circuit is exemplified in Fig. 3
for different values of the SQUID inductance and inner
flux. For Φ = 0 and L/LJ = 0, the model is essentially
quadratic, and the circuit may be used just like a tune-
able resonator. However, as we increase the strength of
the SQUID, the cubic and quartic terms become dom-
inant and the potential becomes asymmetric, in closer
resemblance with usual Morse potentials.

This idea of anharmonic oscillators can be extended
to a multi-mode circuit and also to the coupling terms
between different resonators in Eq. (5). While scaling up
this design to many modes becomes complicated and re-
quires a careful crafting of the different fluxes, the fact
is that, as we mentioned before, already a single-purpose
emulator capable of reproducing molecules with a few
anharmonic modes would surpass the computational ca-
pabilities of existing classical algorithms.

As for the other considerations in this work, the addi-
tion of weak anharmonicities does not significantly mod-
ify the discussion on the quench times or the measure-
ments. In the first case, we might have to verify that the
quench time is shorter than the inverse of the anharmonic

terms, Tsw < 1/cn

∣∣∣Ĉ−1/2 V
∣∣∣n/2, extending the previous

bounds. However, as in general c3,4 � c2, we expect
that the introduction of nonlinearities will not impose
further constraints in the quantum quench’s dynamics.
In the case of the measurements, we may resort to spec-
troscopic means to interrogate the resonator energies, as
described in App. C.

VI. DISCUSSION

A. Classical complexity and efficiency

Before discussing the variety of problems that can be
embedded in our quantum simulation scheme and the

resulting efficiency, it is illustrative to discuss the cur-
rent state of the art in Frank-Condon profile calculations.
The main notion concerning the classical approaches to
the problem of simulating vibronic transitions is that
resources scaling exponentially with problem size and
bandwidth are required. This stems from the fact that, in
order to reproduce the Franck-Condon profile, it is nec-
essary to compute as many integrals as there are ways of
distributing M excitations over N normal modes [27]:

No. of integrals =

(
N +M − 1

M

)
. (28)

The largest problems analyzed in the relevant litera-
ture typically deal with extended molecules of simplified
geometries with up to 200 atoms [38]. Even in these sit-
uations, approximations that drop contributions to the
Franck-Condon profile become a necessity. Yet still, the
scalings of memory requirements and computation times
in these approaches remain unfavorable with problem size
and allowed energies per mode [16, 39]. The situation
worsens very rapidly when including anharmonic correc-
tions to the force field [15].

This is a very similar situation to the one that arises
in the context of the classical simulation of the boson
sampling problem with initial Fock states [5, 40].

B. Quantum simulability: size

Two different issues have to be discussed separately
when studying the feasibility of reproducing Franck-
Condon profiles in our quantum architecture: (i) The
variety of realistic problems that can be simulated, and
(ii) the resources consumed by the problems that can be
implemented in the architecture.

The first point is subtle: Due to the way that res-
onators are set to interact with each other, the maxi-
mum achievable coupling strength of a cavity connected
to Z other cavity modes scales at most as Z−1. This
implies that an architecture with a connectivity of or-
der Z will have a corresponding maximum bandwidth
ωmax/ωmin 1/Z, which would seem to restrict the size
of the molecules that can be studied using our proposal.
However, as discussed in Sec. IV B, real molecules also ex-
hibit a limited bandwidth, which is due to the fact that
atoms in molecules are coordinated with few neighboring
atoms and interact very weakly with distant regions of
the system, with both factors playing favorably to our
design.

Note also that existing coupling mechanisms, such as
Josephson junctions and SQUIDs, add very large pref-
actors to the coupling terms [22, 41], so that significant
coordination numbers Z are available before the 1/Z scal-
ing kicks-in.

Thus, a realistic superconducting architecture for re-
producing Franck-Condon profiles of large molecules
would make use of a large number of resonators, N � Z;
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with a coordination number Z large enough for embed-
ding a large variety of molecules. For example, carbon
atoms in organic molecules may have at most four nearest
neighbors, which limits the number of higher-order neigh-
bors that may be significantly coupled to them. Typi-
cally, from a cursory inspection of the available literature,
a value of Z ∼ 10 seems more than sufficient [27].

C. Quantum efficiency: time

The efficiency of our quantum simulation approach is
limited mainly by three factors, in principle independent
of problem size: (i) The time necessary for the prepa-
ration of the initial state, (ii) the time necessary for the
measurement of the state after the quenching and (iii) the
number of repetitions required to gather the necessary
statistics for reconstructing the Franck-Condon profile.

As discussed in Sec. IV C, there are two main alterna-
tives for preparing the initial state of the superconduct-
ing array: Spontaneous relaxation of the photons in the
cavity states and microwave-induced active cooling tech-
niques. The former being simple to implement physically,
while the latter allowing the depletion of modes with fre-
quencies below the cryostatic range [28, 29] and being
faster, with recent experiments having achieved prepara-
tion times of the order of tens of ns [30].

Since energy decay lifetimes scale inversely with mode
frequency, the lowest possible frequency, of ∼ 200 MHz)
[cf. Sec. IV B, has to be considered in order to obtain
a conservative estimation of a state preparation time by
spontaneous relaxation. For this figure of 200 MHz, and
quality factors of Q ∼ 104, the energy decay rate is of
the order of 10 µs. This figure is insufficient for a re-
alistic, conservative estimation of the preparation time,
as it refers to a time at which (at zero temperature) the
cavity will have lost a fraction (1 − e−1 ∼ 0.63) of its
initial stored energy. It is prudent to wait a longer time,
of about 100 µs, for the cavities to thermalize.

For the measurement strategy presented in Sec. IV D,
the smallest among the Stark shifts determines the
timescale τm = (minj |ξ0,j |)−1

at which this measure-
ment can be performed. As we are in the dispersive
regime gj = χδj , for χ � 1, with δj being the detun-
ing, then τm = 2π(χ2 minj{δj})−1. Choosing qubit fre-
quencies well below the dynamical range of the resonator
frequencies Ωj , the minimum possible detuning is given
by the lower limit of ∼ 200 MHz to the dynamical range.
Picking χ ∼ 10−2 as a reasonably small dispersive cou-
pling parameter, we obtain an estimation for the mea-
surement time of τm ∼ 50 µs.

Typical quenching times are on a much faster timescale
than the state preparation and measurement times, as
the maximum working frequency of the superconduct-
ing cavities, which ranges between 200 MHz and 20 GHz
(as discussed in Sec. IV B) gives an upper bound to the
quenching times [cf. Eq. (16)]. The quenching, then, will
take a time of the order of 0.1 ns at most, thus having

a negligible bearing on the simulation efficiency as the
other two timescales supersede it for reasonable Q fac-
tors. This allows the use of cavities with lower quality
factors that are leakier and allow for quicker state prepa-
ration.

Finally, the number of sampling repetitions NR re-
quired to reconstruct the Franck-Condon profile with a
given precision ηFC can be found to be, in a worst-case
scenario, NR ' 1/η2

FC [5].
Taking into account all the previous considerations,

a useful comparison can be drawn between the typi-
cal running times of classical algorithms and the time
it would take for a superconducting simulation ar-
chitecture to gather the necessary statistics. Choos-
ing a target precision ηFC ∼ 10−4, of the same or-
der that achievable precisions of current classical algo-
rithms, a number of sampling repetitions of NR ∼ 108

is obtained. Picking a very conservative upper bound
(preparation + quench + measurement) ∼ 1 ms for the
time it takes to run a single simulation, we get that the
total time necessary to reconstruct a worst-case scenario
Franck-Condon profile would be ∼ 104s. This estimation
for the necessary simulation time is on the same order of
magnitude as the typical running times of classical ap-
proaches with approximations [16, 27, 39, 42].

D. An example: formic acid

As a practical example of the application of this em-
ulation framework, we present the case of the S0 → S1

vibronic transition between two different vibrational con-
figurations the formic acid molecule (HCOOH), and how
the parameters to emulate a vibronic transition in a su-
perconducting architecture may be picked.

The particular case of this vibronic transition in the
formic acid molecule iis a paradigmatic example of an
extreme case involving different high-energy vibrational
modes that have significant overlaps between them dur-
ing the transition. A consequence of this is that, due to
the resulting excess of energy in the vibrational modes,
the molecule can break down into either CO2 + H2 or CO
+ H2O after the vibronic transition. Having considered
this, the largest normalized value of the ratio Ajk/ωj is
0.12. There exist proposals to achieve comparable tune-
able couplings in transmission line resonators and flux
qubits; in more general, less extreme scenarios than that
of the formic acid, lower coupling rates should be suffi-
cient.

The data for the force constants A
(0,f)
jk and atomic po-

sitions |δvj | in both configurations have been extracted
from Ref. [16]. Every physical parameter that charac-
terizes the two vibrational models (1) for the two dif-
ferent vibrational configurations of the molecule finds its
respective counterpart in the superconducting emulator
scheme (5):

These parameters have been obtained by choosing a
maximum working frequency for the resonators in the
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Molecular parameters Superconducting emulator

Mjj 1–16 a.m.u. 0.5–8 pF Cjj

A
(0,f)
jk 6.1 · 10−3–101 eV/Å

2
2.37 · 10−4–3.83 nH−1 B

(0,f)
jk

~ωj 62–467 meV 1.33–10 GHz Ωj/2π

|δvj | 0.32–7.8 pm 1.27–116 nA |δVj |

FIG. 4. Scaling of vector norm differences during a quan-
tum quench of duration Tsw in the formic acid molecule, esti-
mated from the exact time evolution of the system described
by Hamilton’s equations from a complete and orthogonal set
of initial conditions. It is observed that the mean value of
these differences (solid line) increases linearly with Tsw, which
is consistent with the obtained bounds [cf. App. B]. The vari-
ance from the mean of this set of norm differences (dashed
lines) is shown around the mean value, and is found to be
small for short times Tsw Ωmax � 1.

emulator of 10 GHz, which determines the frequency
rescaling factor κ = Ωmax/ωmax, and a choice of cavity
capacitances consistent with the atomic masses in the
molecule. The mutual inductances Bjk and drivings Vj
can be obtained from these previous parameters and the
formic acid parameters using (6) and (7).

In order to reproduce the Franck-Condon profile, the
quenching time Tsw between the two different configura-
tions has to be short enough so that the Franck-Condon
approximation [cf. Sec. II] still applies. As discussed in
Sec. III 3, the state of the system remains unaffected at
the end of quench if Tsw is shorter than the bound (16),
which only depends on emulation parameters.

We backup the aforementioned discussion with numer-
ical simulations for different switching times of a realis-
tic quenching process between these two vibrational con-
figurations of the formic acid molecule. In the simu-
lations, we have reproduced a quench between the two
different quadratic models considered (that we call here
H1 and H2), using a linear switching profile H (t) =
(1− t/Tsw)H1 + t/TswH2. Picking a complete and or-
thogonal set of initial conditions for the atomic positions
and momenta, we have run simulations of the time evolu-
tion of the system as governed by Hamilton’s equations.
The observed changes in the vector norms shown in Fig. 4

are small enough and scale linearly with TswΩmax [cf.
App. B], so the deviation from the original state of the
system may be bounded as stated in Proposition 1.

E. Summary

In summation, we have provided a complete framework
for the quantum emulation of a molecular force field using
an array of tuneable microwave resonators which lever-
ages the D-Wave design [cf. Fig. 2]. We have derived
precise protocols for gathering information about molec-
ular transitions, in particular the Franck-Condon spectra,
using such a platform; including a detailed discussion of
all steps, from the tuning of the emulator to the measure-
ment protocol. Finally, we have provided evidence that
this architecture may be even more useful when working
beyond the quadratic regime.

Our work is an example of another family of useful
problems that can be implemented in a superconducting
circuit setup. It would be experimentally relevant and
interesting to pursue the design of single-purpose cir-
cuits for highly anharmonic molecules with few atoms.
Existing blueprints for the D-Wave architecture, as well
as ongoing efforts for higher-fidelity quantum annealers
with flux qubits could be leveraged for this task, with the
added benefit of offering the possibility of using faster ac-
tive cooling techniques for state preparation.
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Appendix A: Rescaling of Hamiltonians

Let us assume we want to simulate a quadratic model

H =
1

2
pT M̂−1p+

1

2
(x− v)

T
Âij (x− v) , (A1)

with canonical variables [xi, pj ] = i~ δij , using a family
of tuneable Hamiltonians

HE =
1

2
qT Ĉ−1q +

1

2
φT B̂ φ− φT V , (A2)

with other canonical variables, [φi, qj ] = i~ δij , and dif-
ferent energy scales. We will show that both models can
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be mapped to each other through a suitable change of
scales. For that let us write down the transformation

q = ÛTp, φ = Û−1x , (A3)

which preserves the commutation relations

[φi, qj ] =
∑
m,n

(
Û−1

)
im
Unj [xm, pn] = i~ δij . (A4)

This leads to the model

HE =
1

2
pT Û Ĉ−1ÛTp+

1

2
φT
(
Û−1

)T
B̂ Û−1φ+

− xT
(
Û−1

)T
V . (A5)

In order for H and HE to be equivalent, we just need
HE = κH + E0, with some constants κ and E0. This
assumption leads to the condition

κ M̂−1 = Û Ĉ−1ÛT , B̂ = κ ÛT Â Û , V = κ ÛT Âv .
(A6)

Using the fact that Ĉ and M̂ are symmetric matrices we
deduce

ÛT =
√
κ Ĉ1/2M̂−1/2,

(
Û−1

)T
=
M̂1/2 Ĉ−1/2

√
κ

, (A7)

Û =
√
κ M̂−1/2Ĉ1/2, Û−1 =

Ĉ−1/2 M̂1/2

√
κ

. (A8)

and obtain the suitable oscillator parameters

B̂ = κ2 Ĉ1/2M̂−1/2Â M̂−1/2Ĉ1/2, (A9)

V = κ3/2 Ĉ1/2M̂−1/2Âv. (A10)

At this point we have an absolute freedom to choose
κ. We can select

κ =
Bmax

ωmax
, (A11)

where ωmax is the largest eigenfrequency of the normal
modes in H, and Bmax is the largest dynamical range of
the eigenfrequencies and couplings in B̂, that is, Bmax =
maxkl |Bkl|. We assume that there are no restrictions in
the strength of V .

Finally, notice that the mapping of Hamiltonians is
accompanied by a mapping of physical observables, which
becomes Eq. (10) once our choice of Û is made.

Appendix B: Switching times and diabatic condition

We can give an upper bound to the time Tsw required
to switch Hamiltonians and still preserve the state of the
system (2) with sufficient fidelity. Without loss of gener-
ality, we assume a linear interpolation between the initial

and final couplings, which translates into a linear inter-
polation between Hamiltonians

HE (t) =

(
1− t

Tsw

)
HE,start +

t

Tsw
HE,final

=
1

2
qTC−1q +

t

Tsw
φTBfinal φ+ (B1)

+

(
1− t

Tsw

)[
φTBstart,ij φ− φT Vstart

]
.

Our goal consists in making Tsw short enough so that
the state remains almost unperturbed. Since we are only
interested in the total energy, it suffices for us to verify
that the Heisenberg equations for φj (t) and qj (t) are as
close to stationary as possible.

In order to give a proper scale for the proximity of
observables and states, we group the canonical operators

RT = (X1, . . . ,XN ,P1, . . . ,PN ) , (B2)

defined by

φ = Ĉ−1/2X , q = Ĉ1/2P , (B3)

with the resulting Hamiltonian

HE (t) =
1

2
RT D̂ (t)R−RTW (t) (B4)

D̂ (t) =

(
F̂ (t) 0

0 11

)
,

F̂ (t) = Ĉ−1/2

[(
1− t

Tsw

)
B̂start +

t

Tsw
B̂end

]
Ĉ−1/2,

W (t) =

(
1− t

Tsw

)
Ĉ−1/2 Vstart .

The evolution equations for the canonical variables be-
come

dR

dt
= Ĵ

[
D̂ (t) R+W (t)

]
, (B5)

where Ĵ is the matrix of commutators Jjk = [Rj ,Rk]

Ĵ =

(
0 i11

−i11 0

)
. (B6)

Our goal is to ensure that R (T )−R (0) is as small as
possible. More precisely, we will ensure the following:

Proposition 2. In our protocol, let us denote by Ωmax

the largest frequency of the initial or final oscillator con-
figuration. Then, if we switch couplings and frequencies
over a time

Tsw = ε×O

(
min

{
1

Ωmax
,

2

|Ĉ−1/2 Vstart|

})
, (B7)

then we can ensure that the canonical observables only
suffer small corrections

R (Tsw) ∼ Rsw (0)× [1 +O (ε)] +O(ε). (B8)
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Proof. The formal solution to the Heisenberg dynamics
of our observables is given by

R (T ) = Û (T , 0)R (0) +

∫ T

0

dt Û (T , t)W (t) , (B9)

with the orthogonal operator given by

d

dt
Û (t, t0) = Ĵ D̂ (t) Û (t, t0) , Û (t0, t0) = 11 . (B10)

The second term in Eq. B9, which we call Rdrive, can
be easily bounded by

|Rdrive| ≤
Tsw

2

∣∣∣Ĉ−1/2 Vstart

∣∣∣ , (B11)

from which it is obtained that

Tsw = O

 2ε∣∣∣Ĉ−1/2 Vstart

∣∣∣
 ⇒ |Rdrive| = O (ε) . (B12)

We focus now on Û (t) and on how it deviates from the
identity. Our bound for this term relies on the Magnus
expansion of the time evolution orthogonal operator

Û (t, 0) = eΩ̂(t, 0), (B13)

The matricial function Ω̂ (t, 0) is constructed as a se-

ries expansion Ω̂ (t, 0) =
∑
j Ω̂j (t, 0), which receives

the name of Magnus expansion. The contributions to
this series are obtained recursively from the first term

Ω̂1 (t, 0) =
∫ t

0
dτ B̂ (τ). The Magnus expansion for

Ω̂ (t, 0) is absolutely convergent [43] if∫ t

0

dτ
∥∥∥Ĵ D̂ (τ)

∥∥∥ < 1

2

∫ 2π

0

dx
(

2 +
x

2

(
1− cot

x

2

))−1

,

(B14)
where the rhs integral of (B14) is to be computed nu-
merically. For the particular switching profile (B4), this
bound can be approximated as

Tsw

∥∥∥Ĵ D̂ (0)
∥∥∥+

∥∥∥Ĵ D̂ (Tsw)
∥∥∥

2
< 1 . (B15)

We can now use the fact that
∥∥∥Ĵ D̂∥∥∥ =

∥∥∥D̂∥∥∥ and that

the spectrum of D̂ (t) gives us the instantaneous eigen-
frequencies of the resonator array, Ωn (t). We may thus
write

Tsw max
{

Ω(0)
n , Ω(f)

n

}
=: Tsw Ωmax < 1 , (B16)

using the eigenfrequencies of the initial and final prob-
lem. If this bound is satisfied, the Magnus expansion
may be truncated at first order to estimate that the time
evolution during the quenching window differs from the
identity as ∥∥∥Û (Tsw)− I

∥∥∥ ≤ O (TswΩmax) . (B17)

The condition for a good fidelity follows from (B17):

Tsw = ε×O
(

1

Ωmax

)
. (B18)

This criterion is sufficient to guarantee that the evolu-
tion during the switching time does not significantly alter
the final energy of the quenched state. If the initial state
is Gaussian, which is the case for the ground state of the
oscillator or any thermal state, its evolution under the
quenching Hamiltonian will preserve this property. We
also know that Gaussian states are fully characterized by
the first and second momenta of the canonical operators,

r (t) := 〈R (t)〉 , Γjk (t) := 〈{Rj (t) ,Rk (t)}〉 . (B19)

Any other expectation value, including the energy and
the fidelity of the state to the ideal reference, can be com-
puted using these quantities. The bounds from Proposi-
tion 2 imply that all moments are well approximated by
our choice of quench times

r (Tsw) = rideal +O (ε) , (B20)

Γ (Tsw) = Γideal +O (ε) . (B21)

We therefore conclude that the final energy distribu-
tion and other properties will be well approximated after
the quench, as stated in Proposition 2.

Appendix C: Alternative measurement scheme

An alternative QND measurement scheme using a sim-
ilar setup to the one discussedin the main body of the
article would consist on the measurement qubits being
prepared in the GHZ state 1√

2
(|00 . . . 0〉+ |11 . . . 1〉). For

∆j � ωj , switching on the off-resonant coupling between
the qubits and the cavities during a window of time τ in-
troduces a photon number-dependent phase factor

φ =

N∑
j=1

g2
j

Ωj
nj (C1)

in the state of the qubits, which now becomes
1√
2

(
e−iφτ |00 . . . 0〉+ eiφτ |11 . . . 1〉

)
. If the couplings are

tuned such that they correspond to a small (but known)
fraction χ � 1 of the frequency of the mode to which
each qubit is coupled gj = χΩj (in order to remain in
the dissipative limit), then this phase becomes the total
energy of the system up to the multiplicative factor χ:

φ = χ

N∑
j=1

Ωj nj = χE/~ . (C2)

Applying the inverse GHZ gate leads to the state

|ψ〉 = cosχEτ/~ |00 . . . 0〉 − i sinχEτ/~ |11 . . . 1〉 . (C3)
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Making use of a qubit readout scheme such as the one
discussed in the previous subsection, the qubit (we only
need to measure one of them as they are in an entan-
gled state) is found at the excited state with probability
P1 (τ), as a function of the interaction time τ . This prob-
ability corresponds to the probability of the simulation
finishing at a certain energy P (E) through the formula

P1 (τ) =

∫
dE P (E) | sinχEτ/~ |2 , (C4)

from which it is obtained, by applying the Fourier cosine
transformation, that

P (E) = −4χ

π~

∫ τc

0

dτ cos 2χEτ/~P1 (τ) . (C5)

By repeating many instances of the same simulation for
different interaction times τ , the excitation probability

P1 (τ) is obtained, from which it is possible to obtain
the probability P (E), directly connected to the Franck-
Condon profile. The Fourier integral is truncated by a
cutoff τc = 2π/∆ω that is given by the accuracy ∆ω with
which we seek to reproduce the spectra.

This measurement approach requires a different num-
ber of repetitions from the previous one. For a given tar-
get precision for the probability of excitation ∆P1, the
number of repetitions necessary to characterize P1 (t) at

a given instant t will be 1/ (∆P1)
2
. Choosing a time res-

olution ∆t, the total time necessary to gather sufficient
statistics to characterize P1 (t) in the interval [0, τm] will
be

τm '
1

(∆P1)
2

τ2
c

2∆t
. (C6)
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