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We report a systematic study of complex pattern formation resulting from the driven dynamics
of single-layer homoepitaxial islands on surfaces of face-centered cubic (FCC) crystalline conduct-
ing substrates under the action of an externally applied electric field. The analysis is based on an
experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which
also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate
the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffu-
sion direction. For larger-than-critical island sizes on {110} and {100} FCC substrates, we show
that multiple necking instabilities generate complex island patterns, including not-simply-connected
void-containing islands, mediated by sequences of breakup and coalescence events and distributed
symmetrically with respect to the electric field direction. We analyze the dependence of the formed
patterns on the original island size and on the duration of application of the external field. Starting
from a single large rounded island, we characterize the evolution of the number of daughter islands
and their average size and uniformity. The evolution of the average island size follows a universal
power-law scaling relation and the evolution of the total edge length of the islands in the complex
pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the
use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving
complex nano-scale features.

I. INTRODUCTION

Generating nanoscale patterns on surfaces by directing
the motion of clusters of atoms through precise control of
the action of externally applied macroscopic forces consti-
tutes an essential enabling tool in the field of nanofabrica-
tion. Toward this end, obtaining a comprehensive funda-
mental understanding of the dynamics of surface features
driven by such externally applied macroscopic forcing is of
great significance. It has been demonstrated that the col-
lective motion of atoms adsorbed on crystalline substrate
surfaces can be driven in a controlled manner by electric
fields or thermal gradients through the transport phenom-
ena of electromigration [1–9], or thermomigration [10, 11].
In general, the ability to drive mass transport on surfaces
through use of macroscopic forces has been demonstrated
at both mesoscopic and nanoscopic length scales in various
material systems ranging from metal conductors [2] to col-
loids [12] and block copolymers [13–15] to liquid droplets
[16].

Among such macroscopic-force-driven assembly pro-
cesses, the phenomena of electromigration-driven assem-
bly of crystalline conducting surface features such as
single-layer islands and voids have been studied exten-
sively through both atomistic simulation and continuum-
domain simulation studies [7–9, 17, 18]. Theoretical stud-
ies have identified various mechanisms of mass transport
[19–22], with atomic transport through periphery or edge
diffusion being the dominant of these diffusional transport
processes. An important experimental study [2] based
on in situ scanning tunneling microscopy has shown that
such homoepitaxial islands on metallic substrates move in
the direction of electron flow through edge atomic diffu-
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FIG. 1. Schematic representation of a single-layer epitaxial
island with a rounded edge morphology on a crystalline con-
ducting substrate under the action of an electric field. The
xy−plane of a Cartesian frame of reference corresponds to the
substrate surface plane.

sion with a migration speed that is inversely proportional
to the island size, d0 (where d0 = 2 ×

√
Island area/π).

Starting from a single monolayer-thick island with a shape
merely perturbed from being perfectly rounded [23], a pre-
vious study on current-driven single-layer island dynam-
ics on crystalline conducting substrates [17] has reported
that the electric field, in conjunction with edge diffusional
anisotropy, triggers a morphological instability on the edge
of the migrating islands, with size d0 greater than a crit-
ical island size dc resulting in formation of features such
as protrusions, fingers, and narrow necks on the island’s
edge. Islands on face-centered cubic (FCC) substrate sur-
faces that are larger than the critical size, dc, have been
shown to undergo a so-called necking instability, which
leads to the breakup of the parent island into an assem-
bly of daughter islands resulting in pattern formation on
the substrate surface [24–26]; such patterns include ar-
rays of nanowires with confined widths [25] and assem-
blies of small uniformly-sized islands arranged in linear or
V-shaped arrays [26].

In this article, we study the dynamics of single-layer ho-
moepitaxial rounded islands with an initial size, d0, that is
larger than the critical size, dc, on surfaces of face-centered
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FIG. 2. (a1-a6) Sequences of configurations generated from the current-driven evolution of the island shown in (a1) on a {110}
FCC substrate surface. The electric field is oriented along the fast edge diffusion direction and is aligned with the x−axis.
(b) Evolution of the mean island diameter of the population of islands, d̄ (blue open circles), the standard deviation of the island
diameter of the population, σd (orange open diamonds), and the number of islands in the island population, N (green open
triangles), in the dynamical pattern formed under the action of the electric field. The red dashed line represents the critical island
size, dc, required for necking on {110} FCC substrate surfaces. (c) Evolution of the total edge length (sum of the perimeters)
of all the islands in the island population, Γ (blue open circles), in the dynamical pattern formed on the {110} FCC substrate
surface under the action of the electric field. Parameter values: m = 1, φ = 0, d0 = 23 lE .

cubic (FCC) substrates under the action of an externally
applied electric field that is oriented along the fast edge
diffusion direction; in our notation, island size refers to
the island equivalent diameter (i.e., a length equal to the
diameter of a circular island that has the same area as the
actual island). Islands on {110} and {100} FCC substrate
surfaces with d0 > dc undergo necking, which results in the
breakup of the parent island into daughter islands that
continue to migrate in the direction of the electric field
and may undergo coalescence or further breakup depend-
ing upon their size, speed, and instantaneous morphology.
Starting from a single island with a rounded morphology,
as shown in Fig. 1, these sequences of breakup and coa-
lescence events result in the formation of an entire pop-
ulation of daughter islands in a pattern that is complex,
symmetric with respect to the applied electric field di-
rection, and increasingly distributed far from the symme-
try axis with time. We show that this complex evolving
pattern can be frozen in place on the substrate surface
by switching off the electric field. Without the action of
the electric field, the islands attain their equilibrium mor-
phology. The evolution of patterns under the action of
the electric field also leads to formation of islands that
are non-simply connected, containing one or more voids.
These non-simply-connected void-containing islands, upon
switching the electric field off, result in formation of sta-
ble void-containing-islands. The simplest of these islands
resemble nanoring structures [27, 28], which are known
for their optical and plasmonic properties [29, 30] and
constitute very promising nanostructures for the fabrica-
tion of optoelectronic [31, 32], sensing [33], and magnetic
data storage devices [34–36]. The nanorings formed in
our study have single-layer height and lateral sizes on the
order of 10 nm. Further, we characterize in detail the evo-

lution of the island population by monitoring the num-
ber of daughter islands, the total edge length (sum of the
perimeters of all islands in the island population) in the is-
land pattern, the average size of the daughter islands in an
evolving island population, and the island size uniformity
in the island population. We find that the evolution of
the total edge length follows Kolmogorov-Johnson-Mehl-
Avrami kinetics [37–39] and that the evolution of the aver-
age island area follows a universal scaling law. Eventually,
the current-driven island dynamics reaches a steady state.
Moreover, upon turning off the electric field, the individ-
ual daughter islands achieve their equilibrium morphology
resulting in a complex stable, frozen-in nanopattern. We
characterize the nanopatterns and show that as the dura-
tion of the electric field action increases, the mean island
diameter of the resulting island population in the pattern
converges toward the critical island size, dc, required for
necking for the given FCC substrate surface. The distri-
bution of island sizes in a population also becomes more
uniform with time.

II. MODEL AND METHODS

The initial configuration of an epitaxial monolayer-thick
rounded island is shown in Fig. 1 on the crystalline solid
substrate surface that corresponds to the xy−plane of a
Cartesian frame of reference. The current-driven evolution
of this rounded island is monitored by time stepping the
continuity equation, according to which the normal veloc-
ity, vn, at any point on the island edge is proportional to
the edge divergence of the mass flux along the island edge,
Js. The dominant mode of mass transport in such single-
layer islands is edge diffusion [19–21], consistent with the
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FIG. 3. (a) Logarithmic (log-log) plot of the evolution of the

average dimensionless area, Ã, of the islands forming in an
evolving complex pattern on a {110} FCC substrate surface
as a function of dimensionless time, t̃. The normal plot of
the evolution of Ã as a function of t̃ is shown in the inset.
The variously colored open circles correspond to data for the
current-driven evolution of larger-than-critical islands on {110}
FCC substrate surfaces (m = 1) with initial island sizes of
d0 = 14 lE , d0 = 16 lE , d0 = 18 lE , d0 = 19 lE , d0 = 20 lE , d0 =
22 lE , d0 = 23 lE , d0 = 24 lE , and d0 = 32 lE . In both plots,
the solid lines correspond to the best fit of the data according
to the scaling relation Ã ∼ t̃−1.3304. (b) Representative plot of
the evolution of the dimensionless total edge length of all the
islands in the pattern, Γ̃ (orange open circles), as a function
of t on a {110} FCC substrate surface for an initial island size
d0 = 20 lE . The black solid line corresponds to the best fit
of the data according to Eq. (5). The two insets show the
dependence of the relaxation time, τp, and the exponent, n, in
Eq. (5) on d0.

findings of the experimental study of Ref. 2. Terrace diffu-
sion and evaporation-condensation kinetics are neglected
for the size of the metallic islands and the temperature
range considered in this study (several tens of degrees
above room temperature) [2, 19–21]. The applied electric
field that drives island electromigration [1–9] is aligned
with the Cartesian x−axis and has strength E0. The flux
Js is expressed by a Nernst-Einstein equation [7, 17], re-

sulting in the continuity equation

vn = −Ω
∂

∂s

{
Ds(θ, εm)

kBT

[
−∂µ
∂s

+ q∗sEs

]}
. (1)

In Eq. (1), Ω is the atomic area, s is the arc length
along the island’s edge, Ds(θ, εm) = Ds,max(εm)f(θ) is
the edge atomic diffusivity where θ is the edge orienta-
tion (Fig. 1), f(θ) is the diffusional anisotropy function,
εm is the misfit strain (εm = 0 and εm 6= 0 for homoepi-
taxial and heteroepitaxial islands, respectively), kB is the
Boltzmann constant, T is temperature, µ = (γ̃ + γ̃el)Ωκ
is the chemical potential of an edge atom with the edge
stiffness γ̃ taken to be isotropic [7, 17], γ̃el is the elastic
contribution to the island edge tension [17], κ = dθ/ds
is the local edge curvature, q∗s is the effective charge of
an atom at the island edge, and q∗sEs is the local com-
ponent of the electromigration force, tangent to the is-
land’s edge, as typically expressed in all phenomenologi-
cal models of driven atomic transport due to electromi-
gration [1–4, 6, 7]. It should be emphasized that elas-
tic effects are absent in homoepitaxial islands (εm = 0
and γ̃el = 0) and that isotropic edge stiffness implies a
rounded island morphology at equilibrium. The local ap-
proximation Es = E0 cos θ [7] is justified by the 2D na-
ture of the single-layer islands, which renders non-local
effects, such as current crowding, negligible. From the di-
mensional analysis of Eq. (1) we derive the characteristic

length scale, lE , as lE =
√
γ̃Ω/|q∗sE0| and the character-

istic time scale, τ , as τ = l4E/[Ds,maxγ̃Ω2/(kBT )]. We
mention that we use notation that is standard in the is-
land electromigration modeling literature [7, 17]: lE is the
proper dynamic length scale for the driven edge atomic
transport problem, from balancing edge stiffness with the
edge electromigration force, and Ω is directly related to
the atomic volume in the single-layer island taking the
edge thickness (interlayer distance) into account. From
the physical parameters reported in Ref. 2, we determine
lE and τ to be 13.6 nm and 32.5 s, respectively.

The dependence of Ds on εm has been discussed in
Ref. 17. For FCC crystalline substrate surfaces, the edge
diffusional anisotropy Ds(θ) = Ds,maxf(θ) is accounted
for by using a three-parameter anisotropy function f(θ) =
{1+A cos2[m(θ+φ)]}/(1+A) ≤ 1; A > 0 is the anisotropy
strength, φ is the misorientation angle formed by the di-
rection of the externally applied field and the fast edge
diffusion direction, and m is the number of fast edge diffu-
sion directions determined by the surface crystallographic
orientation. This integer parameterm provides the contin-
uum evolution model, Eq. (1), with some atomistic infor-
mation for the substrate surface structure; m = 1, 2, and 3
correspond to {110}, {100}, and {111} substrate surfaces,
respectively [7, 17]. Surface reconstructions, which may
be common over a broader class of materials, would com-
plicate f(θ) and require proper modification of its present
functional form. We have validated the above model by
comparing its predictions for the stable driven island mor-
phologies and the island migration speed dependence on
the island size with the experimental data of Ref. 2 [17].

We use direct dynamical simulations to explore the dy-
namics of large-size homoepitaxial rounded islands (d0 >
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FIG. 4. Representative sequences of equilibrium configurations consisting of complex patterns formed on {110} FCC substrate
surfaces (m = 1) from the current-driven evolution of larger-than-critical single-layer rounded islands after the electric field,
which was oriented along the fast edge diffusion direction (φ = 0), aligned with the x−axis, and applied for a time period ta
has been turned off and the islands of the resulting patterns have been let to equilibrate and obtain their equilibrium rounded
morphology. The initial island size is (a1)-(a4) d0 = 14 lE , (b1)-(b4) d0 = 16 lE , (c1)-(c4) d0 = 18 lE , (d1)-(d4) d0 = 19 lE ,
(e1)-(e4) d0 = 20 lE , (f1)-(f4) d0 = 22 lE , (g1)-(g4) d0 = 23 lE , (h1)-(h4) d0 = 24 lE , and (i1)-(i4) d0 = 32 lE . (j) Sequences of
equilibrium configurations of island patterns at a fixed ta = 100.2 τ for increasing, from (j1) to (j4), initial island size d0.

dc), such as that shown schematically in Fig. 1, to identify
what patterns emerge when the electric field is oriented
along the fast edge diffusion direction (φ = 0), and to un-
derstand how to control and design these patterns. The
key parameters that we vary in this simulation study are
the initial island size, d0, the substrate surface orientation,
m, and the duration for which the electric field is applied,
ta, before it is turned off. In all our simulations, φ = 0, and
the electric field is aligned with the positive x−axis. The
simulation methodology for time stepping, front tracking,

and handling of island breakup and coalescence processes
is identical to that described in Ref. 24.

III. RESULTS AND DISCUSSION

Under the action of an electric field oriented along the
fast edge diffusion direction, on {110} and {100} substrate
surfaces, the islands that have sizes greater than the crit-
ical size dc undergo necking, and breakup into daughter
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FIG. 5. Characterization of complex patterns formed from current-driven dynamics of larger-than-critical single-layer epitaxial
islands on {110} surfaces of FCC crystalline conducting substrates: Mean island diameter of a population of islands, d̄ (blue solid
circles), standard deviation of the diameters of the islands in a population, σd (orange crosses), and number of islands in the
island population, N (green open triangles), of a given complex pattern as a function of the duration of application of the electric
field, ta, before it is turned off for an initial island size of (a) d0 = 14 lE , (b) d0 = 16 lE , (c) d0 = 18 lE , (d) d0 = 19 lE , (e)
d0 = 20 lE , (f) d0 = 22 lE , (g) d0 = 23 lE , (h) d0 = 24 lE , and (i) d0 = 32 lE . When applied, the electric field is oriented along
the fast edge diffusion direction (φ = 0) and aligned with the x−axis. After the electric field is turned off, the resulting patterns
are let to equilibrate until each island obtains its equilibrium rounded morphology. The red dashed line represents the critical
island size, dc, required for necking on {110} FCC substrate surfaces.

islands [17]. If the daughter islands formed as a result of
this necking instability have sizes smaller than the critical
island size dc, they migrate in the direction of the electric
field with a stable morphology at a constant speed [17].

From our simulations we determine the critical island
size required for triggering the necking instability, dc, to
be 3.7 lE and 8.2 lE for {110} and {100} substrate sur-
faces, respectively. These critical island sizes are com-
puted following systematic numerical protocols, such as
that in Ref. 17. They mark the computed onset of neck-
ing undergone by the island’s edge, and are expressed in
units of lE . For the range of island sizes we have examined
in our study, the islands migrating on {111} substrate sur-

faces (m = 3) under the action of the electric field do not
undergo necking and breakup to form daughter islands.
Instead, on {111} substrate surfaces, islands undergo a
fingering transition which leads to the formation of a pro-
trusion at the island’s leading edge. Eventually, under the
action of the electric field, the islands’ evolution on these
substrates (m = 3) transitions to their migrating at an
angle with the electric field direction with a more stable
faceted morphology, as has been reported in Ref. 17.

Figures 2(a1)-(a6) show a representative sequence of
configurations during the current-driven evolution of a
near-rounded single-layer island on a {110} FCC substrate
surface (m = 1); in Fig. 2, t denotes the time elapsed
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since the electric field was turned on. On large islands
under the action of the electromigration force, edge mor-
phological instabilities cause the formation of protrusions
at multiple locations along the island’s edge. The number
of locations where such protrusions appear increases with
increasing initial island size, d0. The locations of these
protrusions on the island edge are arranged symmetrically
with respect to the direction of the externally applied elec-
tric field. The protrusions grow to form narrow necks and
the edge evolves further leading to the breakup of the ini-
tial island into daughter islands. The daughter islands
with sizes greater than the critical size for necking, dc, un-
dergo further necking instabilities and breakup. Because
smaller islands migrate faster than larger ones, smaller-
sized daughter islands produced at/near the trailing end
in an evolving pattern may catch up, depending on their
exact location and pattern features, with the larger daugh-
ter islands located ahead of them in the pattern near/at
its leading end. If a trailing smaller island is on a collision
course with a larger island ahead of it, the two islands will
coalesce giving rise to a larger island. Such a sequence of
breakup and coalescence events may lead to the formation
of non-simply-connected void-containing islands. This is
because, during coalescence, the trailing island and the
leading island may trap some void space between them
generating a vacancy island (void) within the larger post-
coalescence island. Voids can also be generated if a neck
forms on a sufficiently large island leading to a formation
of a horseshoe-like edge morphological feature. The ends
of the horseshoe-shaped island after breakup, may come in
contact with each other, thus trapping void space within
this island. In such non-simply-connected islands, voids
migrate due to edge atomic diffusional transport in the
direction opposite to that of the islands’ migration.

In the evolving complex island patterns, as the number
of islands, N , increases due to the breakup processes with
the increasing duration of application of the electric field,
the average island size, d̄, in the resulting island popu-
lation decreases and becomes increasingly more uniform;

the island size distribution tends toward a steady state
characterized by an average island size equal to that re-
quired for necking, dc, which is marked by the horizontal
dashed red line in Fig. 2(b). Together with the evolution
of d̄, Fig. 2(b) also shows the evolution of the standard
deviation of the island size of the population, σd, and the
number of islands in the population of the pattern, N ; it
is evident that σd converges to 0 as d̄ converges to dc. Af-
ter the first set of breakup events, the subsequent breakup
and coalescence events happen at a fast rate because of the
presence of a large number of necks in the islands of the
pattern and of a larger number of islands in the pattern in
close proximity to each other on the substrate surface. The
steady state reached by the island size is understood be-
cause no further breakup can occur after the islands reach
the critical size of dc and since islands of the same size
migrate at the same speed, therefore avoiding collisions
leading to coalescence. Figure 2(c) shows the evolution of
the total edge length of the pattern, i.e., the sum of the
perimeters of all the islands in the population, Γ. Turn-
ing off the electric field at any given point in time causes
the individual islands in the population to stop migrating
and attain their equilibrium (rounded) morphologies due
to curvature driven edge diffusion, resulting in a stable
equilibrium pattern of static islands. For example, upon
turning off the electric field, the evolving patterns shown
in Figs. 2(a5) and 2(a6) reach the stable equilibrium pat-
terns of Figs. 4(g2) and 4(g4), respectively. During such a
pattern equilibration, islands that are in close proximity to
each other may coalesce as they evolve toward their equi-
librium rounded morphology due to the rearrangement of
the individual islands’ edges.

For all initial island sizes, we have examined the evolu-
tion of the average island area of an island population re-
sulting from the breakup of the initial larger-than-critical
island. Figure 3(a) shows the plot of the dimensionless av-

erage island area, Ã, as a function of dimensionless time,
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32 lE , d0 = 34 lE , d0 = 36 lE , and d0 = 38 lE . In both plots,
the solid lines correspond to the best fit of the data according
to the scaling relation Ã ∼ t̃−1.4118. (b) Representative plot of
the evolution of the dimensionless total edge length of all the
islands in the pattern, Γ̃ (orange open circles), as a function
of t on a {100} FCC substrate surface for an initial island size
d0 = 30 lE . The black solid line corresponds to the best fit
of the data according to Eq. (5). The two insets show the
dependence of the relaxation time, τp, and the exponent, n, in
Eq. (5) on d0.

t̃, where the dimensionless quantities are defined as

Ã =
Ā−Ac
A0 −Ac

(2)

and

t̃ =
t− tn
τ

. (3)

In Eq. (2), Ā is the average area of the islands in the popu-
lation in the evolving nanopattern, Ac is the critical (min-

imum) island area required for a necking instability (and
hence breakup of the parent island into daughter islands)
to occur, and A0 is the area of the initial island. In Eq. (3),
t is a given time instant in the simulation, with the elec-
tric field turned on at t = 0, tn is the time of occurrence
of the first set of breakup events for a given initial island
size, and τ is the characteristic diffusional time scale. The
evolution of Ã reaches eventually a steady state charac-
terized by an average island area of the island population
in the pattern equal to the critical island area required
for necking, Ac. The linear long-time scaling shown by
the straight-line fit of the data in the log-log plot of the
evolution of Ã in Fig. 3(a) implies that, at long times, the

evolution of Ã follows a power law with an exponent α:
for {110} FCC substrate surfaces, the corresponding scal-

ing relation is Ã ∼ t̃−1.3304±0.0312, i.e., α ≈ −4/3. The
reported statistical error corresponds to a 90% confidence
interval in the slope calculation over the range of d0 val-
ues examined in the analysis. Since Ã = Ct̃α , where C is
a constant, the number of islands in the evolving pattern
can be estimated as a function of time as N = A0/Ā, i.e.,

N =
A0

A0Ct̃α +Ac(1− Ct̃α)
. (4)

In the long-time limit, the number of islands obtained is
Nt̃→∞ = A0/Ac, as expected from the convergence of the
island size to its steady-state value discussed above and
shown in Fig. 2(b).

Under the constant application of the electric field, the
total edge length, Γ, for all initially larger-than-critical is-
land sizes, grows over time as shown in Fig. 3(b) for a
representative case with d0 = 20 lE . Analysis of the sim-
ulation results, throughout the parameter space explored
in this study, shows that the evolution of the dimension-
less total edge length, Γ̃, can be described on the basis
of Kolmogorov-Johnson-Mehl-Avrami kinetics [37–39], in-
volving a compressed exponential function of t,

Γ̃ =
Γ− Γ0

Γt→∞ − Γ0
= 1− exp

[(
− t

τp

)n]
. (5)

In Eq. (5), Γ0 is the perimeter (edge length) at t = 0 of
the original rounded island that undergoes breakup under
the action of the external field giving rise to the island
population of the pattern, Γt→∞ is the total edge length
of a population of daughter islands of uniform size equal
to the critical island size dc required for necking, τp is
the corresponding relaxation time, and the exponent n >
1. The solid line in Fig. 3(b) shows the least-square fit
of the data according to Eq. (5). The relaxation time,
τp, and the exponent, n, obtained from the best fit of
the simulation data are plotted as functions of the initial
island size, d0, in the insets in Fig. 3(b). τp increases
almost monotonically with increasing d0, which can be
understood qualitatively on the basis of atomic transport
through edge diffusion that requires longer time for larger-
sized islands. The exponent n lies between 2.0 and 3.0 and
also exhibits almost monotonic increase with increasing d0.

Figure 4 shows various representative final stable pat-
terns obtained for various initial island sizes as a func-
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FIG. 8. Representative sequences of equilibrium configurations consisting of complex patterns formed on {100} FCC substrate
surfaces (m = 2) from the current-driven evolution of larger-than-critical single-layer rounded islands after the electric field, which
was oriented along the fast edge diffusion direction (φ = 0), aligned with the x−axis, and applied for a time period ta has been
turned off and the islands have been let to equilibrate and obtain their equilibrium rounded morphology. The initial island size is
(a1)-(a4) d0 = 22 lE , (b1)-(b4) d0 = 24 lE , (c1)-(c4) d0 = 26 lE , (d1)-(d4) d0 = 28 lE , (e1)-(e4) d0 = 30 lE , (f1)-(f4) d0 = 32 lE ,
(g1)-(g4) d0 = 34 lE , (h1)-(h4) d0 = 36 lE , and (i1)-(i4) d0 = 38 lE . (j) Sequences of equilibrium configurations of island patterns
at a fixed ta = 802 τ for increasing, from (j1) to (j8), initial island size d0.
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dc dc dc

dc dc dc

dc dc dc

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 9. Characterization of complex patterns formed from current-driven dynamics of larger-than-critical single-layer epitaxial
islands on {100} surfaces of FCC crystalline conducting substrates: Mean island diameter of a population of islands, d̄ (blue solid
circles), standard deviation of the diameters of the islands in a population in a given complex pattern, σd (orange crosses), and
number of islands in the island population, N (green open triangles), of a given complex pattern as a function of the duration of
application of the electric field, ta, before it is turned off for an initial island size of (a) d0 = 22 lE , (b) d0 = 24 lE , (c) d0 = 26 lE ,
(d) d0 = 28 lE , (e) d0 = 30 lE , (f) d0 = 32 lE , (g) d0 = 34 lE , (h) d0 = 36 lE , and (i) d0 = 38 lE . When applied, the electric
field is oriented along the fast edge diffusion direction (φ = 0) and aligned with the x−axis. After the electric field is turned off,
the resulting patterns are let to equilibrate until each island obtains its equilibrium rounded morphology. The red dashed line
represents the critical island size, dc, required for necking on {100} FCC substrate surfaces.

tion of the duration for which the electric field was ap-
plied, ta, before it was switched off. After the electric
field was turned off, each island in the population was let
to achieve its equilibrium rounded morphology. The final
stable patterns obtained are fairly complex and their com-
plexity increases with increasing initial island size, d0, and
duration of application of the external field, ta. The equi-
librium patterns formed on {110} substrate surfaces are
symmetric with respect to an axis aligned with the direc-
tion of the applied electric field. With increasing ta, the
number of daughter islands in the final stable pattern in-
creases and the islands get distributed increasingly farther
from the pattern’s symmetry axis. The non-simply con-

nected domains (islands containing voids) that are gener-
ated as the pattern evolves may lead to formation of stable
non-simply connected islands in the final stable patterns
as shown, for example, in Figs. 4(b1), 4(c1), and 4(c2).
In the absence of external forcing, these non-simply con-
nected domains also achieve their stable equilibrium an-
nular, ring-like morphology due to curvature driven edge
diffusion. The islands on the left of the equilibrium pat-
terns of Figs. 4(b1), 4(c1), 4(c2), and 4(e2), i.e., some of
the simplest of the void-containing islands in the patterns
of Fig. 4, constitute the smallest possible nanoring struc-
tures because of their single-layer thickness. It is worth
noting that these nanorings are not generated because of
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lattice mismatch or thermal mismatch in a strained de-
posited film [28] but due to the action of an electric field
on unstrained homoepitaxial islands. It should also be
mentioned that stabilizing such nanoring configurations
requires careful control of ta, since non-simply-connected
domains cannot be stabilized at long times, i.e., in the
long ta limit, the island pattern contains only simply con-
nected island domains as is evident in Fig. 4; note the
absence of void-containing islands in the equilibrium pat-
terns of Figs. 4(a4), 4(b4), 4(c4), 4(d4), 4(e4), 4(f4), 4(g4),
4(h4), and 4(i4). For completeness, Fig. 4(j) shows se-
quences of equilibrium configurations of island patterns at
a fixed value of the duration of electric field application,
ta = 100.2 τ , for increasing, from Fig. 4(j1) to Fig. 4(j4),
initial island size d0 in order to clarify the diversity exhib-
ited by these equilibrium island patterns at given ta over
the range of initial island sizes examined.

We characterize these complex equilibrium patterns on
{110} substrates as a function of the duration of the ap-
plied electric field in Fig. 5; ta = 0 in the plots of Fig. 5
implies that the electric field is never turned on. Figure 5
shows the mean island size of the population of islands
in the equilibrium pattern, d̄, the standard deviation of
the island sizes of the population, σd, and the number of
islands, N , in the equilibrated pattern as functions of ta
for various initial island sizes. The general trends of N ,
d̄, and σd with increasing ta in the equilibrium patterns
follow those of the evolution of N , d̄, and σd under the
action of the external field shown in the case of Fig. 2(b).
Therefore, with increasing ta, the average island size of
the population of islands in the equilibrium pattern con-
verges to the critical island size required for necking, dc;
this is indicated by the horizontal dashed red lines in all
the plots of Fig. 5. As a result, the size distribution of the
islands in the equilibrium pattern becomes more uniform
with increasing ta, leading to a convergence toward a value
of zero of its standard deviation, σd, in the long ta limit.

The current-driven dynamics of single-layer islands ob-
served on {100} substrate surfaces (m = 2) is similar to
the complex dynamics observed on {110} substrate sur-
faces (m = 1). The two main differences observed in
the island dynamics on {100} surfaces compared to that
on {110} surfaces are that the driven island evolution on
{100} substrate surfaces leads to formation of distinct edge
facets which are not seen on {110} substrates and that,
depending upon the formation process of the daughter is-
lands after necking, the daughter islands migrate either
in the direction of the electric field or at an angle with
the field direction. Facets seen on the migrating islands’
edge on {100} substrate surfaces are not observed on is-
lands migrating on {110} substrate surfaces because such
edge facet formation is observed only for substrate sur-
faces with symmetry higher than 3-fold, expressed by an
anisotropy parameterm ≥ 1.5 [7]. Figures 6(a1)-(a6) show
a representative case for the current-driven dynamics of a
larger-than-critical sized island on a {100} substrate sur-
face. Starting from a rounded morphology, such a large
island on a {100} substrate surface first undergoes a finger-
ing instability. The fingering instability is followed by the
formation of a narrow neck, Fig. 6(a3), and the breaking
up from the parent island of a daughter island formed from

the leading tip of the finger following a necking instability.
This kind of necking and breakup generates a daughter is-
land that migrates in the direction of the electric field.
Breakup of the parent island on a {100} substrate sur-
face also can happen through fingering and necking near
the vertices of the island in symmetric locations from its
leading end, Fig. 6(a4), that generates daughter islands
which migrate at an angle with the field direction and have
faceted morphologies that feature a standing wave on one
of the island sides, resembling the edge features near the
necks in the “side wings” of the island in Fig. 6(a4). Is-
lands in the resultant evolving pattern undergo a sequence
of breakup and coalescence events similar to those oc-
curring in evolving patterns on {110} substrates surfaces.
Such patterns on {100} substrates also feature non-simply-
connected void-containing islands similar to those forming
in the evolving patterns on {110} substrate surfaces. Fig-
ure 6(b) shows the evolution of the mean island size of the
population of islands in the evolving pattern, d̄, the stan-
dard deviation of the island size of the population, σd, and
the number of islands, N in the island population of the
pattern formed from the current-driven evolution of the
large rounded island of Fig. 6(a1). Eventually, the evolu-
tion of d̄ and σd converges to their steady-state values of
dc and zero, respectively. Figure 6(c) depicts the evolu-
tion of the total edge length of the islands in the pattern,
Γ. The time required for the resulting island pattern to
approach a steady state on {100} surfaces is close to one
order of magnitude longer than that on {110} substrate
surfaces due to the slower island migration velocities on
surfaces of higher (crystallographic) symmetry, m, of edge
diffusional anisotropy [17]; such slower migration speeds
imply longer times between island coalescence events.

Figure 7(a) shows the evolution of the dimensionless av-

erage area, Ã, for a range of initial island sizes 22 lE ≤
d0 ≤ 38 lE on {100} substrates. Following the same statis-
tical analysis conducted for the datasets of Fig. 3(a) shows
that the dimensionless average area evolves according to
the scaling relation Ã ∼ t̃−1.4118±0.0873, i.e., a power law
that is universal throughout the range of d0 examined,
with an exponent close to that of the respective power law
on {110} surfaces, α = −1.4118 ∼ −4/3. The straight-line
fit in the log-log plot of Fig. 7(a) confirms the power-law
behavior at long times and gives the exponent α as a fit-
ting parameter. Figure 7(b) shows the evolution, under
constant electric field action, of the dimensionless total
edge length, Γ̃, for a representative case with d0 = 30 lE .
Consistent with the Avrami kinetics on {110} surfaces, the

evolution of Γ̃ follows the relationship of Eq. (5) on {100}
substrate surfaces too. The dependence of the relaxation
time, τp, and the exponent, n, in Eq. (5) on the initial
island size d0 is plotted in the insets in Fig. 7(b); both
τp and n are obtained as fitting parameters by fitting the
simulation data according to Eq. (5) as shown in Fig. 7(b).
For the current-driven island dynamics on {100} substrate
surfaces, τp again increases almost monotonically with in-
creasing d0, while n lies in the range 1.1 ≤ n ≤ 1.6 and
fluctuates around a mean value of ∼ 1.4.

The Avrami kinetics, Eq. (5), followed by the growth
of the total edge length of the islands in the current-
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driven patterns that form both on {110} and {100} sub-
strate surfaces when the electric field direction is aligned
with the fast edge diffusion direction is an important re-
sult for nanopattern design and engineering on conduct-
ing substrate surfaces. A rigorous derivation of Eq. (5)
and prediction of the compressed exponential function pa-
rameters, τp and n, requires further theoretical analysis
of the island dynamics, i.e., analysis based on a coarse-
grained description of island migration [17], coalescence,
and breakup that mediate the island pattern formation.
Such a theoretical analysis is beyond the scope of this
study and will be pursued elsewhere. Of course, the fun-
damental dynamics that governs all of these processes is
that of edge atomic diffusion and electromigration-induced
drift, as described by Eq. (1) and the accompanying rela-
tions for the edge atomic chemical potential and diffusivity
required for its closure.

Figures 8(a)-8(i) show representative equilibrium pat-
terns obtained on {100} substrates as a function of the
duration of application of the electric field, ta, for various
initial island sizes d0; sequences of equilibrium island pat-
terns at ta = 802 τ over the range of initial island sizes
d0 examined are shown in Fig. 8(j). The stable patterns
obtained on {100} substrate surfaces are similar to those
obtained on {110} substrate surfaces. The equilibrium
shape of the islands in the final equilibrated patterns is
rounded because in our model the edge stiffness, γ, is con-
sidered to be isotropic. The facets observed during the
current-driven evolution of the islands are due to a kinetic
anisotropy (edge diffusional anisotropy) and, hence, they
do not feature in the final stable pattern. Due to the higher
critical island diameter for necking, dc, on {100} than on
{110} substrate surfaces, the number of islands obtained
in the equilibrium pattern on {100} substrate surfaces is
smaller than that on {110} surfaces for the same initial is-
land size. The final stable (equilibrium) patterns obtained
on {100} surfaces are complex and, consistently with the
patterns on {110} surfaces, their complexity increases with
increasing initial island size, d0, and duration of applica-
tion of the external field, ta. Each equilibrium pattern
in Fig. 8 is symmetric with respect to an axis aligned
with the electric field direction and, with increasing ta,
the daughter islands are distributed increasingly farther
from the symmetry axis. It should be mentioned that in
the equilibrium island patterns of Figs. 4 and 8 the total
island area, A (shaded area in these figures), remains con-
stant and equal to the area of the original rounded island,
A = A0 = πd0

2/4, which guarantees mass conservation
during both current-driven evolution and subsequent equi-
libration upon switching off the external field. Although
individual islands in the patterns may grow (due to coales-
cence) or shrink (due to breakup), the total island area of
each pattern, which is equal to the sum of the areas of all
the islands in the pattern, is conserved. We have checked
thoroughly in all of our simulations and confirm that total
island area conservation is satisfied; this is guaranteed by
the accuracy and precision of our numerical integration of
the continuity equation, Eq. (1).

Finally, Fig. 9 shows the characterization of the complex
equilibrium patterns on {100} surfaces as a function of the
duration of the applied electric field, ta. All of the trends

observed in the patterns on these substrate surfaces with
m = 2, in the long ta limit, are consistent with those ob-
served in the characterization of the equilibrium patterns
obtained on substrate surfaces with m = 1. We further
mention that the trends shown in Figs. 5 and 9 may give
the impression that the plotted quantities are multivalued
functions of ta. This is clearly not the case: this false im-
pression may be created due to the large fluctuations in
the variation of the plotted quantities with ta during the
initial stages of the evolution process as a result of island
breakup and coalescence events during the equilibration
period after the field is switched off. To clarify this fea-
ture in the datasets, we have connected the mean island
diameter d̄(ta) data points in Figs. 5(c) and 9(d) with solid
lines.

For the range of island sizes examined in this study,
the current-driven islands migrating on {111} substrate
surfaces (m = 3) do not breakup to form patterns consist-
ing of populations of daughter islands. Islands on {111}
surfaces undergo a fingering transition which leads to the
formation of a protrusion at the island’s leading edge. The
corresponding island morphology is similar to that shown
in Fig. 6(a2). However, this type of morphology is unsta-
ble on {111} substrate surfaces and the migrating islands
transform to a stable faceted morphology and begin mi-
grating at an angle with the electric field direction. Before
the migrating island’s shape transitions to a stable faceted
morphology, the edge diffusional dynamics leads to the for-
mation of necks similar to that shown in Fig. 6(a3), but
the edge of the islands remain intact, i.e., no breakup is
triggered, and, therefore, there is no formation of daughter
islands accompanying the current-driven dynamics of large
islands on {111} substrate surfaces. Instead, islands with
faceted edge shapes exhibit oscillatory dynamics on {111}
surfaces and are characterized by a morphology with a sta-
ble straight edge on one side of the island and a standing
edge wave on the other side, while the island migrates at
constant speed in the direction of the straight edge. De-
tailed characterization and analysis of such complex oscil-
latory dynamics are beyond the scope of the present article
and will be discussed elsewhere.

IV. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated that morphological
instabilities on the edge of a larger-than-critical single-
layer island migrating on {110} or {100} surfaces of FCC
crystalline substrates under the action of an electric field
that is oriented along the fast edge diffusion direction can
lead to the formation of intriguingly complex patterns,
consisting of assemblies of single-layer islands smaller than
the original island and arranged symmetrically with re-
spect to the electric field direction. We have characterized
in detail the evolving complex patterns of the island as-
semblies, with the initial island size and the duration of
application of the electric field being the key pattern for-
mation parameters. We have shown that the evolution of
the average area of the islands in the assembly under the
action of the electric field follows a universal kinetic rela-
tion and that the evolution of the total edge length of the
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formed assembly of islands, for all initial island sizes exam-
ined, follows Avrami kinetics. We have also characterized
the stable patterns formed after the electric field is turned
off, and we have shown that the average island size and the
uniformity of an island population in a complex pattern,
for all initial island sizes, reach a steady state as the du-
ration of application of the electric field increases. These
stable complex patterns, upon switching off the electric
field, feature formation of the smallest observed nanor-
ings with single-layer height and lateral sizes on the or-
der of tens of nanometers, a range of length scales that is
barely accessible through the use of e-beam lithography.
Therefore, we have described a novel, current-induced ap-
proach for the formation of metallic nanoring structures,
which have very appealing properties toward applications
in optoelectronics and data storage systems: starting from
an array of deposited epitaxial islands, electric fields can
be used to create arrays of such fine nanorings by ex-
ploiting electromigration-driven morphological dynamics,
which allows for formation of unique geometries and selec-
tion of nanometer-scale sizes.

In closing, we mention that we expect the current-driven
dynamics of coherently strained single-layer heteroepitax-
ial islands on crystalline conducting substrates to be qual-
itatively similar to that of the homoepitaxial islands an-
alyzed in this study, leading to analogously complex pat-
tern formation mediated by island breakup and coales-
cence processes. Specifically, as reported in Ref. 17, the

current-driven single-layer heteroepitaxial islands exhibit
a similar linear dependence of island migration speed on
the inverse of the island size at small island sizes, as well
as a critical island size dc beyond which the rounded is-
land edge becomes unstable; however, for heteroepitax-
ial islands the critical island sizes are greater than those
for homoepitaxial islands [17]. Moreover, misfit strain
has a direct effect on the atomic mobility for edge dif-
fusion and, thus, affects significantly the island migration
speed [40, 41]: specifically, tensile misfit strain leads to
a decrease in the island migration speed while compres-
sive misfit strain accelerates the translational motion of
the island [17]. Therefore, depending on whether the mis-
fit strain is tensile or compressive, the island coalescence
rate will be slower or faster, respectively, which will affect
quantitatively the island pattern formation kinetics. Such
current-driven dynamics of heteroepitaxial islands and the
resulting complex pattern formation will be explored in a
future publication.
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