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ABSTRACT: Diamond-based magnetic field sensors have attracted great interest in recent 

years. In particular, wide-field magnetic imaging using nitrogen-vacancy (NV) centers in 

diamond has been previously demonstrated in condensed matter, biological, and paleomagnetic 

applications. Vector magnetic imaging with NV ensembles typically requires a significant 

applied field (>10 G) to resolve the contributions from four crystallographic orientations, 

hindering studies of magnetic samples that require measurement in low or independently 

specified bias fields. Here we model and measure the complex amplitude distribution of NV 

emission at the microscope’s Fourier plane, and show that by modulating this collected light at 

the Fourier plane one can decompose the NV ensemble magnetic resonance spectrum into its 

constituent orientations by purely optical means. This effectively extends dynamic range at a 

given bias field and enables wide-field vector magnetic imaging at arbitrarily low bias fields, 

thus broadening potential applications of NV imaging and sensing. Our results demonstrate that 

NV-based microscopy stands to benefit greatly from Fourier optical approaches, which have 

already found widespread utility in other branches of microscopy. 

 

I. INTRODUCTION 

The unique properties of NV centers have made them powerful tools for micro- and nanoscale 

sensing over the past decade [1], and they are especially adept sensors of magnetic fields [2,3]. 

NV centers are C3v-symmetric color centers of the diamond lattice formed by substitution of a 

nitrogen atom and a vacancy at neighboring lattice sites, as shown in Fig. 1(a)-(c). Throughout 
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this article we refer to the negatively-charged form of the NV center, which has an electronic 

spin-triplet ground state with a 2.87-GHz zero-field splitting between the ms = 0 and ms = ±1 

magnetic sublevels as shown in Fig. 1(d), where the spin is quantized along the NV axis. A 

magnetic field B further splits these sublevels by the Zeeman effect. Illuminating an NV center 

with 532-nm laser light optically pumps it to the ms = 0 sublevel, which luminesces more 

brightly than the ms = ±1 sublevels. A resonant microwave field repopulates the ms = ±1 

sublevels and reduces the photoluminescence (PL) intensity. Measuring PL as a function of 

microwave frequency yields an optically-detected magnetic resonance (ODMR) spectrum, from 

which one can calculate B by precisely measuring the Zeeman shifts of the spin sublevels. 

 

A dense ensemble of NV centers in a layer near the surface of a diamond chip can be used to 

simultaneously measure the magnetic field at each point along the surface, and so comprises a 

wide-field magnetic imaging device. Such an imaging platform has been utilized previously 

across a diverse set of applications, including studies pertaining to condensed matter physics [4], 

cell biology [5,6], and paleomagnetism [7,8]. In an NV ensemble there are typically equal 

populations of the four possible NV orientations within the diamond crystal, with spin 

quantization axes parallel to  as illustrated in Fig. 1(a) and (b). In Fig. 1 and 

throughout this study we treat the case in which the sensing surface is perpendicular to the [001] 

axis of the diamond crystal, and the optical axis of the microscope is along [001]. In this 

common configuration the four NV orientations are treated symmetrically. Since B in general 

will have a different projection on each , resonances due to each of the four orientations will 

shift differently. As a result, the ODMR spectrum contains eight major lines (four orientations 

times two spin transitions). Measuring the projection of B onto each NV axis allows one to 
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compute the vector components of the field. Hyperfine interaction with the 14N nucleus further 

splits (by 2.16 MHz) each of the eight major lines into triplets [9], though this fact is tangential 

to the main focus of this study.  

 

If the resonances due to different NV orientations overlap with one another, ambiguity in the 

extracted magnetic field can arise. To avoid this issue, a sufficiently strong bias field B(bias) is 

typically applied to deliberately separate the peaks by frequency spacings that are significantly 

larger than the shifts expected from the field of the sample.  However, a strong applied field is 

undesirable for many applications, including paleomagnetic studies of geological and meteorite 

samples in which induced signal from paramagnetic and low-coercivity grains may overwhelm 

the ferromagnetic signal of interest [8,10]. In other applications it may be necessary to reserve 

the applied field for another function, e.g., for controlling magnetic nanoparticles within a cell 

[11] or tuning the properties of a magnetic material [12,13]. A method to resolve contributions of 

each NV orientation to the ODMR spectrum that does not rely on an applied magnetic field is 

thus desirable. Here we present such a method based on Fourier plane processing [14], relying 

only on downstream optical components to achieve the desired decomposition. 

 

II. RESULTS AND DISCUSSION 

A. Fourier plane signatures of NV emission 

The method we present exploits the selection rules of the NV center’s 3E→3A2 optical transition 

illustrated in Fig. 1(d) [15--17]. At room temperature this transition can be considered to proceed 

via two mutually incoherent, orthogonal transition electric dipoles oriented perpendicular to the 

NV axis, as shown in Fig. 1(c). In the paraxial regime (valid downstream of the objective), 
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optical polarization alone cannot distinguish emission between orientation pairs  and , as 

symmetry of the transition dipoles dictates that the x-polarized (y-polarized) emission due to both 

will have equal total intensities. To gain deeper insight we simulated NV PL for each of the four 

orientations by adapting previous work modeling electric dipole emission near interfaces (see 

Appendix A for more details) [18--23]. Our simulations predict a characteristic distribution of PL 

intensity and contrast (i.e. PL intensity on resonance divided by PL intensity off resonance) for 

each orientation at the microscope’s Fourier plane, as depicted in Fig. 1(f) for the example of  

NVs. Further pictorial explanation of these patterns is given in Fig. S1 of the Supplemental 

Material [24]. Briefly, for each orientation we can consider one transition dipole lying in the 

plane perpendicular to the optical axis, and the other transition dipole with a significant 

component out of this plane. Take, for example, an NV oriented along 

, as defined relative to the lab frame coordinates depicted in Fig. 1(a). 

The out-of-plane dipole points along  and emits light that when viewed 

along the optical axis in the far field is mostly polarized along x. Due to the characteristic 

anisotropic dipole emission pattern, the light due to this out-of-plane dipole illuminates the 

Fourier plane with a spatial gradient along x, as seen in the top panel of Fig. 1(f). On the other 

hand, the in-plane transition electric dipole of an NV oriented along  lies along  and 

emits mostly y-polarized light. Its orientation relative to the optical axis renders a more uniform 

distribution of light at the Fourier plane, as seen in the bottom panel of Fig. 1(f). The Fourier 

plane patterns due to NVs oriented along , , and  are obtained by simple symmetry 

operations on those due to  NVs. 
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To experimentally confirm these simulated Fourier plane patterns we employed the setup 

sketched in Fig. 1(e), using a Bertrand lens to relay the Fourier plane onto the camera and a 

linear polarizer inserted into the collection path to pass either x- or y-polarized PL. We measured 

the Fourier-plane distribution of ODMR contrast due to each NV orientation by first applying a 

sufficiently strong B(bias) to resolve the ODMR lines of each orientation, then integrating the PL 

decrease under each isolated microwave resonance peak. Following this procedure while 

imaging the Fourier plane directly gives the spatial contrast maps shown in Fig. 1(g), indicating 

excellent agreement between simulation and experiment. We next sought to leverage this effect 

to decompose the ODMR for general B(bias). 

 

B. Fourier optical decomposition of ODMR spectrum 

Fourier optical decomposition of the ODMR spectrum is achieved by making four sequential 

measurements, as depicted schematically in Fig. 2(a). We define  as the NV ensemble 

ODMR spectrum recorded with an x-oriented linear polarizer in the emission path and the left 

half of the pupil blocked. (Throughout this paper we use the term “pupil” interchangeably with 

“Fourier plane”.) We define , , and  similarly [refer to Fig. 2(a)]. Together these 

four measurements comprise the measurement array , where Nf is the number of 

microwave frequencies sampled. Note that  represents a conventional 

ODMR spectral measurement without filtering, as exemplified in Fig. 2(b) and (c). In Fig. 2 we 

present two data sets, one in which B(bias) resolves the resonances of each orientation [Fig. 2(b), 

(d), and (f)], and one in which it does not [Fig. 2(c), (e), and (g)]. We define ΔB: 

  , (1)
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enumerating the range in projections of the bias field onto the set of NV orientations, and in turn 

the degree of overlap of the resonances. For data in Fig. 2(b), (d), and (f)  ΔB = 19.52 G, while ΔB 

= 0.42 G for data in Fig. 2(c), (e), and (g). The latter value is not a fundamental minimum for ΔB 

and was only chosen qualitatively during the experiment to visually overlap the ODMR peaks. 

Throughout our studies we applied a bias field such that  G in order to 

simplify our analysis and focus on the technological advancement at hand. At lower 

 ODMR spectra become complicated by level crossings as the Zeeman splitting 

approaches splittings due to crystal strain and the 14N hyperfine interaction [9]. The latter issue 

can be addressed by 15N enrichment and controlled circular microwave polarization [25--27], 

which is compatible with our all-optical technique. We reserve the technical work of combining 

these methods for future studies, which should ultimately enable vector magnetic sensing well 

below . We further note that the ability to operate at the minimum bias 

fields explicitly demonstrated in the current study is nonetheless significant since, for instance, 

natural magnetite grains have coercivities in the range ~2-20 G [28]. 

 

We first demonstrated our method by directly imaging the Fourier plane, taking sequential 

ODMR measurements of different polarizations, and integrating halves of the pupil plane in 

post-processing. Individual  measurements are shown in Fig. 2(d) and (e) for high and low 

ΔB, respectively. From simulation, we expect that for each measurement configuration , the 

resonances due to each of the four orientations should have relative weights w1 = 0.226, w2 = 

0.363, w3 = 0.049, and w4 = w2. Average experimentally measured weights were w1 = 0.220(4), 

w2 = 0.360(7), and w3 = 0.060(2). Note that the values of these weights depend on the NA of the 

objective. The values reported above are valid for an NA 1.49/oil immersion objective, 
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consistent with the experimental data reported here thus far. The imaging experiments described 

in the following section instead employed an NA 0.75/air immersion objective, and so obviously 

required the weighting values corresponding to these parameters to properly process the data (see 

Appendix C). 

 

We define , containing the underlying ODMR spectrum  for each NV 

orientation, yielding 

 , (2)

where W is the circulant matrix [29] formed by permuting : 

 
. 

(3) 

In practice we did not enforce the symmetry of Eq. (3) and instead measured each element of W 

individually to better compensate for experimental nonidealities (see Appendix C). The 

underlying isolated ODMR spectrum of each individual orientation can be estimated: 

 . (4)

The high-ΔB demonstration in Fig. 2(f) proves the capability of isolating ODMR features of 

individual NV orientations. From Fig. 2(f) we can quantify an average crosstalk error of  ~1%, as 

determined by comparing absolute value of the integral under each would-be nulled resonance to 

the non-nulled resonance. Fig. 2(g) demonstrates this newfound capability in the more useful 

low-ΔB regime. 

 

C. Vector magnetic imaging at low bias fields 
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To demonstrate wide-field imaging with Fourier plane modulation, we removed the Bertrand 

lens and added the lens L2 [Fig. 1(e)]. The lenses L1 and L2 form a 4f optical processing unit 

[14], a commonly used optical correlator so named because of the total length it occupies: one 

focal length from the intermediate image plane to L1, plus a focal length to the Fourier plane, 

plus a focal length to L2, plus a fourth focal length to the final image. At the Fourier plane 

formed between L1 and L2 we placed a knife-edge beam block to alternately obscure halves of 

the pupil. While the beam block modifies the microscope’s point-spread function (PSF) (see Fig. 

S2 [24]), an image is nonetheless relayed to the camera and the measurement procedure yields 

the ODMR spectrum  in each pixel k. After pixelwise transformation via Eq. (4), 

each isolated  spectrum is fit and the vector magnetic field is reconstructed across 

the image. We applied this procedure to image the field from a ferromagnetic bead placed 

directly on the surface of a diamond containing a 3.8-μm NV layer (Fig. 3; additional beads in 

Fig. S3  [24]). To establish a ground truth, we first resolved the resonances of each orientation 

[Fig. 3(a)] at high ΔB and inferred the sample field [Fig. 3(b)-(d)] in the conventional way [10]. 

Next we reduced ΔB to overlap the resonances [Fig. 3(e)]. Using our method we decomposed the 

unresolved spectrum and inferred the vector magnetic field image [Fig. 3(f)-(i)]. Comparable fits 

to magnetic dipole sources are shown in the insets of Fig. 3(b)-(d), and (f)-(h). At high ΔB we 

estimated the following parameters for the dipolar source from a nonlinear least-squares fit: x 

position = -0.2(1) μm, y position = -0.3(1) μm, standoff distance = 8.9(1) μm, magnetic dipole 

moment = 29(1)×10-15 J/T, azimuthal orientation = 82(1)°, and polar orientation = 110(1)°. At 

low ΔB we found these estimates: x position = -0.6(1) μm, y position =  -0.3(1) μm, standoff 

distance = 8.7(2) μm, magnetic dipole moment = 26(1)×10-15 J/T, azimuthal orientation = 82(1)°, 

and polar orientation = 112(1)°. Fit parameter errors are average 95% confidence intervals 
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determined using MATLAB function nparci. Note that the discrepancy in estimated lateral 

position may be largely due to drift and registration error of the sequentially recorded images. 

 

This demonstration shows that the Fourier optical decomposition method can be used to 

accurately reconstruct vector magnetic images at low applied fields for which overlapping 

resonances would otherwise lead to ambiguity. We emphasize here that the utility of our method 

is in overcoming such ambiguities in cases where the bias field is otherwise constrained. Our 

method does not improve magnetic field sensitivity relative to the usual method of applying a 

strong bias field, and in fact yields reduced sensitivity (see Fig. S4 and accompanying text in the 

Supplemental Material [24]), in part due to the sequential nature of the present measurement. In 

future implementations, some of this difference can be recovered by parallelizing the 

measurement by splitting the collected light with the appropriate beam splitters and detecting the 

four channels simultaneously. However, even the parallel Fourier optical decomposition 

measurement will impose a reduced sensitivity relative to the typical high-ΔB measurement. This 

sensitivity penalty is lessened with increasing NA (see Fig. S4 and supplemental text [24]). 

 

A nice feature of Fourier optical decomposition is that it greatly extends the accessible dynamic 

range at a given bias field. A sample may be able to withstand a modest applied field such that 

the resonances of each NV orientation are resolved throughout much of the imaging area, but 

ambiguities will still arise in regions where the local sample field is comparable to the applied 

field. Such ambiguities can result in local field reconstruction failures. To demonstrate how 

Fourier optical decomposition can circumvent this limitation we imaged a 30-μm thin section of 

the Allende CV3 chondrite, a widely studied meteorite thought to be magnetized by a possible 
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dynamo of its parent planetesimal [10,30]. For this proof-of-principle measurement we expedited 

our search for strong local features by imparting a strong magnetization through the application 

of a 2000-G isothermal remanent magnetization (IRM) [31] field to the sample before imaging. 

During the measurement an external bias field with ΔB = 8.42 G was applied in order to just 

resolve the NV ODMR peaks in the absence of the sample’s field (see Fig. S5  [24]). The ODMR 

peaks shift and overlap considerably in some regions, collapsing into two or four broad peaks 

and leading to ambiguities in the field components when treated without decomposition. While 

sample field reconstruction fails with the conventional technique (see Fig. S5 [24]), our Fourier 

decomposition technique allows us to determine the vector magnetic images shown in Fig. 4(a)-

(c). The pattern revealed in Fig. 4(a)-(c) resembles the field due to two strong dipolar features 

atop a slowly varying background (see Fig. S6 for least-squares fit to this model [24]), where the 

fitted xy positions of the two dipoles are marked in Fig. 4 by magenta circles. The dipole on the 

left has best-fit azimuthal orientation -103(3)° and polar orientation 87(3)°; the dipole on the 

right has best-fit azimuthal orientation 106(4)° and polar orientation 137(3)°. Figure 4(d) and (e) 

shows a brightfield image that maps the positions of these two dipole-like sources to the edge of 

a chondrule, the main circular structure of diameter ~2 mm visible in whole in Fig. 4(e). Here 

Fig. 4(d) corresponds to the same field-of-view as in Fig. 4(a)-(c), and Fig. 4(e) shows a zoomed-

out region containing this field-of-view. Figure 4(f) and (g) gives further insight, displaying the 

ODMR spectra with and without decomposition along a slice of the image. Our method 

effectively increases the dynamic range in this measurement by at least a factor of three (see Fig. 

S5  [24]), without the need to increase B(bias). 

 

III. CONCLUSION 
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In conclusion, we have demonstrated a Fourier optical decomposition method to realize NV 

ensemble vector magnetic imaging without the need of a large bias magnetic field to resolve the 

contributions from each NV orientation. This method enables vector magnetic imaging in 

applications where a large bias field may induce unwanted magnetization of the sample, or is 

otherwise constrained by other experimental parameters. As we have shown, Fourier optical 

decomposition effectively increases the dynamic range of the magnetic measurement at any 

particular applied field. Since it relies only on manipulation of downstream optics, the technique 

is compatible with most standard NV imaging apparatuses, including both wide-field and point 

detection (e.g., confocal scanning) geometries. (At the Fourier plane the optical field due to 

emission from an on- or off-axis source is distinguished only by a linear phase factor, and so the 

amplitude-modulation scheme presented here is shift-invariant.) Furthermore, since it requires 

simple and inexpensive components to implement, its appeal should be broad. For these reasons, 

Fourier optical decomposition has the potential to significantly increase the applicability of NV 

sensing and imaging technologies. More generally, the present work represents one of the first 

applications of Fourier optical processing to NV imaging. Our simulations and experimental data 

uncover a wealth of information at the Fourier plane of an NV microscope. As Fourier optical 

techniques have found widespread utility in other realms of optical imaging [14,18,32,33], it is 

likely that similar approaches will enable future developments in NV-based platforms. 

 

While preparing this manuscript we became aware of an alternative approach to NV ODMR 

decomposition that simultaneously exploits optical and microwave absorption selection rules for 

NV ensemble vector magnetometry [34]. We reiterate that at very low applied + sample fields (< 
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100 mG) microwave polarization control typically must be reserved to distinguish transitions to 

ms = ±1, and so our all-optical method is compatible with such conditions. 
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FIGURE CAPTIONS 

FIG. 1.  Setup and Fourier plane patterns of NV ensemble photoluminescence. (a) Sketch of NV 

center pointing along , including 3 carbon atoms (black spheres), nitrogen atom (red), and 

vacancy (gray). Lines parallel to each NV orientation class  are labeled. Facets of the illustrated 

rectangular prism coincide with those of the diamond samples used in our experiments and are 

perpendicular to the , , and  crystal axes. (b) xy perspective of lattice shown in (a). 
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(c) View of NV along its axis, with transition electric dipole moments (orange). (d) Simplified 

NV energy level diagram (level spacings not to scale). The electronic 3A2 ground state consists 

of ms = 0 and ms = ±1 magnetic sublevels split by D = 2.87 GHz. The Zeeman effect further 

splits ms = ±1 in response to a magnetic field. Applied microwaves (magenta) facilitate 

transitions from ms = 0 to ms = ±1. A 532-nm laser is applied to drive optical transitions to the 3E 

manifold. Red photoluminescence (PL) is collected upon radiative relaxation to the ground state. 

Nonradiative relaxation through the singlet state channel is responsible for the spin-state 

dependent PL contrast and initialization into ms = 0. (e) Schematic of optical setup, tracing 

collected PL from the diamond chip to the camera: microscope objective (MO), intermediate 

Fourier plane (IFP), tube lens (TL), intermediate image plane (IIP), 4f lens (L1), Fourier plane 

(FP), linear polarizer (LP), and either 4f lens (L2) or Bertrand lens (BL) depending on whether 

the measurement calls for imaging real of Fourier space. (f) Simulation of PL contrast 

distribution in the Fourier plane for an NV oriented along  with an NA = 1.49 oil objective. (g) 

Experimentally measured NV ensemble PL contrast distributions in the Fourier plane due to each 

NV orientation.  

 

 

FIG. 2. Fourier decomposition of optically-detected magnetic resonance spectrum. (a) Schematic 

depicting the passed polarization as well as the integrated/discarded portions of the pupil for 

measurement of each spectrum . (b) Conventional NV ensemble optically-detected 

magnetic resonance (ODMR) spectrum realized by computing the average of four measurements 

 at high ∆B (= 19.52 G) such that eight resonances are clearly resolved. Each resonance 

appears as a triplet due to ~2.16 MHz splitting from the 14N hyperfine interaction. (c) Same as 
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(b) but at low ∆B (= 0.42 G) such that resonances from different NV orientations are not 

resolved. (d) ODMR measured under each of the four conditions sketched in (a) at ∆B = 19.52 G. 

(e) Same as (d) but instead at ∆B = 0.42 G. (f) Resulting ODMR spectra after Fourier 

decomposition at ∆B = 19.52 G. (g) Same as (f) but instead at ∆B = 0.42 G. The highly 

overlapping ODMR peaks obscure the hyperfine splittings in (c) and (e) whereas (g) shows that 

they are clearly revealed by the transformation. Different spectra within the same panel in (d)-(g) 

are offset for clarity. 

 

 

FIG. 3. Magnetic bead imaging with Fourier optical decomposition. (a) Spatially-averaged NV 

ensemble ODMR spectrum at ∆B = 22.16 G such that resonances are well resolved. Inset: cartoon 

of magnetic bead on diamond surface with magnetic field lines (red). (b)-(d) images of x, y, and z 

components of magnetic field due to a magnetic bead, determined at ∆B = 22.16 G without 

optical decomposition. Insets show calculated field components from least-squares fit to 

magnetic dipole source. Scale bar: 10 μm. (e) Spatially-averaged NV ensemble ODMR spectrum 

from measurement at ∆B = 1.99 G such that resonances are not resolved. (f)-(h) Images of x, y, 

and z components of stray magnetic field due to same magnetic bead as in (b)-(d) but determined 

at ∆B = 1.99 G with Fourier optical decomposition.  Insets show calculated field components 

from least-squares fit to magnetic dipole source. (i) Decomposed ODMR spectra of an arbitrary 

pixel of the low-∆B measurement, showing estimated  (blue),  (orange),  (yellow), 

and  (purple), offset for clarity. 
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FIG. 4. Meteorite magnetic imaging with Fourier optical decomposition. (a)-(c) Images of x, y, 

and z components of the magnetic field due to a subregion of the Allende meteorite sample, as 

determined using Fourier optical decomposition to resolve ambiguities from overlapping ODMR 

peaks. ΔB = 8.42 G. Scale bar: 25 μm. (d) Reflection brightfield image of same region of the 

meteorite as in (a)-(c). Scale bar: 25 μm. (e) Reflection brightfield image showing larger field-of-

view around the region imaged in (a)-(d) indicated by magenta square. Scale bar: 500 μm. In 

each of (a)-(d) the fit xy positions of two magnetic dipole sources are marked with magenta 

circles (see Fig. S6 [24]). (f) Example ODMR spectra without Fourier decomposition in the 

pixels marked with “x”s in (a)-(c). The eight resonances collapse into two or four features in 

some pixels, resulting in ambiguity. (g) Fourier optical decomposition applied to the same 

ODMR spectra as in (f) showing individual contributions due to only  (blue),  

(orange),  (yellow), and  (purple). Hyperfine features in (f) and (g) are blurred due to a 

combination of strong spatial gradients of the sample and a boxcar filter applied to improve SNR 

(see Appendix C). Spectra within the same panel in (f) and (g) are offset for clarity. 

 

APPENDIX A: OPTICAL SIMULATION 

We simulated NV emission by adapting existing code [32], in turn based on earlier works [18--

20,22,23] modeling electric dipole emission near interfaces and collected with a high-NA 

objective. For the present work, we modeled an NV of a given orientation as two mutually 

incoherent radiating electric dipoles oriented perpendicular to the NV axis as sketched in Fig. 

1(c). We approximated monochromatic emission of wavelength 700 nm, near the peak of the 

NV- emission spectrum at room temperature [1]. Briefly, we computed the complex-valued 

electric field at the Fourier plane of the microscope by decomposing into constituent plane 
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waves, each carrying a complex amplitude according to the emitter’s orientation and defocus, as 

well as the appropriate Fresnel coefficients incurred as a result of transmission through the 

diamond-immersion medium interface. When modeling the detection of NVs located at the far 

surface of the diamond we also included Fresnel coefficients describing reflection from the far 

diamond-air interface. We performed simulations for both an NA 1.49/oil and NA 0.75/air 

objective, as both were used in our experiments. To approximate the two diamond samples used 

in our experiments, we simulated an NV ensemble containing equal populations of each of the 

four orientations, distributed uniformly throughout a surface layer with depth of either d = 3.8 

μm or 0.9 μm (corresponding to samples D1 and D2 described below, respectively), with NV 

depth sampled every 10-100 nm. To match experimental conditions, the high-NA simulation of 

Fig. 1(f) places the NV layer at the (near) diamond-oil interface, while the low-NA simulation of 

Fig. S7 [24] places the NV layer at the (far) diamond-air interface. The PSF shown in Fig. S2  

[24] was computed by taking the Fourier transform of the Fourier plane complex amplitude, then 

taking the square modulus. As was true in our imaging experiments, we assumed a magnification 

of 30x and a camera pixel size of 5.5 μm (183.3-nm pixels projected back to the object plane). 

The blocked and polarized PSF in Fig. S2  [24] was computed by constraining support in the 

pupil plane to only x-polarized light in the right half of the Fourier disk, then taking the Fourier 

transform to propagate to the image plane. 

 

APPENDIX B: EXPERIMENTAL METHODS 

We used two diamond samples (made by Element Six), each grown by chemical vapor 

deposition. Sample D1 contains a surface NV layer of thickness 3.8 μm (as determined by 

secondary ion mass spectroscopy) and nitrogen concentration ~21 ppm. Sample D2 contains a 
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surface NV layer of thickness 0.9 μm and nitrogen concentration ~7 ppm. Both diamond chips 

have dimensions 4 mm x 4 mm x 0.5 mm. 

 

NVs were excited in a wide-field epi-illumination geometry, with 532-nm laser light coupled 

continuously into the back aperture of the objective via a dichroic mirror (Di02-R635, Semrock). 

The laser was linearly polarized along the axis  (refer to lab frame coordinates 

in Fig. 1) such that each NV orientation was excited at equal rates. At the NV layer, laser beam 

peak intensity ranged ~7-360 W/cm2. NV PL was collected with one of two objectives: 1) NA 

1.49/oil (CFI Apo TIRF 100x, Nikon), or 2) NA 0.75/air (CFI Plan Apo VC 20x, Nikon). 

Collected PL then was transmitted back through the aforementioned dichroic, and relayed to the 

camera by several mirrors and the train of lenses sketched in Fig. 1(e). The tube lens TL (fTL = 

300 mm) was placed a distance fTL from the back aperture of the objective, then the first 4f lens 

L1 (fL1 = 200 mm) was placed a distance fTL + fL1 from the tube lens. The Fourier plane (FP) is 

formed a distance fL1 behind lens L1. To perform Fourier optical decomposition on the ODMR 

spectrum across an image, we placed an opaque knife edge mounted on a rotation mount at this 

FP. For imaging experiments, a second 4f lens L2 (fL2 = 200 mm) was then placed a distance fL2 

behind the FP, forming an image on the camera (acA2040-180km, Basler) a distance fL2 behind 

L2. To image the Fourier plane directly as in Fig. 1(g), we removed L2 and placed a Bertrand 

lens BL (fBL = 75 mm) a distance ~300 mm from the FP. This distance was determined first 

roughly using the thin lens equation, then fine-tuned to focus the FP at a common objective 

height as for the image. The linear polarizer was placed just before the BL, though its precise 

placement is not important since the optical train behind the objective is well within the paraxial 
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regime. A band-pass filter (Brightline Fluorescence Filter 726/128, Semrock) was placed on the 

outer aperture of the camera. 

 

For the direct measurements of the Fourier plane depicted in Figs. 1 and 2 we used the NA 

1.49/oil objective. The diamond D1 was oriented such that the NV layer was on the side facing 

the objective, directly in contact with the immersion oil. For the imaging experiments depicted in 

Figs. 3 and 4, this geometry could not be used since the magnetic sample has to be placed in 

close proximity to the NV layer. Thus the diamond (D1 for magnetic bead measurements, D2 for 

Allende study) was flipped over and the objective focused through the bulk diamond. Imaging 

through the high-index (n = 2.417) diamond has a significant effect on the microscope’s PSF (see 

Fig. S2 [24]). Because of its short working distance, the NA 1.49 objective could not be used to 

image through the diamond (thickness ~0.5 mm), and so imaging experiments were done instead 

with the NA 0.75/air objective. Future implementations can be done with a thinned diamond chip 

such that a high-NA objective can still be used, as the sensitivity of the ODMR decomposition 

improves with increasing NA (Fig. S4 [24]). 

 

The external magnetic bias field was applied with a neodymium magnet mounted above the 

diamond. Microwaves were supplied with a TPI-1001-B synthesizer (Trinity Power, Inc.) and 

amplified with a ZHL-16W-43+ amplifier (Mini-Circuits), outputting ~44 dBm microwave 

power. Microwaves were delivered to the diamond via a copper wire loop oriented such that the 

microwave magnetic field had roughly equal projection on all four NV axes. The camera 

(operating with 5-ms exposure times) and microwave synthesizer were controlled with custom 

LabView and MATLAB software. Microwave power was toggled on/off in alternating images to 
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help mitigate noticeable intensity drift from the laser. In each experiment we sampled 250 

frequencies in random order, averaging for 50-250 microwave modulation periods. While the 

microwave lock-in improves SNR at a given frequency sample, the intensity drift can still limit 

the measurement as frequency switching was relatively slow: a fluctuation in laser power 

between two frequency samples causes fluctuations in relative contrast between the two samples. 

Our relatively inexpensive laser also exhibited random telegraph noise at times, and so some 

measurements were averaged up to 5 times to help alleviate this effect. The exact conditions in 

each measurement presented in the main figures were as follows: data in Figs. 1 and 2 were 

averaged for 100 microwave modulation periods per frequency sample, averaged once overall 

(~20 min per measurement); unpolarized/unblocked data in Fig. 3 were averaged for 50 

modulation periods per frequency sample, 5 times overall (~75 min per measurement), while 

polarized/blocked data was averaged for 125 modulation periods per frequency sample, 4 times 

overall (~155 min per measurement for each of the four polarization/beam block combinations); 

unpolarized/unblocked data in Fig. 4 was averaged for 100 modulation periods per frequency 

sample, averaged once overall (~35 min per measurement), and polarized/blocked data was 

averaged for 250 modulation periods per frequency sample, averaged once overall (~85 min per 

measurement for each of the four polarization/beam block combinations). A significant amount 

of dead time is included in each of the measurement durations reported above, due largely to lags 

in communication with the microwave synthesizer and on-line data transfer between LabView 

and MATLAB after each frequency step. We could afford to work well below optimum 

efficiency here since our samples were static and contained relatively strong magnetic features. 

This could certainly be improved for more demanding measurements.  
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Before each measurement, diamond chips were cleaned by sonicating for 30 min in acetone, then 

30 min in isopropyl alcohol. Ferromagnetic 2-μm diameter bead (Spherotech) samples were 

prepared by diluting 1/100 from stock, sonicating for 30 min, then pipetting an aliquot onto the 

NV layer surface of the diamond chip and leaving to dry on top of a permanent magnet in order 

to preferentially orient the beads at the surface. 

 

Paleomagnetism measurements were done by placing the rock surface in contact with the NV 

layer surface of the diamond. Before magnetic imaging, we applied a 2000-G isothermal 

remanent magnetization (IRM) [31] field to the Allende sample. This step allowed us to more 

easily identify magnetic sources for this proof-of-principle, and to simulate a highly magnetized 

meteorite sample in order to illustrate the dynamic range-extending capability of Fourier 

decomposition imaging over conventional vector imaging. 

 

APPENDIX C: ANALYSIS 

For both Fourier-space and real-space measurements, ODMR image data were stored as three-

dimensional (two spatial and one microwave frequency) arrays to be analyzed with custom 

MATLAB software. To analyze Fourier-space images such as those in Fig. 1 and Fig. S7 [24], 

each 237x237 pixel image was first smoothed with a Gaussian filter (σ = 5 pixels). A slight 4° 

rotation of the images due to subtle misalignments in the reflection axes of our mirrors was 

corrected in post-processing for analysis of the Fourier plane. We computed the elements of the 

transformation matrix W from these images. As mentioned in the text, in practice we did not 

enforce the symmetry of Eq. (3), and instead used the experimentally measured matrix elements. 

For sample D1 measured with the 1.49/oil objective the experimentally measured matrix was: 
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. 

(C1) 

The matrix entries are similar to the simulated values quoted in main text. Simulations dictate 

that we should expect a different W when detecting NVs through the diamond using the 0.75/air 

objective. In this case we found simulated values of w1 = 0.175, w2 = 0.370, and w3 = 0.085. 

Again in practice we used the experimentally measured transformation matrix, now given by: 

 
. 

(C2) 

The above was used for lower-NA measurements of sample D1. The values changed very 

slightly for the thinner NV layer of sample D2. 

 

For real-space measurements, the aforementioned 4° rotation was compensated by a 

commensurate rotation of the polarizer axis and knife edge away from horizontal/vertical. 

Rotating the polarizer and beam block between each  measurement caused small but 

measurable relative shifts of the images. To co-register the real-space images with one another 

we computed their cross-correlations then shifted to compensate the offset between the peaks of 

the correlation functions before further analysis. Blocking half of the pupil results in an 

elongated PSF (Fig. S2 [24]), which in turn means that the image of a point source recorded with 

the left/right half of the pupil blocked will not completely overlap with an image of the same 

point source recorded with the top/bottom of the pupil blocked. To compensate for this we 

performed Lucy-Richardson deconvolution on each slice of the ODMR image using the 
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simulated PSF (again rotated by 4°) (Fig. S2 [24]) and the MATLAB function deconvlucy. 

While this deconvolution step appeared to improve magnetic bead images as determined by 

visual comparison to high-field images, it did not noticeably affect images of the rock’s magnetic 

features, and so was not included in the analysis of the data presented in Fig. 4. The difference is 

likely explained by the fact that the magnetic features due to the rock were higher in magnitude 

and spatially broader than those of the beads. The deconvolution step is likely to be more 

important for small signals and spatial resolutions approaching the diffraction limit. In analyzing 

the unpolarized/unblocked data presented in Fig. 3(b)-(d) we included a deconvolution step using 

the appropriate unblocked simulated PSF (Fig. S2 [24]) for the sake of fair comparison. 

 

We found that data taken with the Fourier decomposition method was somewhat sensitive to the 

objective’s focal position. As shown in Fig. S2 [24], the focal plane is ill-defined when imaging 

through the bulk diamond due to the appearance of sidelobes along the optical axis. The central 

spot of the simulated lateral PSF is in fact narrower when the objective is positioned at the 

second-brightest peak along z. Experimentally we also noted something resembling multiple 

foci, and seemed to find best results when positioned at the second-deepest such focal point. For 

deconvolution we used the lateral slice of the PSF corresponding to the simulated second focal 

position (Fig. S2 [24]). 

 

Since the features imaged in our studies did not necessitate such fine pixelation to resolve, we 

low-pass filtered the data by applying a Gaussian blur (σ = 20 pixels) and then binning (10x10 

for magnetic bead imaging, 25x25 for rock imaging) the image at each frequency slice. The 

strong, localized magnetic features of the Allende section imbued steep magnetic field gradients 
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on the NVs, causing significant broadening of the resonances. These broadened spectra were 

smoothed via a boxcar average of length 5 applied along the frequency axis before fitting. No 

such frequency boxcar was applied to the magnetic bead data. 

 

The spectrum in each pixel was fit with specified lineshapes using least-squares fitting. For each 

NV orientation we fit each resonance lineshape as the sum of three Lorenztian functions 

separated by 2.16 MHz to account for 14N hyperfine splitting. The width, height, and central 

frequency of the Lorentzians were free parameters of the fit. Thus for each NV orientation this 

yields a total of either 4 (1 height, 1 width, and 2 positions) or 6 (2 heights, 2 widths, and 2 

positions) free parameters—the difference between the two cases was insignificant. Once the 

positions of each of 2x4 = 8 resonances were extracted, they were fed to a least-squares fit of the 

Hamiltonian with parameters Bx, By, Bz, M1z, M2z, M3z, and M4z (see Appendix D). An additional 

Gaussian blur was then applied to the resulting magnetic images (σ = 0.5 pixels for magnetic 

bead imaging, σ = 1 pixel for rock imaging). 

 

The slowly-varying applied bias magnetic field was removed from images of magnetic beads by 

fitting the entire image (FOV  ~ 150 μm x 150 μm)  to a 4th order polynomial and subtracting the 

offset. The images of the magnetic bead shown in Fig. 3 are only a small subset of the mostly 

empty images recorded around it. A different approach to background subtraction was used for 

the rock sample since slowly varying recorded magnetic fields may be the result of real sources 

buried deeper within the rock. In this case we measured the background magnetic image due 

solely to the bias field by removing the rock slice from the diamond, then subtracted this 

resulting map from the rock magnetic images. 
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Finally, magnetic bead images were fit with least-squares to a magnetic dipole source image with 

6 free parameters: x position, y position, standoff distance, magnetic dipole moment, azimuthal 

orientation, and polar orientation. The rock image shown in Fig. 4 was fit to two such dipole 

sources, plus a linearly varying background (Fig. S6 [24]). 

 

APPENDIX D: HAMILTONIAN MODEL 

The relevant spin Hamiltonian (in frequency units) for the NV oriented parallel to  is: 

 . 
(D1) 

In Eq. (D1)  GHz is the zero-field splitting, S1 is the electronic spin operator,  = 2.8 

MHz/G is the electronic gyromagnetic ratio, B is the magnetic field, terms including components 

of M1 account for the spin-stress interaction [35,36] (see below), I is the 14N nuclear spin 

operator, and A is the associated hyperfine tensor. The coordinate system  is defined 

such that z1 points along , and x1 coincides with one of the mirror planes of an NV with this 

orientation. Analogous Hamiltonians are defined for the other three NV orientations, with 

 related to one another and to the lab frame coordinates  

referred to in Fig. 1 via the appropriate rotation matrices. 

 

The components of M1 are related to the stress tensor  as described in references [35,36], and to 

those of Mj for j ≠ 1 via rotation matrix transformations of . In fitting, we neglected terms 

proportional to  and  yielding the simplified Hamiltonian: 
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(D2)

for each j. This approximation is justified by considering a magnetic field oriented along  and 

treating Mj perturbatively. For the 0→ +1 transition, to second order: 

 . 
(D3)

For our work we expect only modest amounts of stress due to lattice imperfections, with 

 MHz. In this case, again considering the fact that the minimum 

Zeeman splitting due to the applied field was ~4 MHz in our studies, the third term on the RHS 

in Eq. (D3) contributes a correction of ~0.1 MHz, while the fourth term would only contribute a 

correction of ~2.5 kHz. A future application at B(bias) < ~1 G may necessitate measuring each 

 associated with the diamond region first without the sample. 
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