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We present a scalable scheme for executing the error-correction cycle of a monolithic surface-
code fabric composed of fast-flux-tuneable transmon qubits with nearest-neighbor coupling. An
eight-qubit unit cell forms the basis for repeating both the quantum hardware and coherent control,
enabling spatial multiplexing. This control uses three fixed frequencies for all single-qubit gates
and a unique frequency detuning pattern for each qubit in the cell. By pipelining the interaction
and readout steps of ancilla-based X- and Z-type stabilizer measurements, we can engineer detun-
ing patterns that avoid all second-order transmon-transmon interactions except those exploited in
controlled-phase gates, regardless of fabric size. Our scheme is applicable to defect-based and planar
logical qubits, including lattice surgery.

I. INTRODUCTION

The scaling of small quantum processors [1–5] into
large qubit arrays capable of fault-tolerant quantum com-
putation (FTQC) [6] is an outstanding challenge for lead-
ing experimental quantum information platforms [7, 8].
Modular [9] and monolithic [10] approaches require a
systems approach that simultaneously and compatibly
addresses challenges in all layers of the quantum com-
puter stack [11]: from the quantum hardware at the low
level, through classical control electronics in the middle,
to software at the high level (i.e., micro-instruction sets,
compilers, and high-level programming languages).

Currently, the surface code [10, 12, 13] provides an
experimentally attractive paradigm for FTQC owing to
its modest requirements on the quantum hardware: only
nearest-neighbor coupling is needed between qubits, and
the error threshold falls robustly close to 1% across a
range of error models and error-decoding strategies, sign-
ficantly higher than those of Steane and Shor codes [6].
In superconducting quantum integrated circuits based on
circuit QED (cQED) [14], the error rate of single-qubit
gates has reached < 0.1% [15–17], while those of two-
qubit conditional-phase (CZ) gates and measurement are
0.6% [15] and ∼ 1% [18, 19], respectively.

The scalability of monolithic systems hinges on the
ability to copy-paste a unit cell in the quantum plane,
with suitable quantum interconnect between cells, and
suitable classical interconnect to and from the control
plane. The latter pursuit is very active, with sev-
eral groups developing vertical (rather than the tradi-
tional lateral) interconnection of input/output (I/O) sig-
nals using through-the-wafer coaxial lines [20], electro-
mechanical sockets [21], and bump-bonding in flip-chip
configuration [22].

For true scalability, it is crucial that the unit cell also

extend into the classical control plane. A unit cell for
control signals opens the door to hardware simplification
through spatial multiplexing, i.e., the selective routing of
control signals (with minimal customization) to spatially
separated components. While frequency-division multi-
plexing is already heavily exploited in cQED [3, 19, 23],
spatial multiplexing is in its infancy. Precision control of
same-frequency qubits using a microwave-frequency vec-
tor switch matrix (VSM) for pulse multicasting has only
recently been demonstrated [24].

In this paper, we propose a scalable scheme for the
QEC cycle of a monolithic superconducting surface code
by defining a concrete unit cell for both the quantum
hardware and the control signals. We focus on a fab-
ric of fast-flux-tunable transmon qubits interacting with
nearest neighbors via flux-controlled conditional-phase
(CZf) gates [25, 26] realized by pulsing into the resonator-
mediated |11〉 ↔ |02〉 avoided crossing of the interacting
transmon pair (numbers indicate excitation level). Our
approach is compatible with adiabatic [26], sudden [27]
and fast-adiabatic [15, 28] use of these crossings. Our
eight-qubit unit cell uses three fixed frequencies for all
single-qubit control and eight detuning sequences for two-
qubit gates. This approach to classical control allows sig-
nificant control hardware savings via spatial multiplex-
ing. By pipelining the measurement of the two types of
stabilizers of the surface code, we engineer detuning pat-
terns avoiding all second-order transmon-transmon inter-
actions except those exploited in CZf gates, regardless of
fabric size.

Our scheme allows changing the weight of stabilizer
measurements by simple on/off masking of detuning
pulses, making it applicable to both defect-based and
planar logical qubits [10], including lattice surgery [29].
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FIG. 1. Layout of a surface-code fabric. Red circles with
D labels represent data qubits. Blue (green) circles with
X (Z) labels represent ancillas performing X-type (Z-type)
quantum parity checks of their nearest-neighbor data qubits.
Each check is realized as an indirect quantum measurement,
consisting of a coherent step involving pairwise interactions
(dashed lines) followed by ancilla measurement. The delin-
eated fabric of nine data qubits (Da through Di) and eight
ancillas (Xa through Xd and Za through Zd) constitutes the
distance-3 planar logical qubit named Surface-17.

II. BACKGROUND

A. Surface code QEC cycle

A surface-code fabric consists of the two-dimensional
square lattice of data-carrying qubits shown in Fig. 1.
The stabilizers of this code are the X-type (Z-type) par-
ity operators

∏
iXi (

∏
i Zi), where i denotes data qubits

on the corners of the blue (green) plaquettes. Conven-
tionally, these stabilizers are measured indirectly using
ancilla qubits positioned at the center of the plaquettes,
forming a second square lattice. Standard circuits for
measuring X- and Z-type stabilizers, shown in Fig. 2,
combine a sequence of coherent interactions of the an-
cilla with its nearest-neighbor data qubits, followed by
projective ancilla measurement.

Using controlled-not (CNOT) gates as the fundamen-
tal interaction, X-type and Z-type stabilizer measure-
ments can be fully parallelized with circuit depth seven.
We define circuit depth as the number of operations on
each ancilla per QEC cycle, counting in measurement but
excluding ancilla initialization [we assume Pauli frame
updating (PFU) [13, 30] is used for data and ancilla
qubits]. The order of two-qubit gates in Fig. 2 is im-
portant for two reasons [31]. First, data qubits common
to adjacent plaquettes must do all their interactions with
one ancilla before the other. Second, the S (N) pattern
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FIG. 2. X-type (a) and Z-type (b) plaquettes. Data qubits
are labelled according to their position relative to the an-
cilla (NE=northeast, NW=northwest, SE=southeast, and
SW=southwest). Standard circuits for measuring X-type
(c, e) and Z-type (d, f) stabilizers indirectly using ancil-
las, using CNOT (c, d) or CZ (e, f) as the primitive data-
ancilla interaction. The order of two-qubit gates, NE-NW-
SE-SW (NE-SE-NW-SW) for X-type (Z-type), ensures that
all data qubits common to adjacent plaquettes do their inter-
actions with one ancilla before the other, and also provides
resilience to ancilla errors in Surface-17 [31]. Using the rela-
tions H = Y+90Z = ZY−90, one can see that the opening and
closing H gates can be replaced by Y−90 and Y+90 rotations,
respectively.

for X-type (Z-type) stabilizers provides resilience to sin-
gle ancilla-qubit errors even in small distance-three sur-
face codes such as Surface-17. This circuit consists of the
patch delineated in Fig. 1, with nine data qubits (labelled
Da to Di), four ancillas (Xa to Xd) for X-type stabilizer
measurements, and four ancillas (Za to Zd) for Z-type
stabilizer measurements.

When the two-qubit gate is CZ, parallelizing the stabi-
lizer measurements of Surface-17 requires depth nine be-
cause of non-commutation between Hadamard (H) gates
and CZ gates. The full circuit for the parallelized QEC
cycle of Surface-17 using CZ gates is shown in Fig. 3. Us-
ing gate and measurement times from recent experiments
(τ1Q = 20 ns for single-qubit gates, τ2Q = 40 ns for CZf

gates, and 500 ns for ancilla readout and photon deple-
tion in readout resonator), the QEC cycle will complete
in 740 ns.
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FIG. 3. Depth-nine quantum circuit for parallelized X- and
Z-stabilizer measurements in Surface-17 using CZ gates. The
six CZ gates inside each gray box are executed simultaneously.
Typical values of gate and readout times are indicated at the
top. The bottom arrow represents the looping of QEC cycles.
Qubits are labelled as in Fig. 1.

B. Limitations of fully parallelized X- and Z-type
stabilizer measurements using CZf gates

On paper, it is straightforward to compose a depth-
nine quantum circuit for the fully parallelized QEC cy-
cle of a surface-code fabric of arbitrary size. However,
to the best of our knowledge following numerous failed
attempts, the full parallelization of X- and Z-type stabi-
lizer measurements makes it impossible to realize a scal-
able implementation with CZf gates that satisfies all of
the following desirable properties:

• Microwave pulses for single-qubit gates should be
applied at a fixed, small number of frequencies.

• Transmons should maximally exploit their coher-
ence sweetspot [32].

• Flux-pulsed transmons should not cross any other
interaction zones on their way to or from the in-
tended |11〉 ↔ |02〉 avoided crossings realizing the
CZf gate.

• The flux-pulsing schemes should be extensible to a
surface code of arbitrary size using a fixed number
of detuning sequences and a fixed detuning range.

• The implementation should be compatible with log-
ical qubit operations.

We have found frequency arrangements and flux-pulse
sequences that meet the first three criteria. However,
all of these solutions require a growing number of detun-
ing sequences and detuning ranges as the fabric expands,
in order to avert all other interactions on the way to
and from the |11〉 ↔ |02〉 avoided crossings of CZf gates.
Furthermore, these solutions seem practically infeasible
already for distance five (Surface-49 [29]). To our knowl-
edge, no fully parallel solution exists with a fixed number
of detuning sequences and a fixed detuning range. In the
next section, we introduce a pipelined (rather than par-
allelized) version of the QEC cycle that simultaneously
meets the five desirable properties for a fabric of arbitrary
size.

III. THE PIPELINED QEC CYCLE

Our scalable scheme, which we term pipelined QEC
cycle, combines four key elements:

A. Repeating unit cells of eight qubits;

B. Pipelined X- and Z-type stabilizer measurements;

C. Three frequencies for single-qubit control;

D. Eight detuning sequences implementing the requi-
site CZf gates, realizable by on/off masking of three
flux-pulse primitives.

We now introduce these elements in detail.

A. Unit cell

The first element is a unit cell (Fig. 4) from which a
surface code of arbitrary size can be assembled by repeti-
tion (and truncation at boundaries). A unit cell contains
four data qubits (D1 to D4) and four ancillas (X1, X2,
Z1, and Z2). Crucially, the cell is the fundamental unit
of repetition not just for the quantum hardware. It is
also the unit of repetition for all coherent control.

B. Pipelining of X-type and Z-type stabilizer
measurements

The second element is the pipelined execution of the
X- and Z-type stabilizer measurements. The pipelining
concept is illustrated in Fig. 5(a). While stabilizer mea-
surements of one type always run simultaneously, the co-
herent and readout steps of ancillas of the other type are
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FIG. 4. Composing the surface-code fabric by repetition of
8-qubit unit cells. Red and pink circles represent data qubits,
blue (green) circles represent ancillas for X-type (Z-type)
stabilizer measurements, and dashed lines represent nearest-
neighbor couplings. Dot colors also indicate the frequency
for single-qubit microwave control (red for f1, green and blue
for f2, and pink for f3). Contours delineate unit cells (with
qubits named D1 to D4, X1, Z1, X2, and Z2).

interleaved. In other words, ancillas of one type undergo
coherent steps while ancillas of the other type are mea-
sured. Time slots A and B (D and E) are for single-qubit
gates pertinent to the X-type (Z-type) stabilizer mea-
surements, while slots 1 to 4 (5 to 8) are for two-qubit
gates. Note that nine of the CZ gates involve two qubits
within the cell, while fourteen involve one qubit from a
neighboring unit cell.

Generally, ancilla measurement (including any photon
depletion of the readout resonator) will take longer than
the coherent steps, leaving time to perform operations
on the data qubits in steps C and F while all ancillas
are measured. Possible operations include logical gates,
refocusing pulses, or single-qubit gates performing error
correction. Clearly, performing such operations during
steps C or F would not increase the QEC cycle time.

Pipelining offers several advantages. First, it com-
presses the stabilizer measurements to depth seven, two
single-qubit-gate steps less than fully-parallelized quan-
tum circuits (such as Fig. 3 for Surface-17). A second
and more crucial advantage is the ability to scale with-
out increasing the number of frequencies for single-qubit
control or qubit detuning sequences, as explained next.

C. Single-qubit control and detuning sequences

The third and fourth elements are best described to-
gether. Figure 5(b) presents our choice of frequencies

for single-qubit control and the qubit-specific detuning
sequences for realizing the two-qubit QEC cycle inter-
actions. Single-qubit gates on data qubits (steps A, B,
D, and E) are performed at frequencies f1 and f3 (alter-
nating in data-qubit rows), while those on ancillas are
performed at intermediate frequency f2. Note that with
only nearest-neighbor coupling, two distinct frequencies
(one for ancilla qubits and one for data qubits) reduce
the exchange coupling between same-frequency qubits
to fourth order (qubit-resonators, resonator-qubit, qubit-
resonator, resonator-qubit). When extending to the pro-
posed three frequencies, this also allows engineering the
detuning sequences so that no transmon crosses any other
second-order interaction zone on the way to or from the
|11〉 ↔ |02〉 avoided crossings exploited in the CZf gates.

During steps 1-4 and 5-8, transmons are flux pulsed to
a discrete set of frequencies, depending on whether they
interact, idle, or are measured: D1 and D2 to f1 or f Int1 ;
ancillas to f2, fPark2 or f Int2 ; and D3 and D4 to f3 or
fPark3 . CZ gates occur between transmons at f Int1 and f2,
and between transmons at f Int2 and f3. The exact value
of the frequencies shall be chosen such that a compromise
is reached between gate speed and residual interactions,
which are due to the finite detuning when transmons are
at f1, fPark2 , and fPark3 .

In the case of perfect qubit manufacturing, same-
labelled qubits would be identical for all unit cells. In
that case, the frequency detuning patterns during inter-
action steps 1 through 4 and 5 through 8 can be syn-
thesized by on/off masking of three flux-pulse primitives
using a switch matrix: A first primitive detuning data
qubits of type D1 and D2 from f1 to f Int1 , a second one
detuning ancillas from f2 to f Int2 , and a third one detun-
ing data qubits of type D3 and D4 from f3 to fPark3 . For
example, the detuning sequence for D2 in Fig. 5(b) can
be synthesized by masking the pulse primitive on (off) at
steps 1, 4, 6, and 7 (2, 3, 5, and 8).

D. Frequency arrangement variations

There exist other possible frequency arrangements
than that shown in Fig. 5(b). For example, consider the
inverted arrangement with all data qubits at f2 and the
ancillas at the outer frequencies. Figure 6 shows one of
these configurations, with X1 and Z1 (X2 and Z2) at f1
(f3). It is straightforward to modify the detuning se-
quences for this arrangement to also avert all unwanted
interactions. However, upon comparing this alternative
to the original arrangement, we observe a key difference
making the original preferable for a cQED implementa-
tion with flux-tuneable transmons. Specifically, the orig-
inal exactly balances the number of interaction steps in
which qubits can remain at their upper frequency (i.e., at
or closest to their coherence sweetspot), while the flipped
arrangement allows this on just two (out of eight) steps
for data qubits and zero or four (out of four) steps for
ancilla qubits. The reduced data-qubit dephasing during
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FIG. 5. (a) Unit cell quantum circuit for pipelined X- and Z-type stabilizer measurements. Qubits are labelled as in Fig. 4.
Time slots 1 to 4 (5 to 8) are for X-type (Z-type) stabilizer CZ gates. Time slots A and B (D and E) are for X-type (Z-type)
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for qubits in the unit cell: single-qubit gates on D1 and D2 (D3 and D4) are performed at f1 (f3), while those on ancillas are
performed at f2. Ancilla measurements are performed at fPark

2 . CZf gates are performed between qubits at f Int
1 and f2 or

at f Int
2 and f3. No interactions take place at f1 or the parking frequencies fPark

2 and fPark
3 . Small offsets are added to some

detuning sequences to clarify the distinction between sequences for D1 and D2, X1 and X2, Z1 and Z2, and D3 and D4.

the coherent steps will lead to a lower logical error rate.
Note that this advantage of the original arrangement is
made possible by lowering the ancillas to fPark2 for their
measurement, at which the additional dephasing is in-
nocuous in view of the measurement-induced projection.

To reduce residual single-qubit gate cross-talk between
D1 and D2 (D3 and D4), another variation can be imple-
mented by breaking the degeneracy in frequency f1 (f3),
which requires increasing the number of primitive pulses
from three to five, or even in f2, further increasing the
number of primitive pulses to eight.

IV. COMPATIBILITY WITH LOGICAL QUBIT
OPERATIONS

Two types of logical qubits can be envisioned for sur-
face code: defect-based [10] and planar [29]. Defect-based
logical qubits are introduced by stopping the measure-
ment of one or two stabilizers (X-type for rough logical
qubits, and Z-type for smooth ones [10]). In our scheme,
turning stabilizer measurements fully off can be accom-
plished in either of two ways. One is to mask off the H
gates of the corresponding ancilla, without changing the
detuning sequence or stopping the ancilla measurement.
If the ancilla is in |0〉, all its CZf gates are inactive and
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there is no net action on the logical qubit. If it starts in
|1〉, the stabilizer operator (not its measurement) is ap-
plied. Although this performs a logical XL (ZL) gate on
a rough (smooth) qubit, the ancilla measurements allows
to keep track of the action by Pauli frame updating. A
second way to turn a stabilizer fully off is to mask off all
the flux-pulse primitives in the interaction step, keeping
the qubits at their sweetspot and minimizing flux noise.
The corresponding H gates on the ancillas or data qubits
could also be masked to further reduce qubit errors due
to qubit control inaccuracies.

Logical operations, such as move and braiding oper-
ations on defect-based qubits [10], and lattice surgery
on planar ones [29], also require dynamically changing
the weight of specific stabilizer measurements, i.e., selec-
tively removing specific data qubits from the quantum
parity checks. In our scheme, this can easily be achieved
by selective on/off masking of flux-pulse primitives. For
example, removing a qubit of type D2 from the X-type
stabilizer measurement below it simply requires masking
off the pulse primitive at step 1. The order of the two-
qubit gates can also be changed by masking.

V. CONCLUSION AND OUTLOOK

We have presented a concrete scheme for the QEC
cycle of an arbitary-size surface code implemented with
flux-tuneable transmons. The scheme combines four key
concepts: an eight-qubit unit cell as the basis for repe-
tition of quantum hardware and control signals; pipelin-
ing of X- and Z-type stabilizer measurements; a fixed
set of three frequencies for single-qubit control; and a
fixed set of eight detuning sequences implementing the
requisite controlled-phase gates. These eight detuning
sequences can be composed by on-off masking of three
flux-pulse primitives. We propose an implementation of
this scheme with room temperature control systems to
validate and test the method and its scalability, see Sup-
plemental Material [33]. For the longer term a cryogenic
implementation remains highly attractive.
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