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We present analytical relations for the dark recombination current of a pn+ junction with posi-
tively charged columnar grain boundaries in the high defect density regime. We consider two defect
state configurations relevant for positively charged grain boundaries: a single donor state and a
continuum of both acceptors and donors. Compared to a continuum of acceptor+donor states, or
to the previously studied single acceptor+donor state, the grain boundary recombination of a single
donor state is suppressed by orders of magnitude. We show numerically that superposition holds
near the open-circuit voltage Voc, so that our dark J(V ) relations determine Voc for a given short
circuit current Jsc. We finally explicitly show how Voc depends on the these two grain boundary
defect state configurations.

I. INTRODUCTION

Polycrystalline photovoltaics have seen substantial in-
creases in power conversion efficiency in recent years, ex-
ceeding the 20 % mark [1]. Many of these advancements
are due to improvements in light management, and have
resulted in a short-circuit current density Jsc at 95 %
of its theoretical maximum in CdTe [2]. However, there
remains substantial room for improvement in the open-
circuit voltage Voc; the current record value of 850 mV in
CdTe is only 76 % of its theoretical maximum [2]. Despite
the impressive progress in thin film photovoltaics, funda-
mental questions regarding the role of grain boundaries
persist. For example, the relatively low efficiency of single
crystal CdTe has led some to suggest that grain bound-
aries are beneficial to photovoltaic performance [3, 4],
while numerical simulations typically indicate that this
is not the case [5–8]. There are multiple reasons for the
uncertainty regarding grain boundaries: experimentally,
grain boundaries are difficult to independently control
and measure, and theoretically there is not a simple an-
alytical model which fully captures the physics of grain
boundaries’ impact on photovoltaic performance.

Two recent reports [9, 10] on single cyrstal CdTe solar
cells showed open-circuit voltages above 1 V, indicating
that grain boundaries are a primary source of Voc losses
due to recombination. This finding has renewed the im-
petus to understand and mitigate the impact of grain
boundaries on Voc. Most previous theoretical works in
this direction have consisted of numerical simulations [5–
8, 11]. Alternately, analytical models offer a concise,
quantitative description of system behavior while pro-
viding further insight.

In light of the need for improved understanding of grain
boundaries’ impact on Voc, we recently developed an an-
alytical description of dark grain boundary recombina-
tion current, with the primary result of a simple relation

between grain boundary properties and Voc [12]. Some
details of the grain boundary model in this previous work
are rather particular: we assumed that the grain bound-
ary defect states consist of a donor and an acceptor at the
same energy (so-called negative U-center). This assump-
tion has been used in previous studies [6, 13] and is a
simple way for the grain boundary to exhibit Fermi level
pinning. However, the performance of polycrystalline
photovoltaics like CdTe and Cu(In,Ga)Se2 depends criti-
cally on the grain boundary defect chemistry [14, 15]. An
adequately general model should therefore accommodate
varied defect spectra.

In this work, we generalize our previous analysis to
consider other grain boundary defect configurations. We
provide closed form expressions and physical descriptions
relating grain boundary properties to Voc. Because a ma-
jority of experimental works provide evidence for pos-
itively charged grain boundaries in CdTe [16–18], we
restrict our attention to defects which conform to this
observation: a single donor defect and a continuum of
donor and acceptor defects. We found that generalizing
the grain boundary defect configurations necessitated a
clearer and more general formulation of the model as-
sumptions given in Ref. 12. The scope of this analysis is
limited to grains with interior electrostatically similar to
the unperturbed (i.e. grain boundary free) pn junction,
and materials with large intragrain hole mobility (on the
order of 50 cm2/(V · s) which is consistent with single
crystal CdTe [19, 20]). To provide specific context, we
present much of our analysis in terms of material param-
eters related to CdTe solar cells. However, our analysis is
not material-specific, and applies to any material which
conforms to the assumptions we make.

There are qualitative similarities between the behavior
of the single donor+acceptor considered in Ref. 12 and
the single donor and continuum cases studied here. In
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all cases, there are three regimes of qualitatively distinct
behavior, which can roughly be classified according to
the grain boundary core type: n-type, p-type, or neither
(the latter case applies at high applied voltages, where
both electron and hole densities vary with voltage). The
full explicit form of the grain boundary dark current is
shown in Table I for all defect configurations. An im-
portant new finding in this work is that compared to a
continuum of acceptor+donor states, or to the previously
studied single acceptor+donor state, the grain boundary
recombination of a single donor state is suppressed by
orders of magnitude.

This article is structured as follows. We begin with a
description of the physical model for the grain bound-
ary, encompassing both the single donor case and the
continuum of gap states in Sec. II. We summarize the
equilibrium properties of the grain boundary and our as-
sumptions for analyzing the out-of-equilibrium problem
in Sec. III. We present the charge transport and asso-
ciated grain boundary dark current for the single donor
state in Sec. IV, and for the continuum of gap states in
Sec. V. We end the article with Sec. VI where we discuss
the implications of our analysis on the open-circuit volt-
age of an illuminated pn junction. Finally, we examine
the differences between the various configurations of the
gap states considered in the paper.

II. PHYSICAL MODEL OF THE GRAIN
BOUNDARY

Our model system is depicted in Fig. 1(a): a pn+ junc-
tion of width d and length L with a grain boundary per-
pendicular to the junction. We use periodic boundary
conditions in the y-direction so that the system describes
a closed grain of width d (d = 3 µm in our numerical cal-
culations). We assume selective contacts so that the ma-
jority (minority) carrier surface recombination velocity
is infinite (zero), which implies that the electron (hole)
current vanishes at x = L (x = 0). We define x0 as
the position where electron and hole concentrations are
equal in the grain interior. As stated in the introduction
we focus on positively charged grain boundaries, which
require screening by nearby negative charges (free elec-
trons or ionized acceptor dopants) to conserve the device
electroneutrality. The consequences of the screening on
the electrostatics surrounding the grain boundary depend
on the statistics of the gap levels, the defect density of
states, and on the grain interior type (n-type or p-type
region). For example, a p-type material will develop an
electric field around the grain boundary to repel free holes
from the grain boundary core, creating a depleted region
around it. Because of the absence of holes, this region
has a negative charge compensating the positive charge
of the defect, as shown in Fig. 1(b). Electroneutrality
determines the spatial extent of this depleted region: the
net charge (grain boundary charge plus depleted charge)
of the ensemble grain boundary/depletion region is zero.

Grain boundary dark current: JGB(V ) = λS
d
Ne−Ea/kBT eqV/(nkBT )

Defect(s) Param. n-type p-type high-recombination

single D

n 1 1 2

Ea EGB Eg − EGB Eg/2

N NV NC

√
NCNV

S (1− f0)Sp Sn

√
(1− f0)SnSp

λ LGB
LGB for Ln � LGB

Ln for Ln � LGB

LGB for L′n � LGB

L′n for L′n � LGB

single A+D

n 1 1 2

Ea EGB Eg − EGB Eg/2

N NV NC

√
NCNV

S Sp/2 Sn/2
√
SnSp/2

λ LGB
LGB for Ln � LGB

x0 for Ln � LGB

LGB for L′n � LGB

L′n for L′n � LGB

Continuum
A+D

n 1 1 2

Ea EGB Eg − EGB Eg/2

N NV NC

√
NCNV

S Sp Sn S/√γ

λ LGB
LGB for Ln � LGB

x0 for Ln � LGB

LGB for L′n � LGB

L′n for L′n � LGB

TABLE I. Summary of analytical results for the grain bound-
ary recombination current for various defect density of states
(single donor, single donor and acceptor, continuum of donors
and acceptors). The general form of the grain boundary dark
current is JGB(V ) = λS/dNe−Ea/kBT eqV/(nkBT ) where S is
a surface recombination velocity, λ is a length characteris-
tic of the recombination region, N is an effective density of
states, Ea is an activation energy, n is the ideality factor, d
is the grain size and V is the applied voltage. Each column
corresponds to the regime in which the grain boundary is de-
pending on voltage. LGB is the length of the grain boundary,
Ln and L′n are effective electron diffusion lengths, x0 is given
by Eq. (65). f0 is the thermal equilibrium occupancy of the
single donor state (f0 ≈ 1). γ is given by Eq. (48)

The consequence of the aforementioned electric field on
the local energy landscape can be seen on a band struc-
ture plot across the grain boundary, as shown in Fig. 1(c).
The electric field leads to the bending of the conduc-
tion and valence bands, leading to a built-in potential
V GB around the grain boundary. Depending on materi-
als parameters and the extent of band bending, the grain
boundary core may undergo type inversion with respect
to the grain interior. Each grain boundary type has dif-
ferent carrier transport properties under nonequilibrium
conditions. In this work we consider both inverted and
non-inverted grain boundaries.

The grain boundary is modeled as a two-dimensional
plane with various concentrations of donor and acceptor
gap states. The grain boundary defect charge density
reads

QGB = q

∫ Eg

0

dE ρD(E) [1− fD(E)]− ρA(E)fA(E),

(1)
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FIG. 1. (a) 2D model system of a pn+ junction containing a
columnar grain boundary. The depletion region of the grain
boundary is indicated in blue (width 2WGB). x0 is the point
in the grain interior where electron and hole densities are
equal. (b) Static charges at and around the grain boundary
core (+ and − signs respectively) in the p-type part of the
system. (c) Schematic of a band structure corresponding to
the situation described in (b).

where ρD (ρA) is a two-dimensional density of donor (ac-
ceptor) states per energy unit. The occupancies of each
donor/acceptor state (indicated by the index k ∈ (D,A))
is [21]

fk(E) =
SknnGB + Skp p̄GB(E)

Skn(nGB + n̄GB(E)) + Skp (pGB + p̄GB(E))
, (2)

where nGB (pGB) is the electron (hole) carrier density at
the grain boundary, Sn (Sp) is the electron (hole) surface
recombination velocity, n̄GB and p̄GB are

n̄GB(E) = NCe
(−Eg+E)/kBT (3)

p̄GB(E) = NV e
−E/kBT (4)

where E is a defect energy level calculated from the
valence band edge, NC (NV ) is the conduction (va-
lence) band effective density of states, Eg is the mate-
rial bandgap, kB is the Boltzmann constant and T is the
temperature. The parameters Skn,p and ρk are related
to the electron and hole capture cross sections σkn,p by
Skn,p = σkn,pvt

∫ Eg
0

dE ρk(E), where vt is the thermal ve-
locity. In this work we vary Skn,p with fixed ρk; this corre-
sponds to varying σkn,p accordingly. Note that at thermal
equilibrium Eq. (2) reduces to the Fermi-Dirac distribu-
tion, and is independent of the recombination velocity
parameters. In this case the occupancies of donor and
acceptor states at energy E are equal, which we denote
by fGB(E) where fGB(E) = (1+exp[(E−EF )/kBT ])−1.

In this work we restrict the scope of Eq. (1) to two
cases of interest for positively charged grain boundaries.
First, we focus on a single donor state at EGB: ρD(E) =
NGBδ(E−EGB), where NGB is a two-dimensional defect
density (units of m−2). Denoting f0 = fGB(EGB), the
grain boundary charge reads

QGB = qNGB(1− f0). (5)

Our second case, a continuum of gap states, is based on
the observation that a wide variety of states populate the
band gap of polycrystalline thin film materials [22, 23].
In the absence of precise knowledge of electronic defect
structure for these materials, we consider a continuum of
uniform densities of acceptor and donor states in the gap:
ρD(E) = NGB/Eg, ρA(E) = αNGB/Eg. α is the ratio of
acceptor to donor densities of states. For this case we use
EGB to denote the neutral energy level of the distribution
of states: the grain boundary charge is zero when the
gap states are filled to this level [24]. If the Fermi level is
above (below) EGB, the grain boundary core develops a
negative (positive) charge. At thermal equilibrium, the
continuum of gap states can therefore be mapped onto
an effective single defect level positioned at energy EGB.
The defect charge is then

QGB = qNGB(1− 2f0) (6)

where f0 is now the effective occupancy of the effec-
tive single donor+acceptor defect state EGB. This lat-
ter case was studied in detail in Ref. 12. This mapping
from a continuum of donor+acceptor states to a single
donor+acceptor state is valid for values of α such that
the densities of donor and acceptor states remain com-
mensurate [25]. In the large defect density limit (specified
below) we find that EGB = Eg/(1 + α).

We consider large defect densities of states such that
QGB/(qNGB) � 1. We show in Appendix A that the
critical defect density of states for this condition to be
satisfied is

N crit
GB =

1 + e3

q

√
8εNA(EGB − EF + 3kBT ). (7)

for the single donor state, and

ρcrit
D =

1

q

√
8εNA(EGB − EF − kBT )

kBT ln
(

1+e(Eg−EGB+kBT )/kBT

1+e(−EGB+kBT )/kBT

)
− αEg

(8)

for the continuum of acceptor and donor states. For ma-
terial parameters typical of CdTe, Eq. (7) is on the order
of 1012 cm−2 for EGB ∈ [0.4 eV, 1.3 eV], and Eq. (8)
ranges from 4×1010 cm−2 · eV−1 to 6×1011 cm−2 · eV−1

for α ∈ [0.1, 4].

III. EQUILIBRIUM PROPERTIES AND
ASSUMPTIONS AWAY FROM EQUILIBRIUM

A. Equilibrium properties

We first provide an expression for the equilibrium
built-in potential V 0

GB in terms of the defect occupancy
f0. In both single donor and continuum defect cases, the
absence of recombination at thermal equilibrium gives
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the equilibrium carrier densities along the grain bound-
ary [26]

neq
GB =

f0

1− f0
n̄GB(EGB) (9)

peq
GB =

1− f0

f0
p̄GB(EGB) . (10)

We take the energy reference at the valence band edge
in the grain interior of the p-type material, as shown in
Fig. 1(c). With this reference, the distance between the
Fermi level and the conduction band at the grain bound-
ary core is Eg−EF−qV 0

GB. This determines another form
of the equilibrium electron density at the grain boundary
core, neq

GB = NC exp[(EF − Eg + qV 0
GB)/kBT ]. Equat-

ing this form with Eq. (9) leads to the equilibrium grain
boundary built-in potential

qV 0
GB = EGB − EF + kBT ln

(
f0

1− f0

)
. (11)

We next consider the determination of the equilibrium
defect state occupancy f0. The value of f0 is determined
by electroneutrality: the grain boundary charge must be
compensated by the charge of the surrounding depletion
region. The depletion region width surrounding the grain
boundary in the p-type region isWGB =

√
2εV 0

GB/(qNA)
as shown in Fig. 1 (the schematic neglects the modifica-
tion of the grain boundary built-in potential in the pn
junction depletion region). For the donor case, the elec-
troneutrality requirement leads to the following equation
for f0:

1

8

(
NGB

NALD

)2

(1− f0)
2

=
EGB − EF

kBT
+ ln

(
f0

1− f0

)
,

(12)
where LD =

√
εkBT/q2NA. In general Eq. (12) must be

solved numerically for f0. Since no closed form of f0 is
available, we present our results in terms of the variable
f0. Note that as NGB → ∞, f0 → 1 and the built-in
potential of Eq. (11) diverges logarithmically. In practice,
realistic values ofNGB are well below this diverging limit,
so this issue can be safely ignored. In the continuum
defect case, f0 = 1/2 for the assumed large value of NGB.
In this case, Eq. (11) reduces to the previously studied
single donor+acceptor case of Ref. 12.

B. Assumptions in the nonequilibrium analysis

A direct analytical solution for the full two-dimensional
problem is not feasible. To make analytical progress,
we split the two-dimensional system into two one-
dimensional sub-systems: the grain boundary core where
electrons are electrostatically confined [5, 12, 27], and the
grain interior (grain boundary free pn junction) where a
solution is known. Our approach relies on approxima-
tions (or assumptions) which connect these two prob-
lems, and render the continuity/Poisson equations along

the grain boundary core analytically tractable. In this
section we state our assumptions and sketch out the sub-
sequent solution procedures.

One blanket assumption is that the hole quasi-Fermi
level is approximately flat across and along the grain
boundary. This is valid because the hole current along
the grain boundary is negligible (electrons carry the cur-
rent along the grain boundary), while in the grain interior
holes are majority carriers. We provide a criterion re-
stricting the validity of this assumption in Appendix B.
We find that for typical material parameters of CdTe,
this assumption is generally valid for intragrain hole mo-
bilities on the order of 50 cm2/(V · s).

The next assumption is that the grain boundary charge
does not change with voltage. This is justified by the
limit of high defect density of states QGB(V )/(qNGB)�
1. This assumption is crucial as it enables us to relate
the electrostatic potential to the quasi-Fermi levels with-
out the Poisson equation. We denote the nonequilibrium
defect occupancy with f , which replaces f0 in Eqs. (5)
and (6) for systems out of equilibrium. f is an integral of
Eq. (2) and depends on the nonequilibrium carrier densi-
ties. Fixing the grain boundary charge to its equilibrium
value results in assuming f = f0. The relative sizes of
the terms in Eq. (2) delineate three regimes of different
behavior:

“n-type” grain boundary: In this case, the defect oc-
cupancy is determined by the electron carrier den-
sity at the grain boundary. f remains fixed by
maintaining a constant distance between electron
quasi-Fermi level and (actual or effective) EGB. We
further assume that the electron quasi-Fermi level
is relatively flat and equal to its bulk value. This
is valid because the high electron density in the
grain boundary core enables high currents with rel-
atively small quasi-Fermi level gradients. Together
with the assumption of the relatively flat hole quasi-
Fermi level, the densities and recombination are
easily determined.

“p-type” grain boundary: In this case, the occupancy
of the defect state(s) is determined by the hole
carrier density at the grain boundary. f remains
fixed by maintaining a constant distance between
the hole quasi-Fermi level and (actual or effective)
EGB. Because the electron density is small at
the grain boundary core, the electron quasi-Fermi
level develops gradients to drive the electron cur-
rent along the grain boundary. In this case we must
solve a one-dimensional diffusion equation for the
electron density to obtain the carrier densities and
recombination.

High recombination: For sufficiently large applied
voltages, the electron and hole carrier densities are
the largest terms in the expression for f and de-
termine the defect occupancy. In the donor case,
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maintaining f = f0 leads to the following relation
between electron and hole density:

SppGB ≈ (1− f0)SnnGB. (13)

In the continuum case, the occupancy of the ac-
ceptor and donor states are constrained to ensure
that f ≈ 1/2. Because f is now an integral of the
acceptor and donor occupancies, a simple relation
like Eq. (13) does not exist. We show in Sec. VC
that f = 1/2 leads to the relation:

pGB = γ(V )nGB (14)

where the density ratio γ varies weakly with volt-
age. In this high-recombination regime, Eq. (13)
or Eq. (14) together with the assumption of flat
hole quasi-Fermi level leads to a one-dimensional
drift-diffusion equation for electrons confined to the
grain boundary. Solving this equation leads to the
carrier densities and recombination.

A final assumption which applies for all of our analysis
is that the depletion regions of grain boundaries do not
overlap, i.e. grain sizes d are greater than 2WGB. In
other words, we assume that the electrostatic potential of
the grain interior is the same as that of a grain boundary
free pn junction. This assumption is necessary because
we need a priori knowledge of the solution in the bulk in
order to construct the solution along the grain boundary.
For a doping density 1015 cm−3 this requirement implies
d > 2 µm. The average grain size in CdTe thin films
(excluding twin boundaries) was recently [28] found to
be 2.3 µm.

IV. GRAIN BOUNDARY DARK CURRENT OF
A SINGLE DONOR DEFECT STATE

We begin with the case of a single donor state in the
gap of the absorber material. The grain boundary charge
is proportional to 1 − f0 (see Eq. (5)). In the limit of
large defect density of states, the electroneutrality of the
grain boundary is satisfied when the defect level is fully
occupied: f0 ≈ 1. In the n-region (x < x0) the large con-
centration of electrons satisfies this requirement without
the need for modifying the electrostatics around the grain
boundary. In the p-region, however, the resulting built-in
potential around the grain boundary is given by Eq. (11)

qV 0
GB = EGB − EF − kBT ln(1− f0). (15)

Because of the logarithm term and f0 ≈ 1, the Fermi
level EF is not pinned to EGB.

We now derive analytical expressions for the dark re-
combination current at the grain boundary. We sup-
port the physical descriptions with numerically computed
carrier densities along the grain boundary presented in
Fig. 2. The absence of modification of the electrostatics

FIG. 2. Numerical simulation results for carrier densities
along the grain boundary for the three regimes determined
by the ratio SnnGB to Spp̄GB. (a) Electron density. (b) Hole
density. SnnGB � Spp̄GB was obtained for EGB = 1 eV
at V = 0.3 V (blue continuous lines), SnnGB � Spp̄GB for
EGB = 0.5 eV at V = 0.3 V (orange dashed lines) and
SnnGB ∝ SppGB for EGB = 0.5 eV at V = 0.7 V (green
dotted lines). All calculations were done for Sn = Sp =
105 cm/s, µn = 320 cm2/(V · s), µp = 40 cm2/(V · s) and
NA = 1015 cm−3. General parameters are listed in Table II.

in the n-region results in a recombination similar to the
grain interior of the pn junction depletion region: the re-
combination is determined by the hole density (minority
carrier density) which decreases sharply for x < x0, as
shown in Fig. 2(b). In what follows we therefore neglect
the contribution of this part of the grain boundary to
the total recombination, and focus on carrier densities
and recombination for x ≥ x0. The general expression
for the grain boundary recombination current reads

JGB(V ) =
1

d

∫ LGB

x0

∫ d

0

dxdy RGB(x, y), (16)

where LGB is the length of the grain boundary. RGB

is the recombination at the grain boundary and has the
Schockley-Read-Hall form

RGB(x, y) =
SnSp(nGB(x)pGB(x)− n2

i )δ(y − yGB)

Sn(nGB(x) + n̄GB) + Sp(pGB(x) + p̄GB)
,

(17)
where ni is the intrinsic carrier density and we dropped
the “donor” superscript for the recombination velocities.
n̄GB and p̄GB are given by Eqs. (3) and (4) evaluated at
E = EGB.

As discussed in Sec. III, under nonequilibrium condi-
tions we assume that the grain boundary carrier densi-
ties evolve while keeping the level occupancy equal to its
thermal equilibrium value f0. Using this assumption and
comparing the relative sizes of the terms in the nonequi-
librium level occupancy Eq. (2) leads to three regimes of
interest for the grain boundary dark current. We next
analyze these regimes individually.

A. Grain boundary recombination for
SppGB � Snn̄GB

We first consider SppGB � Snn̄GB, also called “n-type”
regime. As discussed in Sec. III, for this case f0 remains
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FIG. 3. (a) Schematic of the electron and hole currents in the
regime SppGB � Snn̄GB. (b) Difference in electrostatic po-
tential between grain boundary and grain interior V GB along
the grain boundary for the applied voltages V = 0 V and
V = 0.3 V. (c) and (d) Band diagrams across the grain
boundary for x > x0, for V = 0 V and V = 0.3 V respec-
tively.

fixed by keeping EFn −EGB constant. Equivalently, EFn
replaces EF in Eq. (15)[12]. In the grain interior of the p-
region, the increase of voltage V shifts the electron quasi-
Fermi level from the valence band by an amount qV . The
electron current transverse to the grain boundary is small
compared to the longitudinal one. So despite the low
electron density in the grain interior, the gradient of EFn
across the grain boundary driving the transverse current
is small and can be neglected. Assuming that EFn is
flat across the grain boundary, the built-in potential also
varies with V :

qV GB = EGB − EFn − kBT ln(1− f0)

= EGB − EF − qV − kBT ln(1− f0)

= q(V 0
GB − V ), (18)

where EF is the equilibrium Fermi level. Equation (18)
shows that the grain boundary built-in potential de-
creases linearly with voltage for x > x0. This is shown
in Fig. 3(b). The reduction of the barrier allows holes of
the grain interior to flow toward the grain boundary core.
The recombination of holes generates an electron current
along the grain boundary, as depicted in Fig. 3(a).

Because holes are majority carriers in the bulk of the
absorber, the hole quasi-Fermi level is flat and equal to
EF . We derived in Appendix B a criterion under which
the hole quasi-Fermi level is flat across the grain bound-
ary, so that the bulk quasi-Fermi level extends to the
grain boundary core. Using Eq. (18) and the assumption
of flat hole quasi-Fermi level, the distance between EFp
and the valence band is EGB− qV −kBT ln(1− f0). The

hole density at the grain boundary therefore reads

pGB(x > x0) = (1− f0)NV e
(−EGB+qV )/kBT . (19)

The hole density is shown in Fig. 2(b) (blue continuous
lines). The electron density is equal to its equilibrium
value Eq. (9) for x > x0, shown in Fig. 2(a). Because
SnnGB is much larger than all the other terms in the
denominator of Eq. (17), the recombination simplifies to

RGB(x > x0) = SppGB(x > x0) (20)

for V � kBT/q. The recombination is uniform for x > x0

and negligible in the n-region, so the dark recombination
current reads

JGB(V ) = (1− f0)
Sp(LGB − x0)

d
NV e

(−EGB+qV )/kBT .

(21)
The features of Eq. (21) are a saturation current (1 −
f0)Sp(LGB − x0)/d, an ideality factor of 1, and an acti-
vation energy EGB.

In Appendix B we derive a condition under which the
hole quasi-Fermi level is approximately flat. This condi-
tion reads (VT = kBT/q)

Sp
2µp

√
2ε

qVTNA
< 1. (22)

For Sn,p = 105 cm/s, NA = 1015 cm−3, ε = 9.4 ε0, VT =
25 meV, Eq. (22) is satisfied for µp > 32 cm2/(V·s). Over
the course of this work, we found this numerical value to
be an acceptable threshold for all the grain boundary
regimes of this section.

B. Grain boundary recombination for
SnnGB � Spp̄GB

We turn to SnnGB � Spp̄GB, also called “p-type”
regime. In this case the distance between EGB and EFp
does not change with the applied voltage V , as seen in
Figs. 4(c) and (d). We further assume that EFp is flat
equal to EF [26]. As a result Eq. (15) shows that the
grain boundary built-in potential is independent of the
applied voltage for x > x0. This is shown in Fig. 4(b).

The electron transport is more complex than in the
previous case. In particular, the electron quasi-Fermi
level is not always equal to EF + qV along the grain
boundary, but varies significantly to accommodate the
electron current. The grain boundary built-in potential
confines electrons near the grain boundary core, leading
to a one-dimensional motion along it. As a result, the
continuity equation around the grain boundary reduces
to a one-dimensional equation along the grain boundary
core (x-direction). Upon solving this equation beyond x0

(see Appendix C), the electron density reads

nGB(x > x0) =
NC

1− f0
e(−Eg+EGB+qV )/kBT e−

x−x0
Ln ,

(23)
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FIG. 4. (a) Schematic of the electron and hole currents in the
regime SnnGB � Spp̄GB. (b) Difference in electrostatic po-
tential between grain boundary and grain interior V GB along
the grain boundary for the applied voltages V = 0 V and
V = 0.3 V. (c) and (d) Band diagrams across the grain
boundary for x > x0, for V = 0 V and V = 0.3 V respec-
tively.

where Ln =
√

2DnLE/(Sn(1− f0)) (Dn = kBTµn/q:
electron diffusion coefficient) is the diffusion length of
electrons along the grain boundary. LE is the length scale
of the confinement of the electrons to the grain bound-
ary core. This length is related to Ey, the electric field
transverse to the grain boundary in the neutral region
of the pn junction, by 2LE = 2kBT/Ey (see Eq. (70)
in Appendix C). The electron density described here is
shown in Fig. 2(a) (dashed orange line). The hole den-
sity (shown in Fig. 2(b)) is equal to its equilibrium value
Eq. (10). Because Spp̄GB dominates the denominator of
Eq. (17), the recombination reads

RGB(x > x0) = (1− f0)SnnGB(x > x0) (24)

for V � kBT/q. We now consider two limiting cases for
the integration of the recombination.

The first limit is the large diffusion length, Ln � LGB,
obtained for large mobilities and small values of recom-
bination velocity. The electron density is uniform for
x > x0, leading to the dark recombination current

JGB(V ) =
Sn(LGB − x0)

d
NCe

(−Eg+EGB+qV )/kBT . (25)

In the second limit, Ln � LGB, the electron mobility is
small so that the electron density decays rapidly beyond
x0. The recombination is peaked on both sides of x0 and
the recombination current reads

JGB(V ) =
SnLn
d

NCe
(−Eg+EGB+qV )/kBT . (26)

The description of this regime is shown in Fig. 4(a). Holes
converge to x0 where they recombine, generating a local-
ized electron current. Both regimes have similar features:

the saturation current varies as SnNC/d, the ideality fac-
tor is 1 and the thermal activation energy is Eg − EGB.

C. Grain boundary recombination for
SnnGB ≈ (1− f0)SppGB

As we increase the applied voltage in either of the pre-
vious cases, Snn̄GB and Spp̄GB become negligible com-
pared to SppGB and SnnGB respectively. Because the sys-
tem approximately maintains the level occupancy close
to its thermal equilibrium value, the carrier densities sat-
isfy the relation

f0 ≈
SnnGB

SnnGB + SppGB
. (27)

Equation (27) leads to SppGB ≈ (1− f0)SnnGB, defining
the “high-recombination” regime.

While the electrostatic potential now varies along the
grain boundary, the built-in potential still confines the
electrons to one-dimensional motion along the grain
boundary core. Similarly to the regime SnnGB � Spp̄GB,
a one-dimensional continuity equation describes the elec-
tron transport along the grain boundary. Upon solving
this equation (see Appendix D), we find the carrier den-
sities

nGB(x > x0) =
1√

1− f0

√
Sp
Sn
nie

qV/(2kBT )e
− x−x0

L′n (28)

pGB(x > x0) =
√

1− f0

√
Sn
Sp
nie

qV/(2kBT )e
− x−x0

L′n , (29)

where L′n =
√

4DnL′E/(Sn(1− f0)) (L′E is the character-
istic length of the electric field across the grain bound-
ary). These densities yield the grain boundary recombi-
nation

RGB(x > x0) =
√

1− f0

√
SnSpnie

qV/(2kBT )e
− x−x0

L′n

(30)
for V � kBT/q. We consider two limiting cases for the
recombination current.

Because of the factor 1 − f0 in L′n, common material
parameters for CdTe lead to large diffusion lengths such
that L′n � LGB. The uniform grain boundary (for x >
x0) described in Sec. IVA applies in this case, and the
recombination current reads

JGB(V ) =
√

1− f0

√
SnSp(LGB − x0)

d
nie

qV/(2kBT ).

(31)
For smaller values of the electron diffusion length, L′n �
LGB and the recombination is peaked at x0 with the elec-
tron and hole flows depicted in Fig. 4(a). The dark re-
combination current therefore reads

JGB(V ) =
√

1− f0

√
SnSpL

′
n

d
nie

qV/(2kBT ). (32)
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Param. Value Param. Value

L 3 µm ND 1017 cm−3

d 3 µm NA (3× 1014 to 1016) cm−3

NC 8× 1017 cm−3 τn,p (10 to 100) ns
NV 1.8× 1019 cm−3 Sn,p (1 to 106) cm/s
Eg 1.5 eV µp 40 cm2/(V · s)
ε 9.4 ε0 µn (10 to 103) cm2/(V · s)
NGB 1014 cm−2

TABLE II. List of default parameters (param.) for numerical
simulations. Minority carrier lifetimes correspond to the lower
range found in single crystal CdTe [10, 30]. Mobilities are
varied across a wide range of literature values [19, 20, 31, 32].
Lifetimes, mobilities and surface recombination velocities are
taken equal for electrons and holes.

In both limits the thermal activation energy is Eg/2 and
the ideality factor is 1. Note that the factor 1 − f0 is
on the order of 10−4 to 10−3 for typical doping densities.
As a result, Sn is effectively reduced by two orders of
magnitude, significantly reducing the amplitude of the
grain boundary recombination current.

For equal EGB, this difference between the single donor
case and the single acceptor+donor state studied in
Ref. 12 comes from the difference in band bending as-
sociated with the two cases. For the donor case, the
band bending is substantially increased (see Eq. (15)) rel-
atively to the donor+acceptor case. The increased band
bending leads to suppressed hole density, which in turn
suppresses electron-hole recombination.

D. Numerical verification of the analytical results

We verify the accuracy of our analytical results using
numerical solutions of the drift-diffusion-Poisson equa-
tions. We used our own finite-difference software to solve
these equations for our geometry in Fig. 1(a). We dis-
cretized the electron/hole currents using the Scharfetter-
Gummel scheme [29], and used the Newton-Raphson
method to find the self-consistent solution. To determine
the electrostatic potential boundary conditions, we per-
formed two steps. First, we solved the thermal equilib-
rium Poisson equation with ∂φ/∂x = 0 at each contact.
Then, we solved the full drift-diffusion-Poisson equations
by imposing φ(x = 0, y) = φeq(x = 0, y) + qV and
φ(x = L, y) = φeq(x = L, y), where φeq is the equilibrium
potential. Table II gives the list of material parameters
used for these calculations.

Figure 5 presents calculations for the grain boundary
dark current. At each applied voltage the current is given
by the smallest value between the n-type, p-type and high
recombination regimes.

The doping density is varied in Fig. 5(a) for EGB =
0.5 eV. The crossover from the p-type regime (SnnGB �
Spp̄GB) to the high recombination regime (SnnGB ≈

FIG. 5. Grain boundary recombination current characteris-
tics JGB(V ) for a single donor state at EGB = 0.5 eV (p-type
grain boundary), NA = 1016 cm−3, Sn = Sp = 105 cm/s and
µn = 320 cm2/(V · s) unless specified otherwise. Symbols are
numerical calculations, full lines correspond to analytical re-
sults Eqs. (21), (76) and (85). (a) JGB(V ) varied with doping
density. Inset: grain boundary recombination current as a
function of doping density at V = 0.7 V. (b) JGB(V ) var-
ied with defect energy level. (c) JGB(V ) varied with electron
mobility. Inset: grain boundary recombination current as a
function of electron mobility for V = 0.7 V (high recombi-
nation regime). (d) Grain boundary recombination current
as a function of surface recombination velocity (Sn = Sp), at
V = 0.2 V (dots) and V = 0.7 V (squares).

(1 − f0)SppGB) occurs at about 0.5 V, as seen from the
slope change. The inset shows the doping dependence
of the high recombination regime. Contrary to the case
studied in Ref. 12 where common material parameters
for CdTe lead to decreasing grain boundary dark cur-
rents with doping at high voltages, the donor state shows
the opposite behavior. The key difference between these
cases lies in the effective electron surface recombination
velocity entering the definition of the electron diffusion
length at high voltages. In the single acceptor+donor
case it is given by Sn/2, while in the single donor case
we found (1 − f0)Sn. Because f0 ≈ 1 the latter value is
orders of magnitude smaller than the former. The pri-
mary consequence is that for the same Sn, the diffusion
length is much larger in the donor case. In turn, the limit
L′n � LGB is the relevant one for common CdTe param-
eters with the single donor state (Eq. (31)), while the op-
posite limit is relevant for the case studied in Ref. 12. An
increasing doping density increases the depletion charge,
leading to a larger value of 1 − f0. Consequently the
1 − f0 factor in Eq. (31) is responsible for the increase
in recombination current with doping density observed
here. This is a major difference that will reflect in the
open-circuit voltage.

We show the various grain boundary types in Fig. 5(b),
where EGB = 0.5 eV and EGB = 1.1 eV correspond re-
spectively to a p-type and n-type grain boundary at equi-
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librium. Figure 5(c) shows the dependence of the grain
boundary dark current with electron mobility. This de-
pendence is absent at low voltage, as shown by the lim-
iting case Eq. (25). At higher voltages, the relevant limit
is Eq. (31), as discussed above, which is independent of
mobility. This explains the weak mobility dependence
shown in the inset. Finally, Fig. 5(d) shows the scalings
of the grain boundary dark current with surface recombi-
nation velocity. We show grain boundary dark currents in
the p-type regime (dots) and high-recombination regime
(squares). On this plot both scalings are equal. The dark
current scales as Sp at low voltage, and as

√
SnSp at high

voltage. The second scaling is given by Eq. (31) which
is the relevant limit in this case. With Sn = Sp these
scalings are identical.

V. GRAIN BOUNDARY DARK
RECOMBINATION CURRENT OF A
CONTINUUM OF DEFECT STATES

We turn to the case of a continuum of donor and
acceptor states in the absorber band gap. We assume
densities of states uniform in energy: ρD = NGB/Eg,
ρA(E) = αNGB/Eg, where

α = ρA/ρD (33)

determines the ratio of acceptor to donor densities of
states. More acceptor (donor) states leads to p-type (n-
type) grain boundary core. The neutral energy level of
the distribution of gap states is EGB = Eg/(1 + α) (see
Sec. II).

Under nonequilibrium conditions the grain boundary
dark current is given by Eq. (16) where the integral along
the grain boundary (x-direction) now starts from x =
0. The recombination is the sum of the contributions
from the acceptor and donor states (represented by the
superscript k ∈ (A,D))

RkGB(x) =∫ Eg

0

dE

Eg

SknS
k
p (nGBpGB − n2

i )

Skn(nGB + n̄GB(E)) + Skp (pGB + p̄GB(E))
.

(34)

Despite the apparent complexity of a continuum of states
as opposed to a single state, the physical description of
the nonequilibrium electron and hole currents is the same
as given in Ref. 12. This apparent complexity will be
incorporated in effective surface recombination velocities
in what follows. The results of Ref. 12 and of this section
are gathered in the last two rows of Table I.

A. Grain boundary recombination for
Sk
nnGB � Sk

ppGB

We begin with the regime SknnGB � SkppGB (n-type
grain boundary). In this regime the electron quasi-Fermi

level is pinned to Eg/(1+α). The recombination is deter-
mined by holes, which flow from the p-type grain interior
into the grain boundary core. Because most of the ab-
sorber is p-type, the recombination is uniform along the
entire grain boundary. We refer to Sec. III A of Ref. 12
for a more complete description of this regime.

The electron density is independent of voltage and spa-
tially uniform, given by Eq. (9) with f0 = 1/2. The hole
density is also uniform and reads

pGB = NV e
(−EGB+qV )/kBT . (35)

The grain boundary dark current reads

JGB(V ) =
SpLGB

d
NV e

(−EGB+qV )/kBT (36)

where Sp is the effective surface recombination velocity

Sp =
∑
k∈A,D

Skp

∫ Eg

0

dE

Eg

1

1 + n̄GB(E)
nGB

+
Skp p̄GB(E)

SknnGB

. (37)

The integrals in Eq. (37) can be computed analytically
but the results are cumbersome and difficult to interpret.
To give a sense of these integrals, we refer to the solid
blue line of Fig. 6(b) where we show the grain boundary
recombination as a function of energy. This figure shows
that only states with energies Eg − EGB . E . EGB

contribute significantly to the recombination. The up-
per limit results from the fact that states above EGB

are empty of electrons. The lower limit is the energy
at which holes are emitted from the defect state to the
valence band faster than electrons relax from the conduc-
tion band to the defect state. This rapid hole emission
rate prevents recombination. The typical width of the
integrand of Sp is

∆k(α) =

∣∣∣∣1− α1 + α
+
kBT

Eg
ln

(
Skn
Skp

NC
NV

)∣∣∣∣ (38)

as shown on the continuous plot of Fig. 6(b). Equa-
tion (37) therefore simplifies to

Sp ≈ SAp ∆A(α) + SDp ∆D(α). (39)

Note that the occupancy of the gap states is independent
of the applied voltage in this regime (see the continuous
curve in Fig. 6(a)). That is because the occupancy of the
gap states is determined solely by the electron density,
which is independent of voltage here.

In Appendix B we derive a condition under which the
hole quasi-Fermi level is approximately flat. This condi-
tion applied here reads (VT = kBT/q)

Sp
2µp

√
2ε

qVTNA
< 1. (40)

For α = 2, SA,Dn,p = 105 cm/s, NA = 1015 cm−3,
ε = 9.4 ε0, VT = 25 meV, Eq. (40) is satisfied for
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qV

qV

equal
areas

equal areas

(a) (b)

(c) (d)

EGB

EGB

EGB

EGB

Eg Δk.

Eg Δk.

FIG. 6. (a), (c) Occupancy of the gap states as a function of
energy at x0 for ρA/ρD = 0.5 (EGB = 1 eV) and ρA/ρD = 2
(EGB = 0.5 eV) respectively. (b), (d) Normalized recombina-
tion at x0 as a function of energy corresponding to the occu-
pancy levels in (a) and (c) respectively. We used SA

n,p = SD
n,p

so that recombinations of the acceptor and donor states are
the same.

µp > 25 cm2/(V · s). This value is in the range of stan-
dard bulk mobilities for CdTe [19, 20]. We found this
order of magnitude to be an acceptable threshold for all
the grain boundary regimes with the continuum of defect
states.

B. Grain boundary recombination for
Sk
nnGB � Sk

ppGB

In the regime SknnGB � SkppGB (p-type grain bound-
ary), the hole quasi-Fermi level is pinned to Eg/(1 + α).
In this regime the recombination is determined by elec-
trons flowing into the grain boundary core from regions
of the grain interior where n > p. This corresponds
to x < x0 in Fig. 1(a). The recombination is therefore
mainly concentrated within the n- region of the pn junc-
tion depletion region, and is uniform for x < x0. We refer
to Sec. III B of Ref. 12 for a complete description of this
case.

For x > x0, the hole density is uniform given by
Eq. (10) with f0 = 1/2; the electrons are confined to
the grain boundary core by the grain boundary built-in
electric field, leading to a one-dimensional diffusion along
it. Solving the one-dimensional diffusion equation leads
to the electron density

nGB(x) = NCe
(−Eg+EGB)/kBT eqV/kBT for x < x0

= NCe
(−Eg+EGB)/kBT eqV/kBT e−

x−x0
Ln for x > x0

(41)

where Ln =
√

2DnLE/Sn (Dn: electron diffusion coeffi-

cient) is the electron diffusion length, and LE = kBT/Ey
is the length scale of the confinement (Ey: electric field
transverse to the grain boundary in the bulk of the pn
junction). Sn is the effective surface recombination ve-
locity in this case

Sn =
∑
k∈A,D

Skn

∫ Eg

0

dE

Eg

1

1 + p̄GB(E)
pGB

+
Sknn̄GB(E)
SkppGB

. (42)

The grain boundary dark current reads

JGB(V ) =
Sn
d
NCe

(−Eg+EGB+qV )/kBT

×
[
x0 + Ln

(
1− e−

LGB−x0
Ln

)]
, (43)

The integrals in Sp have a similar interpretation as for
the n-type grain boundary: only the states with energies
EGB . E . Eg − EGB contribute significantly to the
recombination, as shown in Fig. 6(d). The lower limit
results from the fact that states below EGB are empty of
holes. The upper limit is the energy at which electrons
are emitted from the defect state to the conduction band
faster than holes relax from the valence band to the defect
state. The integrands in Sn exhibit the same shape as
Sp. In particular, the width of the integrand is still given
by Eq. (38). Equation (42) therefore simplifies to

Sp ≈ SAn ∆A(α) + SDn ∆D(α). (44)

Similarly to the n-type grain boundary, the occupancy
of the gap states is determined solely by holes and is
therefore independent of the applied voltage, shown in
Fig. 6(c).

C. Grain boundary recombination for nGB ∝ pGB

As the applied voltage is increased above Eg∆k/q, the
minority carrier density approaches the majority carrier
density at the grain boundary. This results in a rear-
rangement of the gap states occupancies. However, we
use the assumption that the grain boundary charge does
not change with voltage, as discussed in Sec. III, which
leads to the constraint

1 = 1/Eg

∫ Eg

0

dE fD(E) + αfA(E). (45)

The change in occupancies keeps the area under the oc-
cupancy curves equal to its equilibrium value, as shown
by the dashed lines in Figs. 6(a) and (c). More specif-
ically, occupancies above EGB increase while the ones
below EGB decrease. These changes lead to an increase
of the number of states contributing to the recombination
as can be seen in Figs. 6(b) and (d).

There is no pinning of either quasi-Fermi level to
Eg/(1 + α) in this regime. We refer to Sec. III C of
Ref. 12 for the derivations in this case. We can show



11

that the constraint Eq. (45) imposes that the ratio of car-
rier densities remains constant along the grain boundary.
While this ratio was independent of voltage for the sin-
gle acceptor+donor state of Ref. 12, this is not the case
anymore. Assuming pGB = γ(V )nGB, and solving a one-
dimensional diffusion equation along the grain boundary
leads to the carrier densities

nGB(x) =
1
√
γ
nie

qV/(2kBT )e
− x
L′n (46)

pGB(x) =
√
γnie

qV/(2kBT )e
− x
L′n . (47)

We find γ(V ) by solving Eq. (45). This ratio gives the
value of the plateau reached by the levels occupancy at
energies around midgap, as shown by the dashed lines in
Figs. 6(a) and (c). Because nGB and pGB dominate the
level occupancy Eq. (2) at these energies, the value of the
plateau is 1/(1 + γβk), with βk = Skp/S

k
n. Considering

(unrealistically) large values of applied voltage such that
the levels occupancy is entirely independent of energy,
we find that γ converges to

γ =
α− 1 +

√
(1− α)2 + 4αβA/βD

2βA
. (48)

In Eqs. (46) and (47), L′n =
√

4DnL′E/S is the diffusion
length of electrons along the grain boundary, and L′E is
the characteristic length of the electric field transverse to
the grain boundary. The effective surface recombination
velocity S reads

S =
∑
k∈A,D

γSknS
k
p

Skn + γSkp

∫ Eg

0

dE

Eg

1

1 +
Sknn̄GB(E)+Skp p̄GB(E)

(Skn+γSkp )
ni√
γ e
qV/(2kBT )

.

(49)
The integrand of Eq. (49) now varies with voltage as
shown by the dashed line in Fig. 6(b). It can be shown
that an approximation for the integral is

S ≈
∑
k∈A,D

γSknS
k
p

Skn + γSkp

[
qV

Eg
− 2kBT

Eg
ln

( √
γSkn

Skn + γSkp

)]
.

(50)
Gathering the above results leads to the grain boundary
dark current

JGB(V ) =
SL′n√
γd
nie

V/(2VT )
[
1− e−LGB/L

′
n

]
. (51)

This result is formally similar to the corresponding case
for the single acceptor+donor state studied in Ref. 12, yet
the voltage dependence of the effective surface recombi-
nation velocity is a key difference. Taking SAn,p = SDn,p,
Eq. (51) is proportional to

√
α/(1 + α). This shows that

when the distribution of gap states is skewed towards
either donors or acceptors (e.g. big or small α), the re-
combination current is diminished. This reduction can be
understood with the levels occupancy in Fig. 6(c) (dashed
line). The recombination plotted in Fig. 6(d) shows that

the states around midgap contribute the most to the re-
combination. These states correspond to the plateau of
the levels occupancy, which is approximately equal to
1/(1 + α) here. For large or small α, the plateau is far
from 1/2, which reduces the probability that a hole and
an electron be captured together by a gap state. This
reduced probability leads to a reduction of the recombi-
nation current.

In all three gap state configurations studied (single and
continuum of acceptor+donor, single donor), the high
recombination regime exhibits a thermal activation en-
ergy Eg/2 and an ideality factor of 2 (both typical of re-
combination determined by electrons and holes equally).
These characteristics were observed in previous experi-
mental work on Si pn+ junctions aiming to isolate the
grain boundary recombination current [33].

D. Numerical verification of the analytical results

The numerical tests to verify the accuracy of the results
of this section are presented in Fig. 7. These results were
obtained with SAn,p = SDn,p. For applied voltages below
Eg∆k/q, the current is given by the smallest value be-
tween the n-type and p-type regimes. For higher values of
applied voltage we used the high recombination regime.
For all plots except Fig. 7(b) we used ρA/ρD = 2, which
leads to EGB = 0.25 eV (p-type grain boundary).

We vary the doping density in Fig. 7(a). Before the
change of slope, the dark current is given by Eq. (43)
which exhibits a doping dependence mostly via the width
of the n-region x0. The reduction of the slope reveals
the crossover to the high recombination regime (nGB ∝
pGB) where the dark current is given by Eq. (51). In this
regime, the inset shows the predicted scaling in N−1/4

A .
Fig. 7(b) shows the grain boundary dark current for

various ratios ρA/ρD. In descending order, these corre-
spond to grain boundary neutral levels EGB ≈ 0.38 eV,
0.75 eV and 1.1 eV. The crossover to the high recombina-
tion regime occurs when the occupancy of the gap states
starts to change significantly, that is for qV > Eg∆k (see
Fig. 6(b) and (d)).

The dependence of the dark current with electron mo-
bility is shown in Fig. 7(c). At low voltage, this depen-
dence is barely visible but present. The dependence is
weak in the p-type regime because both limiting cases of
Eq. (43), Ln � LGB and Ln � LGB, are independent of
mobility. The chosen set of parameters lies in between
these limits. At high voltages we verify the square root
scaling as shown by Eq. (51) in the limit L′n � LGB.
Increasing electron mobility reduces the suppression of
carrier densities away from the maximum of recombina-
tion by increasing the electron diffusion length. This in
turn increases the recombination along the grain bound-
ary.

Fig. 7(d) shows the scalings of the grain boundary dark
current with surface recombination velocity SA,Dn,p . Be-
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FIG. 7. Grain boundary recombination current characteris-
tics JGB(V ) for a continuum of donor and acceptor states
with ρA/ρD = 2, NA = 1015 cm−3, SA

n,p = SD
n,p = 105 cm/s

and µn = 320 cm2/(V · s) unless specified otherwise. Symbols
are numerical calculations, full lines correspond to analytical
results. (a) JGB(V ) varied with doping density. Inset: grain
boundary recombination current as a function of doping den-
sity at V = 0.7 V. (b) JGB(V ) varied with the ratio of accep-
tor to donor density of states. (c) JGB(V ) varied with elec-
tron mobility. Inset: grain boundary recombination current
as a function of electron mobility for V = 0.7 V. (d) Grain
boundary recombination current as a function of surface re-
combination velocity (SA

n,p = SD
n,p), at V = 0.2 V (dots) and

V = 0.7 V (squares).

cause we used equal surface recombination velocities for
the donor and acceptor states, and electrons and holes,
the effective recombination velocities and SA,Dn,p are pro-
portional. The notable feature of this plot is the

√
S

scaling of the grain boundary recombination current ob-
tained at high voltage. This feature only appears at high
recombination velocities as it requires L′n � LGB, as
shown by Eq. (51). In the opposite limit one recovers a
linear scaling in S.

VI. OPEN-CIRCUIT VOLTAGE

We now consider a charged grain boundary under illu-
mination and derive relations for the open-circuit voltage
Voc. We assume that around Voc the current-voltage rela-
tion under illumination is given by the sum of the short
circuit current Jsc and the dark current (see Sec. V of
Ref. 12 for a discussion on the validity of this assump-
tion). The dark current is the sum of the grain boundary
dark current (derived in Sec. III and Sec. IV) and the bulk
recombination current. We use the results of Sec. IV of
Ref. 12 for the bulk recombination whenever necessary.

Neglecting the bulk recombination and the non-
exponential voltage dependences in the grain boundary

dark currents, we can write down explicit forms for the
open-circuit voltage associated with the grain boundary
recombination. The general form of the open-circuit volt-
age reads

qV GB
oc = nEa + nkBT ln

(
dJsc

SλN

)
, (52)

where S is a surface recombination velocity, λ is a length
characteristic of the physical regime, N is an effective
density of states, Ea is an activation energy, V is the ap-
plied voltage and n is an ideality factor. Even though
Eq. (52) is not mathematically correct in all cases (be-
cause it neglects non-exponential voltage dependence),
it captures the dominant scalings for the physical pa-
rameters and should give the reader an intuition for how
these parameters impact Voc. The parameters entering
Eq. (52) are shown in Table I for all grain boundary con-
figurations.

A. Single donor state

We begin with the single donor state in the gap of the
absorber material. The parameters in Eq. (52) for this
case are given in the first row of Table I. Fig. 8 shows
comparisons between the numerically computed Voc, and
the values obtained with the numerically computed Jsc

and the analytic forms of the dark current.

These results differ somewhat from the single
donor+acceptor defect case of Ref. 12. As we discussed in
Sec. IVD, the single donor state with common material
parameters for CdTe exhibits increasing grain boundary
dark currents with doping at high voltages. As a re-
sult, Voc decreases with doping as shown in Fig. 8(a).
Figure 8(b) shows that the open-circuit voltage as a
function of defect energy level is not symmetrical from
midgap. In fact, for EGB & 1.2 eV the open-circuit volt-
age is given by the grain boundary recombination cur-
rent of the n-type regime Eq. (21), while for lower EGB

values, the open-circuit voltage is given by the regime
SnnGB ≈ (1−f0)SppGB and Eq. (31) (high recombination
regime). The plot shows that donor states close to the
band edge (i.e. n-type grain boundaries) are more favor-
able to Voc. These states are less easily accessible to holes
than over states, hence reducing the probability for re-
combination. Figure 5(b) shows that, for a given applied
voltage, the amplitude of the grain boundary recombina-
tion current of the n-type regime is smaller than the one
of the high recombination regime (hence the larger Voc

in the first case). Figure 8(c) shows the dependence with
electron mobility for values higher than 10 cm2/(V · s).
Under the chosen conditions the grain boundary recom-
bination current depends weakly on mobility. Finally the
logarithmic dependence on surface recombination veloc-
ity of Eq. (52) is shown in Fig. 8(d).

A key difference between this single donor case and the
donor+acceptor case of Ref. 12 is the amplitude of the
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FIG. 8. Open-circuit voltage for the system described in
Fig. 1(a) with a single donor state at EGB = 0.5 eV, with
τn = 100 ns, under a photon flux 1021 m−2 · s−1. The ab-
sorption length is 2.3 × 104 cm−1. The electron mobility is
320 cm2/(V · s), NA = 1016 cm−3 and Sn = Sp = 105 cm/s
unless specified otherwise. Numerical data are in blue (dots)
and analytical predictions are in red (triangles). (a) Voc as a
function of doping density. (b) Voc as a function of the defect
state energy level. (c) Voc as a function of electron mobil-
ity. (d) Voc as a function of surface recombination velocity
(Sn = Sp).

grain boundary recombination in the high recombination
regime. In the single donor state of the present work,
the electron surface recombination velocity is effectively
reduced by the factor 1− f0 (which can be on the order
of 10−3 in the regime of large defect density of states)
as can be seen in the expressions of the carrier densities
Eqs. (28) and (29), as well as in the recombination it-
self Eq. (30). As a result, for intermediate values of bulk
lifetime (≈ 10 ns), the bulk recombination current is of
the same order of magnitude as the grain boundary re-
combination current with Sn,p = 105 cm/s, as shown in
Fig. 9. In this example, reducing the doping density in-
creases the bulk recombination (because the width of the
pn junction depletion region increases) which now dom-
inates over the grain boundary contribution. The inset
of Fig. 9 shows that the resulting open-circuit voltage in-
creases with doping, contrary to the behavior shown in
Fig. 8(a) for which τ = 100 ns.

B. Continuum of gap states

We now turn to the continuum of acceptor and donor
states. The parameters in Eq. (52) are given in the last
row of Table I. Note that in the high recombination
regime (nGB = γpGB), Eq. (52) applies when neglect-
ing the linear voltage dependence of the effective surface
recombination velocity S (see Eq. (50)). Despite this ap-

FIG. 9. Recombination current as a function of voltage for
the grain boundary (blue dots) and the bulk (orange squares)
obtained with a bulk lifetime τn = 10 ns. Other parameters:
NA = 1015 cm−3, Sn,p = 105 cm/s, µn = 320 cm2/(V · s),
EGB = 0.5 eV. Inset: open-circuit voltage for our system
under a photon flux 1021 m−2 · s−1. The absorption length is
2.3× 104 cm−1.

proximation, Eq. (52) provides the correct overall scal-
ings with doping density, distribution of states, mobility
and surface recombination velocities. Fig. 10 shows the
comparisons of the simulated open-circuit voltages with
our analytical results.

The continuum of states studied here has lots of fea-
tures similar to the single acceptor+donor state studied
in Ref. 12. In particular we find the same scalings of Voc

with doping, mobility and surface recombination veloc-
ity shown in Fig. 10(a), (c) and (d). A difference with
Ref. 12 is the U-shape dependence of Voc with the ratio
ρA/ρD, presented in Fig. 10(b). The open-circuit voltage
now varies with ρA/ρD (i.e. with the effective single state
value) even for intermediate values of the ratio. This is
because the grain boundary recombination current in the
high recombination regime depends on this ratio via γ as
shown by Eq. (48).

Figure 10(b) shows that gap state configurations with
ratios ρA/ρD away from 1 give better Voc values. Note
that we have assumed equal values of short circuit cur-
rent Jsc for all values of grain boundary parameters. This
will certainly not be the case in practice. Indeed, for
grain boundaries which do not undergo type inversion
(e.g. p-type grain boundaries), we find that the short
circuit current density is decreased. Therefore, only gap
state configurations with more donor states will be ben-
eficial for photovoltaic performance for the model config-
urations studied in this paper.
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FIG. 10. Open-circuit voltage for the system described in
Fig. 1(a) with a continuum of donor and acceptor states with
ρA/ρD = 2, under a photon flux 1021 m−2 · s−1. The ab-
sorption length is 2.3 × 104 cm−1. The electron mobility is
320 cm2/(V · s), NA = 1015 cm−3 and Sn = Sp = 105 cm/s
unless specified otherwise. Numerical data are in blue (dots)
and analytical predictions are in red (triangles). (a) Voc as
a function of doping density. (b) Voc as a function of the
ratio of acceptor and donor densities of states. (c) Voc as a
function of electron mobility. (d) Voc as a function of surface
recombination velocity (Sn = Sp).

VII. CONCLUSION

We generalized the physical descriptions associated
with the microscopic charge transport and recombination
of Ref. 12 to two additional configurations of gap states:
a single donor state and a continuum of donor and ac-
ceptor states. In this work we derived the corresponding
analytic expressions for the grain boundary dark recom-
bination current. We found that all these configurations
share three similar regimes describing the grain bound-
ary dark recombination current as a function of voltage
(n-type, p-type and high-recombination). However, they
exhibit differences in the amplitude of the subsequent
recombinations. Mixtures of acceptor and donor states
(single level and continuum) result in enhanced recom-
bination that reduces the open-circuit voltage for a wide
range of bulk lifetimes. The amplitudes of recombination
for the single donor state are lower, and commensurate
with the bulk recombination for intermediate bulk life-
times. From this work and Ref. 12, we observed that a
larger concentration of donor states compared to accep-
tor states improve the device open-circuit voltage for a
fixed value of the short circuit current density.

Nanoscale imaging and spectroscopy combined with
first principles calculations can now determine, at least
in principle, the electronic configuration of grain bound-
aries [34]. In turn, this knowledge can be used within the
framework developed here to obtain quantitative predic-
tions of device open-circuit voltage. In this way, our work

provides a bridge between nanoscale characterization and
macroscopic device response. Finally, our approach and
the physical descriptions of grain boundaries presented
here extend beyond CdTe or Cu(In,Ga)Se2 technologies.
For example, our approach could be applied to grain
boundaries with upward band banding resulting from
negatively charged boundaries in p-type materials or al-
ternatively, positively charged boundaries in n-type ma-
terials.
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Appendix A CONDITIONS FOR LARGE
DEFECT DENSITY REGIME

We derive the minimal defect densities for which
QGB/(qNGB) � 1 for the single donor defect state and
the continuum of defect states. Because the defect statis-
tics in thermal equilibrium are different in each case (see
Eq. (5) and Eq. (6) respectively), we must derive two
different criteria.

We start with the single donor state. The condition
QGB/(qNGB) � 1 requires that fGB ≈ 1. We specify
this requirement by imposing that the Fermi level lies at
least 3kBT above the defect level at the grain boundary,

EF + qV 0
GB − EGB > 3kBT. (53)

This condition together with Eq. (11) imposes

1− f0 >
1

1 + e3
, (54)

where f0 = (1 + exp[(EGB − EF )/kBT ])−1. Using a de-
pletion approximation and qV 0

GB = EGB − EF + 3kBT ,
the charge in the depleted regions surrounding the grain
boundary is

Q =
√

8εqNAV 0
GB ≈

√
8εNA(EGB − EF + 3kBT ).

(55)
Equating Eq. (5) and Eq. (55) leads to the critical defect
density of states

N crit
GB =

1 + e3

q

√
8εNA(EGB − EF + 3kBT ). (56)

For the case of the continuum of acceptor and donor
states, the large defect density of states corresponds to
the pinning of the Fermi level to the neutral point of the
gap states distribution. We will consider the large defect
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density regime when the distance between EF and EGB is
smaller than kBT . Using a depletion approximation and
qV 0

GB = EGB − EF − kBT , the charge in the depleted
regions around the grain boundary is

Q ≈
√

8εNA(EGB − EF − kBT ). (57)

Equating Eqs. (1) and (57) leads to the critical value

ρcrit
D =

1

q

√
8εNA(EGB − EF − kBT )

kBT ln
(

1+e(Eg−EGB+kBT )/kBT

1+e(−EGB+kBT )/kBT

)
− αEg

(58)

where EGB = Eg/(1 + α) with α = ρA/ρD. This critical
donor density of states depends on the ratio α considered.
Also note that because the denominator of Eq. (58) de-
pends on energy, ρcrit

D is a density of states per energy
unit (expressed in m−2 · eV−1).

Appendix B CONDITION FOR NEARLY FLAT
HOLE QUASI-FERMI LEVEL

We specify the domain of validity of the assumption
of flat hole quasi-Fermi level. In the main text we con-
sider EFp = EF when variations of EFp across the grain
boundary are smaller than kBT . An expansion of EFp
across the grain boundary yields

EFp = EF −
∣∣∣∣∂EFp∂y

∣∣∣∣ δy, (59)

where the gradient of EFp at the grain boundary depends
on the regime considered (e.g. n-type grain boundary).
The single donor state and the continuum of defect states
require formally the same condition. The relevant surface
recombination velocity must be used in each case. We are
able to derive such a criterion only for an n-type grain
boundary but found that it applies well also in other
regimes. In what follows we focus on the single donor
state.

In the regime SppGB � Snn̄GB, the gradient of EFp is
obtained by integrating the continuity equation for holes
across the grain boundary over an infinitely small dis-
tance, ∣∣∣∣∂EFp∂y

∣∣∣∣ = q
Sp
2µp

. (60)

Assuming that the variation of EFp across the grain
boundary follows that of the electrostatic potential,
the distance across the grain boundary where EF −
EFp < kBT is given by a depletion approximation δy =√

2εVT /(qNA). The assumption of flat EFp is therefore
valid for

Sp
2µp

√
2ε

qVTNA
< 1. (61)

For the continuum of states one would use Sp instead.

Appendix C DERIVATIONS FOR p-TYPE
DONOR DEFECT STATE

Using the energy scale and definitions of Fig. 4(d), the
carrier densities at the grain boundary are given by

nGB(x) = NCe
(EFn (x)+qφGB(x)−Eg)/kBT , (62)

pGB(x) = NV e
(−EFp (x)−qφGB(x))/kBT , (63)

where φGB is the electrostatic potential at the grain
boundary. The zero of electrostatic potential is at the
p-contact away from the grain boundary. In the p-type
donor state, the electrostatic potential is uniform along
the grain boundary in the bulk of the pn junction and is
independent of voltage. The value of φGB is determined
by the grain boundary built-in potential at thermal equi-
librium,

qφGB = qV 0
GB, (64)

where V 0
GB is given by Eq. (15). The grain bound-

ary recombination is maximum at x0, where x0 is the
point where the carrier densities in the grain interior are
equal. We consider that the grain interior recombination
is peaked at the same point. Using a depletion approxi-
mation in the depletion region of the pn junction in the
grain interior, we find that n = p = ni at

x0 =

√
2εVbi

qNA

[
1−

√
1− VT

Vbi
ln

(
ND
ni

)]
, (65)

where Vbi is the pn junction built-in potential (the de-
pendence of x0 on applied voltage is weak and can be
neglected). Using the potential Eq. (64) in Eqs. (62)
and (63), and assuming that EFp = EF (see justification
above Eq. (19)), we obtain expressions for the carrier
densities beyond x0,

nGB(x ≥ x0) =
NC

1− f0
e(−Eg+EGB)/kBT e(EFn (x)−EF )/kBT ,

(66)

pGB(x ≥ x0) = (1− f0)NV e
−EGB/kBT . (67)

Despite the above formulation, these relations are valid
only for x � x0. We extend their domain of validity to
x = x0 for the purpose of calculating the recombination,
where the errors we make here on nGB and pGB cancel
out.

For x ≥ x0 we use the continuity equation for electrons
to obtain EFn ,

∂Jn,x
∂x

+
∂Jn,y
∂y

= Sn(1− f0)nGBδ(y − yGB) +Rbulk(y),

(68)
where Rbulk is the bulk recombination and the electron
current component along the grain boundary is given by

Jn,x(x, y) = µnnGB(x)e−y/LE
∂EFn
∂x

(x). (69)



16

In the above equation we assumed that the electron den-
sity across the grain boundary decays as e−y/LE , where

LE = VT

√
2ε/(qNAV 0

GB) (70)

is the characteristic length associated with the electric
field transverse to the grain boundary in the bulk region.
This exponential decay assumes that EFn is flat around
the grain boundary, which coincides with the fact that
the currents going to the grain boundary are small. In-
tegrating Eq. (68) in the y-direction around the grain
boundary leads to

2LEµnkBT
∂2

∂x2

[
eEFn/kBT

]
= qSn(1− f0)eEFn/kBT ,

(71)
where we neglected the currents in the y-direction at
the end of the grain boundary depletion region, and the
bulk recombination. We introduce the effective diffu-
sion length Ln =

√
2DnLE/(Sn(1− f0)), where Dn =

kBTµn/q is the electron diffusion constant, to rewrite
Eq. (71) as

∂2

∂x2

[
eEFn/kBT

]
=

1

L2
n

eEFn/kBT . (72)

Considering that EFn = EF + qV at x = x0, and ne-
glecting the diverging part of the solution of Eq. (72), we
obtain

EFn(x ≥ x0) = EF + qV − kBT
x− x0

Ln
. (73)

We verify the accuracy of Eq. (73) in Fig. 11(b) (blue
dotted curve).

Inserting Eq. (73) into Eq. (66) yields the electron den-
sity given in the main text

nGB(x ≥ x0) =
NC

1− f0
e(−Eg+EGB+qV )/kBT e−

x−x0
Ln .

(74)
Because SnnGB � Spp̄GB, the recombination at the grain
boundary reads

RGB(x ≥ x0) = Sn(1− f0)nGB(x ≥ x0). (75)

We integrate over the length of the grain boundary to
obtain the recombination current

JGB(V ) =
SnNC
d

e(−Eg+EGB+qV )/kBTLn

[
1− e−

LGB−x0
Ln

]
.

(76)
Equation (76) is the general result in the case SnnGB �
Spp̄GB.

Appendix D DERIVATIONS FOR DONOR
STATE IN THE HIGH RECOMBINATION

REGIME

Here we provide the derivations of the analytical re-
sults presented in Sec. IVC. In the high recombination

FIG. 11. Numerical data computed along the grain boundary
for the parameters of Fig. 2 with mobilities µn = 10 cm2/(V ·
s), µp = 40 cm2/(V · s). (a) Electrostatic potential. The dark
dashed line corresponds to Eq. (83). (b) Electron quasi-Fermi
level. The dark dashed lines correspond to Eq. (81) (upper)
and Eq. (73) (lower).

regime there is a constant k such that SppGB = kSnnGB

along the grain boundary. In addition nGBpGB =
n2
i e

(EFn−EFp )/kBT , so that we get

nGB(x) =

√
Sp
kSn

nie
(EFn (x)−EFp (x))/(2kBT ). (77)

Similarly to the p-type case, the recombination is peaked
at x0 and decays after that point so we focus the deriva-
tion beyond x0.

From here on the derivation of EFn follows the exact
same steps as Appendix C starting with the continuity
equation:

∂Jn,x
∂x

+
∂Jn,y
∂y

=
k

1 + k
SnnGBδ(y−yGB)+Rbulk(y) (78)

where L′E =
√

2εVT /(qNA). L′E is the characteristic
length associated with the electric field transverse to the
grain boundary. Rbulk is again the bulk recombination.
Because the grain boundary built-in potential is not uni-
form in this regime, the transverse electric field depends
on the location along the grain boundary. While L′E
does not correspond to a precise field, we find that it
accurately determines the slopes of the electron quasi-
Fermi level and the electrostatic potential along the grain
boundary. The electron current is still given by Eq. (69)
with the change of LE for L′E . Integrating Eq. (78) around
the grain boundary leads to

4L′EµnkBT
∂2

∂x2

[
e
EFn

−EFp
2kBT

]
= q

k

1 + k
Sne

EFn
−EFp

2kBT ,

(79)
where we neglected the currents in the y-direction at
the end of the grain boundary depletion region, and the
bulk recombination. We introduce the effective diffusion
length L′n =

√
4DnL′E(1 + k)/(kSn), and assume that

EFp = EF [30] to rewrite Eq. (79) as

∂2

∂x2

[
eEFn/(2kBT )

]
=

1

L′n
2 e
EFn/(2kBT ). (80)

Considering that EFn = EF + qV at x = x0 we obtain

EFn(x ≥ x0) = EF + qV − 2kBT
x− x0

L′n
. (81)
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Since kSnnGB = SppGB, we can equate Eqs. (62) and
(63) to get

EFn(x) = −2qφGB(x)− EF − Eg − kBT ln

(
k
SnNC
SpNV

)
,

(82)
which yields the electrostatic potential along the grain
boundary

φGB(x) = kBT
x− x0

L′n
−EF−q

V

2
−kBT ln

(
ni
NV

√
kSn
Sp

)
.

(83)
Comparisons of Eq. (81) and Eq. (83) with numerical
data are shown in Figs. 11(a) and 11(b) respectively
(solid green curves). We see that the numerically com-
puted potential and electron quasi-Fermi level are not
linear over the entire length of the grain boundary, how-
ever the analytical results give a good approximation of
the slopes near the depletion region.

Inserting Eqs. (81) and (83) into the densities Eqs. (62)
and (63) yields the densities given in Sec. IVC. These

densities yield the grain boundary recombination

RGB(x > x0) =

√
kSnSp

1 + k
nie

qV/(2kBT )e
− x−x0

L′n . (84)

Integrating the recombination over the length of the grain
boundary gives the recombination current

JGB(V ) =

√
kSnSpL

′
n

(1 + k)d
nie

V/(2VT )
[
1− e−LGB/L

′
n

]
.

(85)
Equation (85) is the general result in the case kSnnGB =
SppGB.

The constant k can be specified considering that the
occupancy of the grain boundary defect level remains
equal to its thermal equilibrium value f0. We thus find

k ≈ 1− f0, (86)

assuming that f0 . 1 because of the high defect density
of states.
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