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Quantum computer has an amazing potential of fast information processing. However, realisation
of a digital quantum computer is still a challenging problem requiring highly accurate controls and
key application strategies. Here we propose a novel platform, quantum reservoir computing, to solve
these issues successfully by exploiting natural quantum dynamics of ensemble systems, which is ubiq-
uitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum
systems to universally emulate nonlinear dynamical systems including classical chaos. A number of
numerical experiments show that quantum systems consisting of 5–7 qubits possess computational
capabilities comparable to conventional recurrent neural networks of 100–500 nodes. This discovery
opens up a new paradigm for information processing with artificial intelligence powered by quantum
physics.

I. INTRODUCTION

Quantum physics, which is one of the most funda-
mental frameworks of physics, exhibits rich dynamics,
sufficient to explain natural phenomena in microscopic
worlds. As Feynman pointed out [1], the simulation
of quantum systems on classical computers is extremely
challenging because of the high complexity of these sys-
tems. Instead, they should be simulated by using a ma-
chine of which the operation is based on the laws of quan-
tum physics.

Motivated by the recent rapid experimental progress in
controlling complex quantum systems, non-conventional
information processing utilising quantum physics has
been explored in the field of quantum information sci-
ence [2, 3]. For example, certain mathematical prob-
lems, such as integer factorisation, which are believed to
be intractable on a classical computer, are known to be
efficiently solvable by a sophisticatedly synthesized quan-
tum algorithm [4]. Therefore, considerable experimental
effort has been devoted to realising full-fledged universal
quantum computers [5, 6]. On the other hand, quantum
simulators are thought to be much easier to implement
than a full-fledged universal quantum computer. In this
regard, existing quantum simulators have already shed
new light on the physics of complex many-body quan-
tum systems [7–9], and a restricted class of quantum
dynamics, known as adiabatic dynamics, has also been
applied to combinatorial optimisation problems [10–13].
However, complex real-time quantum dynamics, which
is one of the most difficult tasks for classical computers
to simulate [14–16] and has great potential to perform
nontrivial information processing, is now waiting to be
harnessed as a resource for more general purpose infor-

mation processing. Specifically, the recent rapid progress
in sensing and Internet technologies has resulted in an in-
creasing demand for fast intelligent big data analysis with
low energy consumption. This has motivated us to de-
velop brain-inspired information processing devices of a
non-von Neumann type, on which machine learning tasks
are able to run natively [17].

Here we propose a novel framework to exploit the com-
plexity of real-time quantum dynamics in ensemble quan-
tum systems for nonlinear and temporal learning prob-
lems. These problems include a variety of real-world
tasks such as time-dependent signal processing, speech
recognition, natural language processing, sequential mo-
tor control of robots, and stock market predictions. Our
approach is based on a machine learning technique in-
spired by the way the brain processes information, so-
called reservoir computing [18–20]. In particular, this
framework focuses on real-time computing with time-
varying input that requires the use of memory, unlike
feedforward neural networks. In this framework, the low-
dimensional input is projected to a high-dimensional dy-
namical system, which is typically referred to as a reser-
voir, generating transient dynamics that facilitates the
separation of input states [21]. If the dynamics of the
reservoir involve both adequate memory and nonlinear-
ity [22], emulating nonlinear dynamical systems only re-
quires adding a linear and static readout from the high-
dimensional state space of the reservoir.

A number of different implementations of reservoirs
have been proposed, such as abstract dynamical systems
for echo state networks (ESNs) [18] or models of neurons
for liquid state machines [19]. The implementations are
not limited to programs running on the PC but also in-
clude physical systems, such as the surface of water in a
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laminar state [23], analogue circuits and optoelectronic
systems [24–29], and neuromorphic chips [31]. Recently,
it has been reported that the mechanical bodies of soft
and compliant robots have also been successfully used
as a reservoir [32–37]. In contrast to the refinements
required by learning algorithms, such as in deep learn-
ing [38], the approach followed by reservoir computing,
especially when applied to real systems, is to find an ap-
propriate form of physics that exhibits rich dynamics,
thereby allowing us to outsource a part of the computa-
tion. Nevertheless, no quantum physical system has been
employed yet as a physical reservoir.

Here we formulate quantum reservoir computing
(QRC) and show, through a number of numerical exper-
iments, that disordered quantum dynamics can be used
as a powerful reservoir. Although there have been sev-
eral prominent proposals on utilising quantum physics in
the context of machine learning [39–44], they are based
on sophisticatedly synthesised quantum circuits on a full-
fledged universal quantum computer. Contrary to these
software approaches, the approach followed by QRC is
to exploit the complexity of natural (disordered) quan-
tum dynamics for information processing, as it is. In-
stead of using quantum gates, which contrasts our ap-
proach to the digital one, we employ analog quantum
dynamics under a time-independent Hamiltonian. The
parameters in the Hamiltonian are randomly chosen, and
hence no fine tuning of the parameters of the Hamilto-
nian is required. Any quantum chaotic (non-integrable)
system can be harnessed in general, and its computa-
tional capabilities are specified. This is a great advan-
tage, because we can utilise existing quantum simulators
or complex quantum systems as resources to boost infor-
mation processing. Among existing works on quantum
machine learning [39–42, 44], our approach is the first
attempt to exploit quantum systems for temporal ma-
chine learning tasks, which essentially require a memory
effect to the system. As we will see below, our bench-
mark results show that quantum systems consisting of
5–7 qubits exhibit a powerful performance , with the help
of time multiplexing, comparable to the ESNs of 100-500
nodes [45]. Not only its computational power, QRC will
also provide us an operational means to approach com-
plex real-time quantum dynamics. While there had been
a missing operational link between classical chaos and
quantum chaotic systems manifested by a Wigner-Dyson
type statistics of the energy level spacing [46, 47], it is
quite natural to connect them via the QRC framework
naturally as an emulation of classical chaos by quantum
chaotic systems. Moreover, since complex quantum dy-
namics is ubiquitous, this framework provides us new
operational understanding of quantum physics, such as
quantum simulation, thermodynamics in closed quantum
system and fast scrambling in black hole.

The rest of this paper is organized as follows. In Sec. II,
we provide a detailed description of QRC with introduc-
ing quantum mechanics and how it is related to nonlin-
ear temporal machine learning. In Sec. III, we provide
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FIG. 1. Information processing scheme in QRC. (a) The input
sequence {sk} is injected into the quantum system. The signal
x′i(t) is obtained from each qubit. (b) Comparison between
conventional (upper) and quantum (lower) reservoir comput-
ing approaches. Note that the circles in the QRC do not
represent qubits, but the basis of the Hilbert space like the
nodes in quantum walk [40, 48, 49]. The true nodes corre-
spond to a subset of basis of the operator space that are di-
rectly monitored by the ensemble measurements. The hidden
nodes correspond to the remaining degrees of freedom.

demonstrations of QRC for prototypical nonlinear ma-
chine learning tasks. These demonstrations are aimed to
explore potential applications of QRC in practical prob-
lems. In Sec. IV, the performances of QRC are investi-
gated in detail with respect to their memory and nonlin-
ear capacities and compared to a classical reservoir com-
puting, ESNs, as a reference. The effect of imperfections
in experimental settings is also argued there. Section V is
devoted to discussion. The detailed settings and methods
of the numerical experiments are provided in Appendix.

II. QUANTUM RESERVOIR COMPUTING

A. Description of quantum system and dynamics

In this subsection, we will explain how to describe
quantum system and dynamics for the readers who are
not familiar with quantum information. The minimum
unit of information in quantum physics is a quantum bit
(qubit), which consists of a two-level quantum system,
namely a vector in a two-dimensional complex vector
space of spanned by {|0〉, |1〉}. Let us consider a quan-
tum system consisting of N qubits, which is described as
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a tensor product space of a complex vector space of two
dimensions. (Below we will use the number of qubits, N ,
to measure the size of a quantum system, since it reflects
a physical size of the system, like number of atoms or par-
ticles.) A pure quantum state is represented by a state
vector |ψ〉 in a 2N -dimensional complex vector space. We
may also consider a statistical (classical) mixture of the
states of the pure states, which can be described by a
2N × 2N hermitian matrix ρ known as a density matrix.
For a closed quantum system, the time evolution for a
time interval τ is given by a unitary operator e−iHτ gen-
erated by a hermitian operator H called Hamiltonian.
Specifically, for the density matrix the time evolution is
given by

ρ(t+ τ) = e−iHτρ(t)eiHτ , (1)

where the Hamiltonian H is an 2N×2N hermitian matrix
and defines the dynamics of the quantum system.

B. Measurements in ensemble quantum systems

Measurements in quantum system is described by a set
of projective operators {Pi}, which satisfies

∑
i Pi = I

and PiPj = δijPi. Then the probability to obtain
the measurement outcome i for the state ρ is given by
pi = Tr[Piρ]. The state after the measurement gets a
backaction and is given by PiρPi/Tr[Piρ]. That is, a sin-
gle quantum system inevitably disturbed by the projec-
tive measurement. By repeating the projective measure-
ments, we can calculate average values 〈O〉 := Tr[Oρ] of
an observable O =

∑
i aiPi.

Here we consider an ensemble quantum system, where
the system consists of a huge number of the copies of
ρ, i.e., ρ⊗m. Cold atomic ensembles and liquid or solid
state molecules are natural candidates of such an ensem-
ble quantum system. For example, in an NMR (nuclear
magnetic resonance) spin ensemble system, we have typ-
ically 1018−20 copies of the same molecules [50, 51]. Nu-
clear spin degree of freedoms of them can be employed as
the quantum system, like NMR spin ensemble quantum
computers or synthetic dimensions of ultra cold atoms
for quantum simulations. We here assume that we can
obtain the signals as a macroscopic observable from the
ensemble quantum system directly, where the ensemble
quantum system and the probe system are coupled by an
extremely weak interaction. Actually, the NMR bulk en-
semble average measurement is done in this way. There
is almost no backaction, or backaction is much smaller
than other imperfections like the T1 relaxation [50, 51].
In QRC, we make an active use of such a property of
the ensemble quantum systems to exploit the complex
quantum dynamics on the large degrees of freedom.

C. Definition of quantum reservoir dynamics

As nodes of the network of the QR, we use an orthog-
onal basis of quantum states. The idea is similar to the
quantum walks [40, 48, 49], where each individual node
is defined not by qubits (subsystems) but by basis states
like {|000〉, |001〉, ..., |111〉}. Therefore, for N qubits, we
have 2N basis states for a pure quantum state. More-
over, here we employ the density matrix in general, we
define the nodes of the network by an orthogonal basis of
the operator space of the density matrices. By using the
Hilbert-Schmidt inner product, the density matrix can
be represented as a vector x on a 4N -dimensional oper-
ator space. Here the i-th coefficient xi of x is defined
by xi = Tr[Biρ] by using the set of N -qubit products

of the Pauli operators {Bi}4
N

i=1 = {I,X, Y, Z}⊗N (where
BiBj = δijI). Specifically, we choose the firstN elements
such that Bi = Zi for convenience in the definition of the
observables later.

In this operator space, the time evolution is reformu-
lated as a linear map for the vector x:

x(t+ τ) = Uτx(t). (2)

Here Uτ is a 4N ×4N matrix whose element is defined by

(Uτ )ji := Tr[Bje
−iHτBie

iHτ ]. (3)

Owing to the unitarity of the dynamics e−iHτ (e−iHτ )† =
I, we have UτU

T
τ = I. If the system is coupled to an ex-

ternal system for a measurement and/or a feedback op-
eration, the time evolution (for the density matrix) is not
given by the conjugation of the unitary operator e−iHτ ;
instead, it is generally given by a complete positive trace
preserving (CPTP) mapD for the density matrix ρ. Even
in such a case, the dynamics is linear, and hence the time
evolution for x(t) is given in a linear form:

x→Wx (4)

where the matrix element is defined

Wji := Tr[BjD(Bi)]. (5)

In order to exploit quantum dynamics for information
processing, we have to introduce an input and the sig-
nals of the quantum system (see Fig. 1 (a)). Suppose
{sk}Mk=1 is an input sequence, where sk can be a binary
(sk ∈ {0, 1}) or a continuous variable (sk ∈ [0, 1]). A
temporal learning task here is to find, using the quantum
system, a nonlinear function yk = f({sl}kl=1) such that
the mean square error between yk and a target (teacher)
output ȳk for a given task becomes minimum. To do
so, at each time t = kτ , the input signal sk is injected
into a qubit, say the 1st qubit, by replacing (or by using
measurement and feedback) the 1st qubit with the state
ρsk = |ψsk〉〈ψsk |, where

|ψsk〉 :=
√

1− sk|0〉+
√
sk|1〉. (6)

The density matrix ρ of the system is transformed by the
following CPTP map:

ρ→ ρsk ⊗ Tr1[ρ], (7)
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where Tr1 indicates the partial trace with respect to the
first qubit. The above action of the kth input on the
state x(t) is again rewritten by a matrix Sk by using
Eq. (5). After the injection, the system evolves under
the Hamiltonian H for a time interval τ . Thus, the time
evolution of the state for a unit timestep is given by

x(kτ) = UτSkx ((k − 1)τ) . (8)

After injecting the kth input, the system evolves under
the Hamiltonian for τ time. The time interval τ should be
chosen within physically allowed time scale for the input
injections, which is determined by both time scale for
the initialization of the qubit and the operation for the
input. Then, within such a time scale, τ can be chosen
to optimize the performance of the QR. As we will see
in Sec. IV, the tradeoff between memory and nonlinear
degrees of performance can be controlled by τ .

The signal, which is exploited for the learning process,
is defined as an average value of a local observable on
each qubit. We here employ, as observables, the Pauli
operator Zi acting on each ith qubit. Recall that, for an
appropriately ordered basis {Bi} in the operator space,
the observed signals are related with the first N elements
of the state x(t) via xi(t) = Tr[Ziρ(t)] (i = 1, ..., N).
As we mentioned before, we do not consider the back-
action of the measurements to obtain the average values
{xi(t)} by considering an ensemble quantum system. We
call the directly observed signals {xi(t)}Ni=1 as the true
nodes. Then, the remaining (4N − N) nodes of x(t) as
hidden nodes, as they are not employed as the signals for
learning. For the learning, we employ x′i(t) defined by

x′i(t) := Tr[(I + Zi)/2ρ(t)] = (xi(t) + 1)/2 (9)

by adding a constant bias and rescaling with 1/2 just for
a convenience for the presentation.

The unique feature of QRC in the reservoir comput-
ing context is that the exponentially many hidden nodes
originated from the exponentially large dimensions of the
Hilbert space are monitored from a polynomial number
of the signals defined as the true nodes as shown in Fig. 1
(b). For this purpose, in the next section, we will intro-
duce time multiplexing by dividing a unit time interval τ
into V subintervals to construct V virtual nodes. This
effectively increases the total number of the computa-
tional nodes employed in the learning process from N
true nodes to NV computational nodes.

Contrast to a single quantum system, the ensemble
quantum system allows us to get real-time signals di-
rectly from exponentially large degrees of freedom. It
should be noted that classical nonlinear delay systems
mathematically contain infinite degrees of freedom. How-
ever, in an actual physical system, the time resolution
is physically limited, and hence the effectively available
degrees of freedom are also limited. This allows us to
simulate them efficiently on a classical computer, as long
as their time evolution is given appropriately. However,
in the case of the quantum systems, we need exponen-
tially many degrees of freedom in general to execute their
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FIG. 2. Physical insight of QRC. (top) A quantum circuit
whose output has the second order nonlinearity with respect
to the input variables s1 and s2. (bottom) The quantum
circuit is replaced by a unitary time evolution under a Hamil-
tonian H. The observables are monitored by the ensemble
average measurements.

brute force simulation (prediction of the time evolution)
on a classical computer, while the descriptions of their
time evolution are explicitly given. This is the case even
if the time resolution and precision of the readouts are
finite as long as they are sufficiently small. Another phys-
ical implementation, photonic reservoir computing with
laser [24–30], would have a similar motivation, since pho-
tonics and laser rely heavily on quantum physics. Con-
trast to these photonic approaches, we here should em-
phasize that our implementation crucially exploits quan-
tum computational supremacy region, where the classi-
cal simulation of the system is computationally hard for
a classical computer. Note that at the injected one clean
qubit at each time step and the single-qubit averaged
outputs after a unitary time evolution is enough hard
for a classical computer to simulate efficiently in gen-
eral [14, 15].

D. Emerging nonlinearity from a linear system

We here provide a physical insight why quantum dis-
ordered dynamics can be employed for nonlinear learning
task. One might think that the quantum system is totally
linear, and hence that we cannot employ it for learning
tasks, which essentially require nonlinearity. However,
this is not the case. The definition of the nonlinearity
defined for the learning task and the linearity of the dy-
namics on the quantum system are quite different. Let
us, for example, consider a quantum circuit shown in
Fig. 2. For two input states |ψs1〉 =

√
1− s1|0〉+

√
s1|1〉
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and |ψs2〉 =
√

1− s2|0〉 +
√
s2|1〉, we obtain 〈Zout〉 =

(1 − 2s1)(1 − 2s2), which has the second order nonlin-
earity with respect to s1 and s2. Or equivalently, in the
Heisenberg picture, the observable Zout corresponds to
the nonlinear observable Z1Z2. Whereas dynamics is de-
scribed as a linear map, information with respect to any
kind of correlation exists in exponentially many degrees
of freedom. In the QRC, such higher order correlations
or nonlinear terms are mixed by the linear but quan-
tum chaotic (non-integrable) dynamics Uτ . There ex-
ists a state corresponding to an observable Bl = ZiZj ,
i.e. xl(t) = Tr[ZiZjρ(t)] storing correlation between
xi(t) = Tr[Ziρ(t)] and xj(t) = Tr[Zjρ(t)], which can be
monitored from another true node via Uτ . This mecha-
nism allows us to find a nonlinear dynamics with respect
to the input sequence {sk} from the dynamics of the true
nodes {xi(t)}Ni=1. The emergent nonlinearlity is not as
special because classical (nonlinear) dynamics appears
as (coarse-grained) dynamics of averaged values of the
observables in the quantum system. However, our main
contribution goes beyond it and is to use such nonlinear
dynamics on the disordered (chaotic) quantum systems
for simulation of general nonlinear dynamics by train-
ing an optimal observable. Such a simulation of general
nonlinear dynamics with analog quantum dynamics pro-
vides an alternative paradigm to digital universal quan-
tum computing.

E. Training readout weights

Here we explain how to train the QR from the ob-
served signals. We harness complex quantum dynam-
ics in a physically natural system by utilizing the reser-
voir computing approach. Here the signals are sampled
from the QR not only at the time kτ , but also at each
of the subdivided V timesteps during the unitary evo-
lution Uτ as shown in Fig. 3. That is, at each time
t + v(τ/V ) with an integer 1 ≤ v ≤ V , the signals
x′i(t+v(τ/V )) = Tr[Ziρ(t+v(τ/V ))] are sampled. Thus,
at each timestep k, we have NV computational nodes
in total. These time multiplexed signals are denoted by
x′ki with i = n + vN with integers 1 ≤ n ≤ N and
0 ≤ v ≤ V , x′ki, which means the signal of the nth qubit
at time t = kτ + v(τ/V ), i.e. x′ki := x′i(kτ + v(τ/V )). A
similar technique of time multiplexing is also used in e.g.
Ref. [24]. As will be explained below, these NV compu-
tational nodes are employed in the learning phase. This
allows us to make full use of the richness of quantum dy-
namics, because unitary real-time evolution is essential
for nonlinearity.

Suppose learning is performed by using L timesteps.
Let {x′ki} (1 ≤ i ≤ NV and 1 ≤ k ≤ L) be the states
of the computational nodes in the learning phase. We
also introduce x′k0 = 1.0 as a constant bias term. Let
{ȳk}Lk=1 be the target sequence for the learning. In the
reservoir computing approach, learning of a nonlinear
function ym = f({sk}mk=1), which emulates the target
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FIG. 3. Quantum reservoir dynamics and virtual nodes. The
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each subdivided timestep the signals are sampled. Using the
NV signals as the computational nodes for each timestep k
in the learning phase, the linear readout weights {wLR

i } are
trained for a task.

sequence {ȳk}, is executed by training the linear readout
weights of the reservoir states such that the mean square
error

1

L

L∑
k=1

(yk − ȳk)2 (10)

is minimised. That is, what we have to do is to find linear
readout weights {wi}NVi=0 to obtain the output sequence

yk =

NV∑
i=0

x′kiwi (11)

with the minimum mean square error. This problem cor-
responds to solving the following equations:

ȳ = Xw, (12)

where {x′ki}, {ȳk}Lk=1, and {wi}NVi=0 are denoted by a
L× (NV + 1)matrix X, and column vectors ȳ and w, re-
spectively. Here we assume that the length of the training
sequence L is much larger than the total number of the
nodes NV + 1 including the bias term. Thus, the above
equations are overdetermined, and hence the weights
that minimise the mean square error are determined by
the Moore-Penrose pseudo-inverse X+ := (XTX)−1XT

((NV + 1)× L matrix) of X as follows:

wLR := X+ȳ. (13)

Using wLR, we obtain the output from the QR

yk =

NV∑
i=0

wLR
i x′ki. (14)
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Or equivalently, an optimal observable

Otrained ≡
N∑
i=1

wLR
i (I + Zi)/2 + wLR

N+1I (15)

is trained, and the output is obtained as 〈Otrained〉.
Specifically, as is the case in the conventional reser-

voir computing approach, none of the parameters of the
system (Hamiltonian) requires fine tuning except for the
linear readout weights. Thus, we can employ any quan-
tum system (Hamiltonian) as long as it exhibits dynam-
ics with appropriate properties for our purpose, such as
fading memory and nonlinearity. That is, as long as the
QR is sufficiently rich, we can find an optimal observable
Otrained capable of exploiting the preferred behaviour via
the training (learning) process. In the following numeri-
cal experiments, we employ, as an example, the simplest
quantum system, a fully connected transverse-field Ising
model, which exhibits a Wigner-Dyson statistics of the
energy level spacing [46, 47, 52]:

H =
∑
ij

JijXiXj + hZi, (16)

where the coupling strengths are randomly chosen such
that Jij is distributed randomly from −J/2 to J/2. We
introduce a scale factor ∆ so as to make τ∆ and J/∆
dimensionless. When we mention to the size of QRs, we
refer to the number of the qubits, N , simply because
it reflects the physical size of the quantum systems as
is also the case in the quantum information literature.
However, we should recall that the total number of the
computational nodes in the learning phase is NV because
of time multiplexing. In any numerical experiments, we
show the number of the virtual nodes V explicitly. Note
that we do not employ any approximation, but quantum
dynamics of the above Hamiltonian is exactly calculated
to evaluate the potential performance of the QRs. The
imperfections including decoherence and noise on the ob-
served signals, which might occur in actual experiments,
are further taken into account in Sec. IV B.

III. DEMONSTRATIONS OF QRC FOR
TEMPORAL LEARNING TASKS

We start by providing several demonstrations to ob-
tain a sense of QRC using a number of benchmark tasks
in the context of machine learning. Our demonstrations
consist of a timing control (the timer task), learning of
input-driven dynamical systems or non-autonomous dy-
namical systems (the NARMA task), and learning of au-
tonomous dynamical systems including chaotic attractors
(the Mackey-Glass prediction task), which cover typical
cases of the target applications in reservoir computing
schemes [18–20, 53]. Detailed analyses of the perfor-
mance for each task are given in the Appendix.

A. Timer task

Our first experiment is to construct a timer. One im-
portant property of QRC is having memory to be ex-
ploited. Whether the system contains memory or not
can be straightforwardly evaluated by performing this
timer task (see e.g., [53]). The input is flipped from 0
to 1 at certain timestep (k′) as a cue, and the system
should output 1 if τtimer timesteps have passed from the
cue, otherwise it should output 0 (see Fig.4 (a), left dia-
gram). To perform this task, the system has to be able to
‘recognize’ the duration of time that has passed since the
cue was launched. This clearly requires memory. Here
we used 6-qubit QRs with τ∆ = 1 to perform this task
by incrementally varying V .

Figure 4 (a) shows the task performance with trained
readouts. We can clearly observe that by increasing V
the performance improved, which means that the amount
of memory, which can be exploited, also increased. In
particular, when V = 5 and 10, the system outputs
overlap with the target outputs within the certain de-
lay, which clearly demonstrates that our QR system is
capable of embedding a timer. By increasing the de-
lay timesteps τtimer, we can gradually see that the per-
formance declines, which expresses the limitation of the
amount of memory that can be exploited within the QR
dynamics. It is interesting to note that while the systems
are highly disordered, we can find an observable Otrained

or a mode, at which the wave function of the system is fo-
cused after a desired delay time τtimer. This is very useful
as a control scheme for engineering quantum many-body
dynamics. For further information, see detailed settings,
experimental and learning procedures, and analyses for
the timer task in Appendix A 1.

B. NARMA task

The second task is the emulation of nonlinear dynam-
ical systems, called nonlinear auto-regressive moving av-
erage (NARMA) systems, which is a standard benchmark
task in the context of recurrent neural network learning.
This task presents a challenging problem for any com-
putational system because of its nonlinearity and depen-
dence on long time lags [54]. The first NARMA system is
the following second-order nonlinear dynamical system:

yk+1 = 0.4yk + 0.4ykyk−1 + 0.6s3k + 0.1. (17)

This system was introduced in Ref. [55] and used, for
example, in Refs. [34, 36]. For descriptive purposes, we
call this system NARMA2. The second NARMA system
is the following nonlinear dynamical system that has an
order of n:

yk+1 = αyk + βyk(

n−1∑
j=0

yk−j) + γsk−n+1sk + δ, (18)
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FIG. 4. Typical performances of QR for temporal machine learning tasks. (a) The timer task. A 6-qubit QR system is prepared,
and starting from different initial conditions, 10 trials of numerical experiments were run for each τtimer setting. k′ is set to
500 throughout the numerical experiments. The plots overlay the averaged system performance over 10 trials for V = 1, 2, 5,
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by a common input stream to be emulated. The upper plot shows the input stream, and the corresponding task performances
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are provided in Appendix.
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where (α, β, γ, δ) are set to (0.3, 0.05, 1.5, 0.1), respec-
tively. Here, n is varied using the values of 5, 10, 15, and
20, and the corresponding systems are called NARMA5,
NARMA10, NARMA15, and NARMA20, respectively.
In particular, NARMA10 with this parameter setting
was introduced in Ref. [55] and broadly used (see, e.g.,
Refs. [20, 34, 36]). As a demonstration, the input sk
is expressed as a product of three sinusoidal functions
with different frequencies. This input setting is just for
illustrative purposes. The results of the different types
of input stream, such as randomly drawn real values,
are also provided in Appendix A 2, along with the de-
tailed analyses. (Note that when the input is projected
to the first qubit, the value is linearly scaled to [0, 1];
see Appendix A 2 for details). Here, according to an in-
put stream expressed as a product of three sinusoidal
functions with different frequencies, the system should si-
multaneously emulate five NARMA systems (NARMA2,
NARMA5, NARMA10, NARMA15, and NARMA20),
which we call multitasking.

Figure 4 (b) plots the input sequence and the corre-
sponding task performance of our 6-qubit QR system
with τ∆ = 1 with trained readout by varying V . We can
clearly observe that by increasing V , the performance
improves, so that when V = 10, the system outputs al-
most overlap with the target outputs. Further informa-
tion and extended analyses on the tasks with random
input streams can be found in Appendix A 2.

C. Mackey-Glass prediction task

The third experiment is a Mackey-Glass (MG) time se-
ries prediction task, including a chaotic time series. This
is also a popular benchmark task in machine learning
(e.g., [18]). Here, unlike the previous two cases, the sys-
tem output is fed back as the input for the next timestep,
which means that when the system with trained read-
out generates outputs, it receives its own output signals
through the feedback connections instead of through ex-
ternal inputs. To train the readout weights, the system is
forced by the correct teacher output during presentation
of the training data, without closing the loop. A slight
amount of white noise is added to the reservoir states in
the training phase to make the trained system robust,
and the weights are trained through the usual procedure
(see Appendix A 3 for further information). The MG sys-
tem has a delay term τMG, and when τMG > 16.8 it ex-
hibits a chaotic attractor. We first test a non-chaotic case
(τMG = 16) for comparisons and then test the chaotic
case, where τMG = 17, which is the standard value em-
ployed in most of the MG system prediction literature.

Figure 4 (c) depicts the typical task performances of
6- and 7-qubit QR systems. When τMG = 16, the system
outputs overlap the target outputs, which implies suc-
cessful emulations. When τMG = 17, our systems tend
to remain relatively stable in the desired trajectory for
about 200 steps, after switched from teacher forced condi-

tion, start to deviate perceptibly large. Although it is dif-
ficult to compare the performance of the closed-loop task
directly with that of different types of reservoirs due to
the differences in experimental conditions and reservoir
settings, we would like to mention that, in the MG pre-
diction task (for τMG = 17 case) using an ESN equipped
with 400 leaky integrator neurons, it was observed that
the predictions started to deviate perceptibly from the
target not earlier than after about 1200 steps [56]. Recent
results from an analog hardware implementation of RC
using 600 computational nodes reported that the Mean
Squared Error (MSE) of the predictions calculated by
moving average windows of 200 steps reached approxi-
mately 1.1× 10−1 after 2500 steps [30], whereas our sys-
tem reached the same MSE value relatively faster, af-
ter 820 steps (e.g., case 4 in Fig. 4 (c)). Since our sys-
tem exploits only 70 (N = 7 qubits and V = 10 virtual
nodes) computational nodes in total in this demonstra-
tion, it would be worth investigating how our system per-
formance behaves according to the increase in computa-
tional nodes in the future work. Furthermore, checking
a two-dimensional plot by plotting points (yk, yk+15), it
appears that the learned model has captured the essential
structure of the original attractor (e.g., when τMG = 17,
the model actually demonstrates chaos). In both tasks,
the 7-qubit QR systems generally performed better than
the 6-qubit QR systems. Further details of the statisti-
cal analyses of the performance and the analysis of the
largest Lyapunov exponent for the cases in Fig. 4 (c) are
provided in Appendix A 3.

IV. PERFORMANCE ANALYSES

We perform detailed analyses on the computational ca-
pabilities of the 5-qubit QRs focusing on the two popular
benchmark tasks of Boolean function emulations over a
binary input sequence (see e.g., Refs. [35, 57]), which
we name the short-term memory (STM) task and parity
check (PC) task. The former task is intended to emulate
a function that outputs a version of the input stream
delayed by τB timesteps, whereas the latter is intended
to emulate an τB-bit parity checker. Both tasks require
memory to be emulated, and the PC task requires non-
linearity in addition, because the parity checker function
performs nonlinear mapping. Hence, the STM task can
evaluate the memory capacity of systems and the PC
task can additionally evaluate the amount of nonlinear-
ity within systems.

The function for the STM task can be expressed as
follows:

yk = sk−τB ,

where sk is a binary sequence and τB represents the delay.
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in the left and right panels indicate the standard deviations of the capacities evaluated on 20 samples of the QRs with respect
to the random couplings.

The function for the PC task is expressed as follows:

yk = Q(

τB∑
m=0

sk−m),

Q(x) =

{
0 (x ≡ 0 (mod 2))
1 (otherwise).

We investigated both tasks thoroughly by applying a
random input sequence for the tasks such that there
is no external source to provide temporal coherence to
the system. In these tasks, one trial consists of 5000
timesteps. The first 1000 timesteps are discarded, the
next 3000 timesteps are used for training, and the last
1000 timesteps are used for system evaluation. We eval-
uated the system performance with the target output for
each given τB by using the measure known as τB-delay
capacity C(τB) expressed as

C(τB) =
cov2(yk, ȳk)

σ2(yk)σ2(ȳk)
.

In the main text, τB-delay capacities for the STM task
and the PC task are termed τB-delay STM capacity
CSTM (τB) and τB-delay PC capacity CPC(τB), respec-
tively. Note that, in the analyses, to reduce a bias due
to the effect of the finite data length, we have subtracted
C(τmax

B ) from C(τB), where τmax
B is a substantially long

delay. The capacity C is defined as

C =

τmax
B∑
τB=0

C(τB),

where τmax
B was 500 throughout our experiments. The

capacities for the STM task and the PC task are referred
to as the STM capacity CSTM and the PC capacity CPC ,
respectively. For each task, 20 samples of the QRs were
randomly generated, and the average values of the τB-
delay capacities and the capacities were obtained.

In Fig. 5 (a) (left), CSTM(τB) is plotted as a function
of τB for V = 1, ..., 50, where τ∆ = 1 and J/∆ = 1.0 are
set. The abrupt decay exhibited by the curve is improved
when the number of virtual nodes is increased. In Fig. 5
(a) (middle), the STM capacity is plotted as a function
of the number of virtual nodes V and the time interval
τ∆. It shows that the STM capacity becomes saturated
around V = 10. The 5-qubit QRs with τ∆ = 0.5 and 1.0
exhibit a substantially high STM capacity ∼ 20, which
is much higher than that of the ESNs of 500 nodes (see
Sec. IV A for details). A plot of the STM capacity as a
function of τ for a fixed number of virtual nodes V = 10
does not exhibit monotonic behaviour as shown in Fig. 5
(right). This behaviour is understood as follows. In the
limit of τ → 0, the dynamics approach an identity map
and hence become less attractive, and this is more desir-
able to maintain the separation among different inputs.
At the same time, a shorter τ implies less information
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is embedded in the present input setting. In the limit
of larger τ , on the other hand, the input sequence is in-
jected effectively; however, the dynamics become attrac-
tive, and the separation fades rapidly. Originating from
these two competing effects, there is an optimal time in-
terval τ for which the STM capacity is maximised.

In Fig. 5 (b) (left), CPC(τB) is plotted as a function
of τB for V = 1, ..., 50. Specifically, CPC(τB) is exactly
zero when V = 1. This clearly shows that the virtual
nodes, which spatialize the real-time dynamics during the
interval τ , are important to extract nonlinearity. In Fig. 5
(b) (middle), the PC capacity is plotted as a function of
the number of virtual nodes V and the time interval τ∆.
As expected, the longer the time interval τ is, the higher
the PC capacity exhibited by the QR, as shown in Fig. 5
(middle and right). This is because the true nodes are
able to increase communication with the virtual nodes.
The number of virtual nodes required for the saturation
of the PC capacity is also increased in the case of a longer
τ .

A. Characterizations of QRs

Let us clarify the unique properties of the QRs in terms
of the STM and PC capacities. We plot (CSTM, CPC) for
the 5-qubit QRs with various coupling settings in Fig. 6
(a), which include a restricted type of QR with one-
dimensional nearest-neighbour (1DNN) couplings, i.e.
Jij 6= 0 only for j = i + 1 in Eq. (16). In this case, the
transversal-field Ising model becomes integrable, that is,
exactly solvable by mapping it into a free-fermionic model
via the Jordan-Wigner transformation. Because the ef-
fective dimension of the state space is reduced from 22N

to 2N , the amplitudes of the oscillations are larger for
the 1DNN case as shown in Fig. 6 (b). From the real-
time dynamics, one might expect a rich computational
capability even for the integrable dynamics. Although
this is true for the STM capacity, it does not hold for the
PC capacity. As shown in Fig. 7, the STM capacity of
the 1DNN QRs is above 20, rather higher than that of
fully connected QRs. However, the PC capacity is sub-
stantially poor, which cannot improve even if the time
intervals τ or the number of virtual nodes are changed.
This is a natural consequence of the inability of the 1DNN
model to fully employ exponentially large state spaces. In
this way, the computational capacity of QRs, especially
their nonlinear capacity, has a close connection with the
nonintegrability of the underling QR dynamics. This im-
plies that the computational capacity as a QR provides a
good metric of the integrability of quantum dynamics. A
nonintegrable quantum system is identified as quantum
chaos, which is specified by the Wigner-Dyson distribu-
tion of the energy eigenstate spacing. The operational
metric of the integrability of quantum dynamics would
be useful to build a modern operational understanding
of quantum chaos by relating it to the emulatability of
classical chaos.

Next we investigate the scaling of the STM and PC
capacities against the number of the qubits N in the
QRs. In Fig. 8, the STM and PC capacities are plot-
ted against the number of qubits for the virtual nodes
V = 1, 2, 5, 10, 25, and 50. First, both capacities mono-
tonically increase in the number of the qubits N and the
virtual nodes V . Thus, by increasing the time resolution
and size of the QR, we can enhance its computational ca-
pability. The STM capacity is improved by increasing the
number of virtual nodes V especially for optimally cho-
sen time intervals τ . The improvement saturates around
V = 10. The scaling behaviour of the STM capacity
seems to be different for N = 2–4 and N = 4–7 when the
virtual nodes are introduced. For optimally chosen time
intervals, the STM capacity seems to increase linearly in
terms of the number of qubits.

The PC capacity also increases in terms of the num-
ber of virtual nodes V , but its saturation highly depends
on the choice of the time interval τ . For a short inter-
val τ∆ = 1, the PC capacity saturates around V = 10.
However, for τ∆ = 128, it seems not to saturate even
with V = 50. In any case, the PC capacity seems to
increase linearly in terms of the number of the qubits N .
Interestingly, at the large τ and large V limits, the PC
capacity saturates the line defined by CPC = 2(N − 2).
The origin of this behaviour is completely unknown at
this moment.

In Fig. 6 (c), the STM and PC capacities are plot-
ted for the QRs from N = 2 to N = 7. The 7-qubit
QRs, for example, with τ∆ = 2, J/∆ = 2h/∆ = 1, and
V = 10–50, are as powerful as the ESNs of 500 nodes
with the spectral radius around 1.0. Note that even if
the virtual nodes are included, the total number of the
computational nodes NV = 350 is less than 500.

B. Robustness against imperfections

We here investigate the effect of decoherence (noise) to
validate the feasibility of QRC. We consider two types of
noise: the first is decoherence, which is introduced by an
undesired coupling of QRs with the environment, thereby
resulting in a loss of quantum coherence, and the other is
a statistical error on the observed signals from QRs. The
former is more serious because quantum coherence is, in
general, fragile against decoherence, which is the most
difficult barrier for realizations of quantum information
processing.

We employ the dephasing noise as decoherence, which
is a simple yet experimentally dominant source of noise.
In the numerical simulation, the time evolution is divided
into a small discrete interval δt, and qubits are exposed to
the single-qubit phase-flip channel with probability (1−
e−2γδt)/2 for each timestep:

E(ρ) =
1 + e−2γδt

2
ρ+

1− e−2γδt
2

ZρZ. (19)

This corresponds to a Markovian dephasing with a de-
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phasing rate γ and destroys quantum coherence, i.e. off-
diagonal elements in the density matrix. Apart from the
dephasing in the z-direction, we also investigate the de-
phasing in x-direction, where the Pauli Z operator is re-
placed by X. In Fig. 9, the STM and PC capacities
(CSTM, CPC) are plotted for τ∆ = 0.5, 1.0, 2.0, and 4.0
(from left to right) with V = 1, 2, 5, 10, 25, and 50 and
γ = 10−1, 10−2, and 10−3. The results show that dephas-
ing of the rates 10−1 − 10−3, which is within an experi-
mentally feasible range, does not degrade computational
capabilities. A subsequent increase in the dephasing rate
causes the STM capacity to become smaller, especially

for the case with a shorter time interval τ∆ = 0.5. On
the other hand, the PC capacity is improved by increas-
ing the dephasing rate. This behaviour can be under-
stood as follows. The origin of quantum decoherence is
the coupling with the untouchable environmental degree
of freedom, which is referred to as a “reservoir” in the
context of open quantum systems. Thus, decoherence
implies an introduction of another dynamics with the de-
gree of freedom in the “reservoir” computing framework.
This leads to the decoherence-enhanced improvement of
nonlinearity observed in Fig. 9, especially for a shorter
τ with less rich dynamics. Of course, for a large deco-
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transversal Ising model. The error bars show the standard
deviations evaluated on 20 samples of the QRs with respect
to the random couplings

herence limit, the system becomes classical, preventing
us from fully exploiting the potential computational ca-
pability of the QRs. This appears in the degradation
of the STM capacity. By attaching the environmental
degree of freedom, the spatialized temporal information
is more likely to leak outside the true nodes. Accord-
ingly we cannot reconstruct a past input sequence from
the signals of the true nodes. In other words, quantum
coherence is important to retain information of the past
input sequence within the addressable degree of freedom.
In short, in the QRC approach, we do not need to distin-
guish between coherent dynamics and decoherence; we
can exploit any dynamics on the quantum system as it
is, which is monitored only from the addressable degree
of freedom of the quantum system.

Next, we consider the statistical noise on the observed
signal from the QRs. We investigate the STM and PC
capacities by introducing Gaussian noise with zero mean
and variance σ on the output signals as shown in Fig. 10.
The introduction of statistical noise leads to a gradual
degradation of the computational capacities. However,
the degradation is not abrupt, which means that QRC
would be able to function in a practical situation. In
the small τ region, the STM capacity is sensitive to the
statistical observational noise. This is because in such
a region, the dynamic range of the observed signals be-
comes narrow. For example, when τ∆ = 0.5 and τ∆ = 4,
the dynamic ranges are ∼ 0.01 and ∼ 0.5, respectively.
While, in the ideal case, the performances of the 5-qubit
QRs are comparable to the ESNs of 100 nodes, their per-
formances under the statistical observational noise of the
order of 10−3 against the dynamic ranges still compara-
ble to the ESNs of 50 nodes without any noise. More-
over, as we saw in the demonstration of the chaotic time
series prediction, we even introduced statistical noise to
the observed signals with the aim of stabilizing the learn-
ing process. This implies that in some situation we can
positively exploit the natural observational noise in our
framework.

These tolerances against imperfections indicate that

the proposed QRC framework soundly functions in real-
istic experimental setups as physical reservoir computing.

V. DISCUSSION

The QRC approach enables us to exploit any kind
of quantum systems, including quantum simulators and
quantum annealing machines, provided their dynamics
are sufficiently rich and complex to allow them to be
employed for information processing. In comparison to
the standard approach for universal quantum computa-
tion, QRC does not require any sophisticatedly synthe-
sized quantum gate, but natural dynamics of quantum
systems is enough. Therefore QRC exhibits high feasi-
bility in spite that its applications are broad for temporal
learning tasks.

The conventional software approach for recurrent neu-
ral networks takes a time, which depends on the size
of the network, to update the network states. In con-
trast, in the case of QRC, the time evolution is governed
by natural physical dynamics in a physically parallelized
way. For example, liquid and solid state NMR systems
with nuclear and electron spin ensembles [50, 51] are
favourable for implementing QRC. These systems enable
us to obtain the output signals in real time via the radio-
frequency coil by virtue of its huge number of ensembles.
Note that we have employed the simplest model, and that
no optimisation of the QRs has been done yet. More
study is necessary to optimise the QRs with respect to a
Hamiltonian, network topology, the way of injecting the
input sequences, and the readout observables.

Notwithstanding its experimental feasibility, control-
lability, and robustness against decoherence, the QRC
framework would be also useful to analyse complex real-
time quantum dynamics from an operational perspective.
The computational capabilities provide operational mea-
sures for quantum integrable and chaotic dynamics. Re-
cently, delocalization (and localization) of quantum infor-
mation by unitary dynamics in closed quantum systems
has been attracting much attentions in various fields of
physics, such as fast scrambling in black hole and ther-
malization in statistical physics of closed quantum sys-
tems. Our framework shares the same setting, time-
independent Hamiltonian dynamics monitored from lo-
cal observables. Since our framework allows us to evalu-
ate computational capability of the signals obtained from
such systems, it provides an operational way to under-
stand these phenomena related to complex unitary dy-
namics. Apparently, the STM is closely related to time
correlation in many-body quantum physics and the ther-
malisation of closed quantum systems. Moreover, the
chaotic behaviour of quantum systems has been investi-
gated in an attempt to understand the fast scrambling
nature of black holes [58, 59]. It would be intriguing
to measure the computational capabilities of such black
hole models. We believe that QRC for universal real-time
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FIG. 8. Scaling of the STM and PC capacities against the number of the qubits. (Top) The STM capacity CSTM is plotted
against the number of qubits N for each number of virtual nodes (V = 1, 2, 5, 10, 25, 50 from left to right). (Bottom) The PC
capacity CPC is plotted against the number of qubits N for each number of virtual nodes (V = 1, 2, 5, 10, 25, 50 from left to
right). CPC = 2(N − 2) is shown by dotted lines. The error bars show the standard deviations evaluated on 20 samples of the
QRs with respect to the random couplings.

quantum computing, which bridges quantum information
science, machine learning, quantum many-body physics,
and high-energy physics coherently, provides an alterna-
tive paradigm to quantum digital computing.
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Appendix A: Experimental Settings and Extended
Analyses

This section describes detailed settings for the task ex-
periments mentioned in the main text and provides ex-
tended analyses. We have maintained the notation for
symbols used in the main text.

1. The timer task

The timer task is one of the simplest yet most impor-
tant benchmark tasks to evaluate the memory capacity of
a system (see, e.g., Ref. [53]). As explained in the main
text, our goal for the first demonstration of QRC was to
emulate the function of a timer (Fig.4 (a) in the main
text). The I/O relation for a timer can be expressed as
follows:

sk =

{
1 (k ≥ k′)
0 (otherwise)

yk =

{
1 (k = k′ + τtimer)
0 (otherwise),

where k′ is a timestep for launching the cue to the sys-
tem, and τtimer is a delay for the timer. Our aim was to
emulate this timer by exploiting the QR dynamics gener-
ated by the input projected to the first qubit in the QR
system.

A single experimental trial of the task consists of 800
timesteps, where the first 400 timesteps are discarded as
initial transients. At timestep 500, the input is switched
from 0 to 1 (i.e. k′ = 500), and the system continues
to run for another 300 timesteps. For the training pro-
cedure, using a 6-qubit QR system with τ∆ = 1, we
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FIG. 9. STM and PC capacities under decoherence investigated for the 5-qubit QRs. The parameters are set as τ∆ =
0.5, 1.0, 2.0, 4.0 and V = 1, 2, 5, 10, 25, 50. (Top) Capacities (CSTM, CPC) under dephasing in the z-axis are plotted for γ =
10−1, 10−2, 10−3. (Bottom) Capacities (CSTM, CPC) under dephasing in the x-axis are plotted for γ = 10−1, 10−2, 10−3. The
error bars show the standard deviations evaluated on 20 samples of the QRs with respect to the random couplings. The ESNs
with 10, 50, and 100 nodes are shown as references. From top to bottom, the spectral radius is changed from 0.5 to 2.0.

iterated this process over five trials, starting from dif-
ferent initial conditions, and collected the corresponding
QR time series for each timestep from timestep 400 to
timestep 800 as training data. We optimised the linear
readout weights using these collected QR time series with
a linear regression to emulate the target output for the
given delay τtimer and the setting of the number of virtual
nodes V in QR systems. We evaluated the performance
of the system with the optimised weights by running five
additional trials (evaluation trials) and compared the sys-
tem outputs to the target outputs in the time region from
timestep 400 to timestep 800.

Here, we aim to analyse the performance of the timer
task further. We prepared 10 different 6-qubit QR sys-
tems, whose coupling strengths are assigned differently,
and for each setting of (τtimer, V ), we iterated the ex-
perimental trials as explained above over these 10 differ-
ent systems. To effectively evaluate the system’s perfor-
mance against the target outputs ȳk, given the setting of
τtimer, we defined a measure C(τtimer), which is expressed
as

C(τtimer) =
cov2(yk, ȳk)

σ2(yk)σ2(ȳk)
,

where cov(x, y) and σ(x) express the covariance between
x and y and the standard deviation of x, respectively.
In short, this measure evaluates the association between
two time series, and takes a value from 0 to 1. If the

value is 1, it means that the system outputs and the tar-
get outputs completely overlap, which implies that the
learning was perfect. At the other extreme, if the value
is 0, it implies that the learning completely failed. Evalu-
ation trials were used to actually calculate this measure.
Now, we further define a measure, capacity C, which is
expressed as a simple summation of C(τtimer) over the
entire delay,

C =

τmax
timer∑

τtimer=0

C(τtimer),

where τmax
timer is set to 300 in our experiments.

By using these two measures, C(τtimer) and C, we eval-
uated the performance of the timer tasks of 6-qubit QR
systems. Figure 11 plots the results. Figure 11 (a) clearly
indicates that larger values of V can perform the timer
task reliably for a longer delay, which shows a character-
istic curve for each setting of V . This point is also con-
firmed by checking the plot of C according to the value of
V , where C increases almost linearly with an increase in
V (see Fig.11 (b)). These results are consistent with the
result demonstrated in the main text. We have compared
the performance with ESN, where the experimental con-
ditions are set the same as the experiment with QR (see
Appendix A4 for the basic settings of ESN). The spectral
radius of the ESN was fixed to 0.95, and we varied the
number of nodes as M = 12, 30, 60, 100, and 200, and,
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for each number of nodes, we performed 10 cycles of ex-
perimental runs using different ESN internal connection
weights. As a result, we obtained C = 4.48 ± 0.53 for
M = 12, C = 11.15± 0.52 for M = 30, C = 20.89± 1.35
for M = 60, C = 28.16 ± 1.93 for M = 100, and
C = 31.88± 1.67 for M = 200, suggesting that QR com-
pares favorably to ESN.

2. The NARMA task

As explained in the main text, the emulation of
NARMA systems is a challenge for machine learning sys-
tems in general because it requires nonlinearity and mem-
ory [22]. Thus, the emulation task has been a benchmark
for evaluating the amount of nonlinearity and memory
to be exploited in the system [20, 24, 32–34, 36, 54, 55].
These tasks appear as the second demonstration of QRC
in the main text (Fig.4 (b) in the main text). Here, we
explain the experimental procedures in detail and present
extended analyses for these tasks.

We used a superimposed sine wave for the input to the
NARMA systems, which is expressed as follows:

sk = 0.1

(
sin(

2παk

T
) sin(

2πβk

T
) sin(

2πγk

T
) + 1

)
,

where (α, β, γ) = (2.11, 3.73, 4.11) and T = 100. Note

that sk is in the range [0, 0.2] with the aim of stabilizing
the behaviour of the NARMA systems (to prevent diver-
gence). Similar types of input sequences for NARMA sys-
tems can be found in Ref. [32–34, 36]. The input range
is rescaled to [0, 1] when projected to the first qubit of
the QR system. The experimental trial consists of 5000
timesteps, where the first 1000 timesteps are used for
the washout, the following 3000 timesteps are used for
the training phase, and the final 1000 timesteps are used
for the evaluation phase. Note that when the input is a
superimposed sine wave, we should be careful to prevent
the same input and target output time series in the train-
ing phase from appearing again in the evaluation phase,
because this would not enable us to characterise the gen-
eralisation capability of the system effectively. Our set-
ting of the length of the training and evaluation phases
is confirmed to be safe on this point. By collecting the
QR time series and the corresponding target outputs for
each task in the training phase, we train the linear read-
outs for five outputs, which correspond to the five target
NARMA systems, by using the scheme explained in the
main text. The trained linear readouts are used to gen-
erate system outputs for the evaluation phase.

The contribution of the QR system is characterised ex-
plicitly by comparing the task performance with a simple
linear regression (LR) model, yk+1 = w′1×sk+w′0, where
w′0 and w′1 are trained using the same time series as in the
training phase. Note that this corresponds to the case in
which no QR system is available, and only the raw input
remains for LR. This comparison enables us to conclude
that, for any system performance exceeding that of this
model, the QR system has contributed to the emulation
task [32–36].

We evaluate the performance of the system output in
the evaluation phase by calculating the normalised mean
squared error (NMSE) with the target output:

NMSE =

∑M−L
k=L+1(ȳk+1 − yk+1)2∑M−L

k=L+1 ȳ
2
k+1

, (A1)

where L represents the timesteps for the washout and
training phase, of which the duration is 4000 timesteps
in this experiment, and M is the timesteps for the evalu-
ation phase, which requires 1000 timesteps. Table I lists
the NMSE for each of the experimental conditions. We
can confirm that our 6-qubit QR system outperforms the
LR system in any setting of V for each NARMA task,
which implies that the QR system has contributed to the
task performance. Furthermore, we can see that by in-
creasing V , the performance improves in all the NARMA
tasks, which is consistent with the plots presented in
Fig.4 (b) in the main text.

Here we aim to further analyse the information pro-
cessing capacity of our QR system based on the NARMA
tasks. We adopt the same task settings as for the previ-
ous case except for the input settings. The input stream
is generated by using white noise with a range of [0, 0.2]
for the same reason as in the previous experiment, rather
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TABLE I. Performance of the 6-qubit QR systems in terms of
NMSE for NARMA tasks using the superimposed sine wave.

Task System Error (NMSE)

NARMA2 LR 1.7× 10−5

QR (V = 1) 1.0× 10−5

QR (V = 2) 4.7× 10−6

QR (V = 5) 1.7× 10−7

QR (V = 10) 4.9× 10−8

NARMA5 LR 3.0× 10−3

QR (V = 1) 4.6× 10−4

QR (V = 2) 7.1× 10−5

QR (V = 5) 2.8× 10−5

QR (V = 10) 7.6× 10−6

NARMA10 LR 2.6× 10−3

QR (V = 1) 2.0× 10−4

QR (V = 2) 9.2× 10−5

QR (V = 5) 3.0× 10−5

QR (V = 10) 1.3× 10−5

NARMA15 LR 2.7× 10−3

QR (V = 1) 6.7× 10−4

QR (V = 2) 3.1× 10−4

QR (V = 5) 1.2× 10−4

QR (V = 10) 4.0× 10−5

NARMA20 LR 2.3× 10−3

QR (V = 1) 1.2× 10−3

QR (V = 2) 2.6× 10−4

QR (V = 5) 1.3× 10−4

QR (V = 10) 3.8× 10−5

than using a superimposed sine wave. This choice of in-
put stream is commonly used [20, 24, 55] and is deter-
mined not to add additional temporal coherence originat-
ing from external input to the system, and to evaluate the

pure computational power only contributed by the QR
systems. As this input setting perceivably complicates
the performance evaluation, we quantified the task per-
formance in terms of NMSE. For each NARMA task, we
tested the relevance of τ and V in terms of the task per-
formance and varied them for τ∆ = 1, 2, 4, 8, 16, 32, 64,
and 128, and V = 1, 2, 5, 10, 25, and 50, respectively. Us-
ing a 5-qubit QR system, 20 samples of the QRs were
randomly generated and for each (τ∆, V ) setting, the
average values of NMSEs were obtained.

The performance of the QR systems was characterised
by again using the previously mentioned LR system for
comparison. Furthermore, we used a conventional ESN
as a candidate for the standard machine learning system
and used it to compare our task performance. The basic
settings of the ESN are described in Appendix A 4. To
allow for fair comparisons, 100 samples of ESN with M
nodes were generated by assigning the same NARMA
tasks with the same experimental settings explained
above, and the average values of NMSEs for the ESN
were obtained (by varying the spectral radius of the ESN
internal weight matrix from 0.05 to 1.95 in increments of
0.1; the case of the smallest NMSE, which provided the
best performance, was used for comparison). The num-
ber of nodes M was varied for M = 10, 20, 30, 50, and
100 for each NARMA task.

Figure 12 depicts the results for the performance of
the 5-qubit QR system for the NARMA tasks with a
random input stream. First, we can see that for all the
NARMA tasks, our 5-qubit QR system outperformed the
LR system, which means that the QR system actually
contributed to the task performance. In general, we can
confirm that the increase in the number of the virtual
nodes V leads to an improved performance. The effect
of the number of τ∆ on the task performance depends
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FIG. 12. Performance of 5-qubit QR systems with several
τ∆ settings for the NARMA tasks with a random input
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on the type of task. For the NARMA2 and NARMA5
tasks, an increase in the number of τ∆ tends to improve
the performance. In particular, for the NARMA5 task,
when V = 50 and τ∆ = 128, the 5-qubit QR system
performed at a level in between the performance of the
ESN with M = 30 and M = 50 (see Fig. 12). For
NARMA10, NARMA15, and NARMA20, this tendency
does not hold in general and the use of a small number of
τ∆ was found to improve the performance. In particular,
for the NARMA20 task, when τ∆ = 1 and V > 5, the
5-qubit QR system performed at a level in between the
performance of the ESN with M = 50 and M = 100 (see
Fig. 12). Interestingly, this implies that the 5-qubit QR
system can deliver a performance similar to that of an
ESN with fewer computational nodes (e.g. when τ∆ = 1
and V = 5, the 5-qubit QR system has 25 computational
nodes and the performance exceeds that of an ESN with
50 nodes). These outcomes of the task performance are
induced by the balancing of memory and nonlinearity,
which can be exploited by the system and which is re-
quired to perform the task; this is closely related to the
results mentioned in the main text. Further analyses will
be included in our future work.

3. The Mackey-Glass prediction task

Chaotic attractor learning is a popular test for learning
dynamical systems [18, 56]. One of the well-known sys-
tems used for the target of learning is the Mackey-Glass
(MG) delay differential equation

ẏ(t) =
αy(t− τMG)

1 + y(t− τMG)β
− γy(t),

where the parameters are set to α = 0.2, β = 10, and
γ = 0.1. The system has a chaotic attractor if τMG >
16.8. In the majority of studies, τMG = 17 is used, which
yields a chaotic attractor. In our experiments, we also
used this parameter setting of τMG = 17. Additionally,
we used the case of τMG = 16 for comparison, as this
setting does not exhibit chaos.

The discrete time version of the MG system is often
used to prepare the training sequences [18] through

yk+1 = yk + σ

(
0.2yk− τMG

σ

1 + y10
k− τMG

σ

− 0.1yk

)
,

with a step size of σ = 1/10 and then sub-sampled by
10. One step from k to k + 1 in the resulting sequences
corresponds to a unit time interval [t, t+1] of the original
continuous system. In our numerical experiments, the
target time series is linearly scaled to [0, 1] and used in
the actual experiments.

For each setting of τMG, we generated the above sys-
tem for a while as a washout and then a length of 12000
timesteps (already sub-sampled) was collected for the
experiment. We used 10000 timesteps for the training
phase and the remaining 2000 timesteps for the evalua-
tion phase. The task was to train the QR system by us-
ing these training sequences, which after training should
re-generate the corresponding chaotic or non-chaotic at-
tractors.

Because this task requires feedback to the system, the
training procedure is different from the previous cases.
During the training phase, we clamped the feedback from
the system output, and provided the target outputs as in-
puts, which means we set sk+1 = ȳk. Thus, the training
phase was carried out with an open loop, such that the
system was forced into the desired operative state by the
target signals (this approach is typically referred to as
teacher forcing). The robustness of the learning was im-
proved by adding a slight amount of noise in the range
of [−σ, σ] in the training phase. When the evaluation
phase started, we switched the inputs to the system out-
put generated by the trained readout weights (this phase
is expressed as the autonomous phase in Fig. 4 (c) in the
main text) and checked whether the system was able to
embed the corresponding MG system.

Table II summarises the experimental conditions and
the prediction errors for the QR system used in the main
text. We calculated the errors in NMSE by using the
entire time series in the evaluation phase.
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TABLE II. Experimental settings and prediction errors
(NMSE) for the Mackey-Glass prediction tasks in the main
text.

τMG Case Qubit τ∆ Noise strength (σ) Error (NMSE)

16 1 6 3 1.0× 10−4 4.7× 10−3

2 7 2 1.0× 10−4 3.9× 10−3

17 1 6 3 1.0× 10−4 1.6× 10−1

2 7 3 1.0× 10−4 2.5× 10−2

3 7 4 1.0× 10−5 4.9× 10−2

4 7 2 1.0× 10−5 1.7× 10−2

We tested whether the trained network indeed gener-
ates a chaotic time series by empirically estimating the
largest Lyapunov exponent of the network-generated out-
put signal by using a procedure similar to that introduced
in Ref. [56]. For the trained network, we analysed the
previous four cases (case 1 ∼ 4) in τMG = 17 setting.
When the network was switched from the teacher forc-
ing condition to the closed-loop mode at timestep 10000,
the reservoir signals were perturbed by a uniform noise
vector, and the network was left running freely, on this
occasion starting from the perturbed state for the entire
2000 steps of the evaluation phase, and the resulting out-
put sequence was recorded. The exponential divergence
rate λ between this perturbed sequence y′k and the orig-
inal sequence yk was estimated by computing

dk = ‖[y10001+k...y10017+k]− [y′10001+k...y
′
10017+k]‖,

λ =
log(d500)− log(d0)

500
,

where the subsequent 17 timesteps that are used for the
computation of dk were chosen because they correspond
to approximately one full “loop” of the attractor. Figure
13 plots the behaviour of dk for four cases. We can see
that all four cases have a positive λ value, which implies
that their output sequences are chaotic.

4. Echo state network settings for comparisons

We further characterised the computational power of
our QR system by comparing its task performance with
that of a conventional ESN [18, 56, 60, 62] (the compar-
isons of ESN performance with that of our systems ap-
pear in Sec. IV A and also in the analyses of the NARMA
tasks demonstrated above). The ESN is a type of recur-
rent neural network, which has M internal network units,
input units, and output units. Activation of the ith in-
ternal unit at timestep k is xik (i = 1, ...,M). We used
the same I/O setting for the ESN as with our system
for each task concerned to enable us to efficiently and
directly compare the performance. The number of tri-
als, the lengths of the washout, training, and evaluation
phases, and the evaluation procedures are also kept the
same. The connection weights for the M ×M internal

case 1
case 2
case 3
case 4

0 500 1000 1500 2000
k

-4

-3

-2

-1

0

1

d k

FIG. 13. Plot showing the time series of dk. The results
for case 1 ∼ 4 are overlaid. Note that the vertical axis is
in a logarithmic scale. The estimated largest Lyapunov ex-
ponent λ is 0.0022, 0.0071, 0.0022, and 0.0029 for case 1, 2,
3, and 4, respectively. Note that, according to [61], it has
been investigated that a Mackey-Glass system that has the
same parameter settings has the largest Lyapunov exponent
of 0.007, which is similar in magnitude to our system’s results.
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FIG. 14. Capacities (CSTM, CPC) of the ESNs with two types
of input sequence. Case I and II represent input type with
{−1, 1} (coloured blue) and with {0, 1} (coloured red), re-
spectively. Plots show the results for the spectral radius from
0.05 to 2.00. The error bars show the standard deviations
evaluated on 100 samples of the randomly generated ESNs.
From top to bottom, the spectral radius is changed from 0.5
to 2.0.

network connecting the ith unit with the jth unit are de-
noted as wij , and the input weights proceeding from the
input unit into the ith internal unit are denoted as wiin.
The readout weights wiout proceed from M internal units
and one bias to the output unit (where x0k = 1 and w0

out

for a bias term). The readout weights wiout are trained
using the procedure explained for each task; the internal
weights wij and the input weights wiin are randomly as-
signed from the range [−1.0, 1.0] and fixed beforehand.
The activation of the internal units and the output unit
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are updated as

xik = f(

M∑
j=1

wijx
j
k−1 + wiinsk),

yk =

M∑
i=0

wioutx
i
k,

where f is a tanh function. It is reported that the com-
putational power of ESN can be well characterised by the
spectral radius of the internal connection weight matrix
[18, 20, 56, 60, 62]. In each comparative experiment, by
incrementally varying the spectral radius, we observed
the ESN performance. Detailed experimental conditions
are given for each of these comparisons.

Here we present the ESN settings for the comparisons

with QR systems appeared in Sec. IV A. The experimen-
tal settings including the length of training and evalua-
tion phases are kept the same with the QR system for
the fair comparison. For the random binary input se-
quence, we adopted two cases. In the first case (Case I),
we changed the actual input value to “−1” only if sk = 0.
For the second case (Case II), we directly projected the
{0, 1}-binary state input sk to the internal network units.
In the ESN, if sk = 0, the internal units receive no ex-
ternal input, and therefore, are expected to introduce
an asymmetry into the network performance. We tested
these two cases (Case I and Case II) in Fig. 14. As can be
seen from the plot, both cases show different modalities
of performances in terms of CPC and CSTM, which are
due to the asymmetry introduced by the input settings.
We have presented the results for Case I in Sec. IV A but
the same explanations hold for both cases.
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