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Recent experiments on spin torque oscillators have revealed interactions between multiple mag-
netodynamic modes, including mode-coexistence, mode-hopping, and temperature-driven cross-over
between modes. Initial multimode theory has indicated that a linear coupling between several dom-
inant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an
essential role in the generation of various multimode behaviors, such as mode hopping and mode
coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled
magnetodynamic modes in a nano-contact spin torque oscillator. Expressions for both linear and
nonlinear coupling terms are obtained, which allow us to analyze the dependence of the coupled
dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic prop-
erties. For a minimal two-mode system, we further map the energy and phase difference of the
two modes onto a two-dimensional phase space, and demonstrate in the phase portraits, how the
manifolds of periodic orbits and fixed points vary with external magnetic field as well as with
temperature.

I. INTRODUCTION

Since the discovery of the spin transfer torque (STT) effect [1, 2], efficient manipulation of magnetization orientation
can be achieved by applying a dc current perpendicularly to a magnetic heterostructure consisting of two magnetic
layers separated by a nonmagnetic spacer. The current becomes spin polarized when passing through the magnetic
layer with fixed magnetization direction and subsequently transfers spin angular momentum to the other magnetic
layer by exerting a spin torque on the magnetization. One particularly important manifestation of the STT effect is
the steady state magnetization dynamics at microwave frequencies that is realized in devices known as spin torque
oscillators (STOs) [3, 4]. These are typically fabricated in either nanopillar or nanocontact (NC) geometry and rely
on the compensation of intrinsic damping by STT as the current approaches a threshold for auto-oscillations. With
appropriate arrangement of the relative orientations of the magnetizations as well as of the current direction, nearly
undamped oscillation modes with very small linewidth can be realized in STOs.

As a first attempt to describe the magnetodynamics in STOs, Slavin and coworkers [5] developed a single-mode
theory under the assumption that only a single coherent precessional mode is excited, which captures some remarkable
nonlinear features of STOs qualitatively and to some extent quantitatively. The assumption of single-mode precession
further precludes chaos and the possibility of mode transitions between dynamical modes [6]. Later, an effective theory
of a two-mode STO was put forth by de Aguiar, Azevedo, and Rezende [7]. By solving the equations of motion for the
amplitudes of the two modes, nonlinearly coupled by third order terms originating from four-magnon interactions, they
concluded that, in steady state, only one mode will survive whereas the other will be extinguished. However, neither
of these theories mentioned above can explain recent experimental observations of a variety of multi-mode dynamical
effects in STOs such as mode-hopping [8–10], periodic mode transitions [11, 12], and mode coexistence [13, 14]. In
addition to mode-hopping, Muduli et al.[10] also noted a mode cross-over driven by temperature with other parameters,
such as current and external magnetic field, kept fixed. Clearly, such temperature-driven behavior points to a highly
non-trivial temperature dependence which must be explained by more comprehensive theories.

A multi-mode theory was first proposed by Muduli, Heinonen, and Åkerman [9] to explain the observed mode
hopping in nanopillar STOs. The authors showed, for a minimal two-mode system, that the rate equations for the
slowly-varying mode amplitudes can be mapped onto a two-dimensional Z2−symmetric dynamical system, in analogy
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with those for two counter-propagating modes in semiconductor ring lasers [15, 16]. A key ingredient of the theory
is the assumption that there exists, in addition to third order nonlinear coupling terms [7], a linear coupling between
the modes, which is essential for the mode hopping to occur. By treating the various coupling coefficients in the
rate equations as phenomenological parameters, the effective multimode theory has been well substantiated by later
experimental observations that are related to mode hopping, including linewidth broadening in NC-STOs [17] and
1/f -frequency noise spectrum in STOs [18, 19].

Effective control of STOs, however, requires in-depth understanding of the underlying physics of the mode coupling.
For this purpose, the multimode theory was derived rigorously [20] from the micromagnetic Landau-Lifshitz-Gilbert
equation, whereby the crucial linear coupling term was shown to arise from the interaction of a dynamical subsystem,
which involves several dominant modes, with a thermal bath of magnons. This theoretical assertion is consistent with
the two kinds of mode-coupling mechanisms that were identified experimentally in NC-STOs by Iacocca et al. [14],
namely magnon mediated scattering and intermode interaction. In this paper, we apply the multimode theory to a
NC-STO for which approximate analytic profiles of the eigenmodes are available [21] and hence simplified expressions
for both linear and nonlinear coupling terms can be derived explicitly. With these expressions, we further determine
the dependence of the mode coupling and the ensuing dynamics of the STO on typical controllable experimental
parameters such as the external magnetic field and temperature.

The remainder of the paper is organized as follows. In Sec. II, we outline the derivation of the coupled rate
equations for the two lowest lying eigenmodes of a NC-STO, where the linear coupling term appears after the thermal
bath of magnons is integrated out and the equations are projected onto the subspace of the two modes. We present
explicitly the expressions for both linear and nonlinear coupling terms, and in particular show the dependence of
the linear coupling term on the external magnetic field and temperature. We also reveal the correlation between the
linear coupling and the nonlinear spin wave frequency shift. In Sec. III, we transform the rate equations to a more
appealing form, which allows mapping of the energy and phase difference of the two modes onto a two-dimensional
phase space. We show in the resulting phase portraits how the manifolds of periodic orbits and fixed points, both
stable and unstable ones, vary with external magnetic field as well as temperature. Finally, we discuss and summarize
our results in Sec. IV.

II. MODE EQUATIONS WITH LINEAR COUPLING

We consider a NC-STO based on a pseudo spin valve composed of ferromagnetic (FM) fixed and free layers separated
by a metallic nonmagnetic (NM) spacer, as shown in Fig. 1. We further assume that the pseudo spin valve is patterned
into a disc of radius RF . A nanocontact of radius Rc is defined on top of the free layer such that Rc � RF . This
configuration allows a current to flow through a cylindrical region directly below the nanocontact, which has been
shown to be in good agreement with experiments [4].
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FIG. 1. Schematic diagram of the side view of a nano-contact spin torque oscillator.

The magnetization dynamics in a nanocontact spin torque oscillator can be described by the generalized Landau-
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Lifshitz equation with current-induced spin transfer torque [1, 2], i.e.,

∂m

∂t
= −γm×Heff −

γα

1 + α2
m× (m×Heff) + γaJ (r)m×

(
m× M̂p

)
, (1)

where γ is the gyromagnetic ratio, α is the dimensionless Gilbert damping parameter, m and M̂p are the unit vectors
denoting the local magnetization direction of the free layer and the uniform magnetization direction of the fixed layer
respectively. The strength of the STT is characterized by an effective field aJ(r) = aJH(Rc − r) with H(Rc − r) the
Heaviside step function describing the confinement of the current in the NC-STO within a cylindrical region of radius
Rc. The total effective magnetic field Heff is taken to be a superposition of the external field, the anisotropy field,
the exchange field, and the demagnetization field, which can be expressed as

Heff = Hext +Hamxex + (2Aex/Ms)∇2m−4πMsmzez ,

where Hext is the uniform external field, Ha the magnitude of the anisotropy field, Aex the exchange stiffness, and
the perpendicular-to-plane demagnetization field is reduced to the local form in the zero-thickness limit or thin-
film approximation. To simplify our discussion, we shall restrict ourselves to a simple geometry where the the
magnetization of the fixed layer is lying along the x-axis[22], i.e., M̂p = ex, and both the magnetization of the
free layer and the external magnetic field are varied within the x − z plane, i.e., m = cos θMex + sin θMez and
Hext = Hext (cos θHex + sin θHez).

At temperatures well below the Curie temperature, it is a good approximation to assume that the magnitude of
the free layer magnetization m is conserved [as implied by Eq. (1)]. This leaves only two independent components
of m, which can be expressed in terms of a single (space-dependent) complex spin wave variable a(r) = a [m(r)],
characterizing the amplitude and phase of spin waves [5, 23]. After performing a sequence of standard canonical
transformations [23–25], one arrives at the nonlinear spin wave dynamic equation [21, 23, 26]

∂a

∂t
= −i

(
ωr −Dex∇2 +Nf |a|2

)
a+ TJ (r)

(
a− |a|2 a

)
− Tα

(
a+ κ |a|2 a

)
, (2)

where ωr = γ
√
Hint

(
Hint + 4πMs cos2 θM −Ha sin2 θM

)
is the FMR frequency of the uniform mode with Hint the

magnitude of the internal magnetic field given by Hint = Hext +Hamxex−4πMsmzez and cos θM = m·ex, TJ (r) =
γaJ (r) cos θM characterizes the spin wave damping/pumping rate due to the STT,Dex = γ (Aex/Ms) (ω0/ωH + ωH/ω0)
is the coefficient of the exchange spin wave dispersion with ωH ≡ γHint, Tα = αG

[
ωH +

(
ωM cos2 θM − ωA sin2 θM

)
/2
]

is the overall spin wave damping rate with ωM ≡ γ4πMs and ωA ≡ γHa, κ measures the relative spin wave relaxation
rates of nonlinear and linear processes [23], and Nf is the coefficient of the nonlinear spin wave frequency shift which
has been shown [23, 27] to strongly depends on the out-of-plane angles of the external field and the equilibrium
magnetization, and may switch sign when Hext varies from in-plane to perpendicular-to-plane, as shown in Fig. 2

Coupling between linear spin wave modes is induced by the cubic terms |a|2 a on the r.h.s. of Eq. (2), which
originates from the four-wave processes that conserve the number of spin waves (other non-resonant wave processes
can be eliminated by the quasi-linear Krasitskii transformation [24, 25]). A complete set of orthonormal linear spin
wave eigenmodes {dn (r, t)} (with mode indices n = 1, 2, ..) can be determined by solving the linearized, but including
non-conservative torques, wave equation

∂d

∂t
= −i

(
ωr −Dex∇2

)
d− Tαd+ TJ (r) d . (3)

The solution of Eq. (3) was first obtained by Slonczewski for a perpendicularly magnetized thin film [21], and later
by Slavin et al. [26] for more general cases [see Appendix A for an outline of the solution]. We then may expand the
general spin wave mode in this basis, i.e.,

a (r, t) =
∑
n

An (t)
[
un (r) e−iωnt

]
, (4)

where An (t) are complex coefficients that describe the composition of a given spin wave mode in terms of the linear
eigenmodes, and we have separated the spatial and temporal components of the eigenmodes as dn (r, t) = un (r) e−iωnt,
where ωn are the complex eigenfrequencies of the linearized modes. We will assume that the system is operating close
to, but above, the critical current for auto-oscillations so that the imaginary part of ωn is small and can be ignored.
Note that since the experimentally observed time evolution of coupled modes [9, 10, 13] is usually slower than the
periods of the eigenmodes 2π/Re(ωn), it is reasonable to assume the characteristic time scale of the variation of An is
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FIG. 2. Nonlinear frequency shift coefficient Nf as a function of the out-of-plane field angle θH . Other parameters used here

are Hext = 15000 Oe, Ha = 500 Oe, MS = 1000 emu/cm3, aJ = 500 Oe, the exchange length lex = 3 nm [ lex ≡
√
Aex/2πM2

s

], Rc = 50 nm, and radius of the free layer RF = 500 nm.

greater than the periods of eigenmodes of interests. By placing the expansion (4) into Eq. (2), projecting with d∗i , and
integrating the resulting equation over a time interval spanning several eigenmode periods for which the slowly varying
amplitude of the i-th mode Ai (t) remains approximately constant [20], we arrive at the following rate equation for
Ai (t):

dAi
dt

= −
∑
l,m,n

RF /Rc∫
0

d2r′ [iNf + κT α + TJ (r′)]u∗i (r′)u∗m (r′)ul (r
′)un (r′)A∗mAlAnδωi+ωm,ωl+ωm

, (5)

where r′ ≡ r/Rc is the dimensionless radial distance, and we used the completeness relation (2π)
−1 ∫

dte−i(ωn−ωn′ )t =
δn,n′ .

As a minimal model to capture the essential physics underlying the coupling of linear spin wave modes, let us focus
on interactions between the two nondegenerate lowest lying modes, namely, A1 and A2 with eigenenergies of ω1 and
ω2 [assuming ω1 < ω2]. By imposing energy conservation on the four-wave processes, three types of terms enter the
mode equation: 1) the self-energy terms A∗1A1A1 and A∗2A2A2, 2) the mutual energy transfer terms A∗1A1A2 and
A∗2A1A2, and 3) the terms A∗mAnA2 [with m > n > 2] which correspond to the four-wave processes of a∗ma

∗
2ana1.

While the first two types of terms give rise to the nonlinear coupling terms [7, 9, 20], the third type of terms will lead
to a linear coupling between modes 1 and 2 when the higher-energy modes are thermally excited, which is usually the
case for a NC-STO operated at room temperature. In this case, we can replace A∗m and An with thermal occupation
numbers of the magnon modes m and n by taking the trace of the density matrix over magnon Fock space with m and
n magnons. However, keeping in mind that the amplitude Am of a magnon corresponds to a reduction of the total
magnetization of ∼ nB(ωm)gµB/(MSV ) = nB(ωm)/(NS), where V is the volume and NS the total atomic spin of
the free layer, we scale the occupation numbers appropriately, i.e., ñB (ωm) ≡ [nB (ωm) + 1] /(NS) ' nB (ωm) /(NS)
and ñB (ωn) ≡ nB (ωn) /(NS) respectively, where nB (ωn) = 1/

(
e~ωn/kBT − 1

)
. After collecting all relevant terms,
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we arrive at a set of rate equations describing the coupled dynamics of the two modes

dA1(t)

dt
= −i

(
η1,1|A1|2 + η1,2|A2|2

)
A1 − ΓG,1

(
P1,1|A1|2 + P1,2|A2|2

)
A1

−ΓJ
(
Q1,1|A1|2 +Q1,2|A2|2

)
A1 −R1,2(T )A2 (6)

dA2(t)

dt
= −i

(
η2,1|A1|2 + η2,2|A2|2

)
A2 − ΓG,2

(
P2,1|A1|2 + P2,2|A2|2

)
A2

−ΓJ
(
Q2,1|A1|2 +Q2,2|A2|2

)
A2 −R2,1(T )A2 , (7)

where ΓG,i = αωi (i, j = 1 or 2), ΓJ = γaJ cos θM , ηi,j ≡ Nf
RF /Rc∫

0

d2r′ |uiuj |2 are the nonlinear frequency shift

coefficients, Pi,j = κ
RF /Rc∫

0

d2r′ |uiuj |2 are the nonlinear damping coefficients, Qi,j =
1∫
0

d2r′ |uiuj |2 are the nonlinear

coefficients associated with STT term, and the linear mode coupling coefficients Ri,j are

Ri,j (Hext, T ) =
∑
n,m

RF /Rc∫
0

d2r′u∗i (r′)u∗m (r′)uj (r′)un (r′) [iNf + κT α + TJ (r′)]

×ñB(ωn)ñB(ωm)δωn+ω2,ωm+ω1
.

(8)

Note that the temperature dependence of the Ri,j enters through the magnon thermal distribution functions ñB .
Equipped with Eq. (8), we are now in a position to investigate the dependence of the mode coupling coefficient R1,2

on external experimental conditions as well as intrinsic magnetic properties. In Fig. 3, we show the magnitudes and
phases of the linear mode coupling coefficients R1,2 and R2,1 as functions of the out-of-plane field angle θH . We note
that the magnitudes of coupling coefficients are about sub-GHz for an applied external field of 15000 Oe. This justifies
our assumption that the time evolution of An(t) (n = 1, 2) is slow compared to the fast dynamics of the magnetization.
Also, the magnitude of the coefficients Ri,j approaches a global minimum at a field angle of θH = 86◦, which coincides
with the field angle at which the non-linear spin wave frequency shift coefficient Nf changes sign, as demonstrated
in Fig. 2. In addition, the phase difference increases as the field angle moves away from the zero-crossing point of
the nonlinear frequency shift. The link between the linear mode coupling and the nonlinear spin wave frequency shift
may suggest a way to control and manipulate the mode coupling.

In Fig. 4, we show the temperature dependence of the mode coupling coefficients R1,2 and R2,1 for Hext = 15000 Oe
at several out-of-plane field angles. We see that the magnitudes of both R1,2 and R2,1 increase algebraically with
temperature. This can be understood by recalling that the linear mode coupling stems from interactions between
the two dominant modes and thermally occupied magnons via the four-magnon scattering processes. The density
of thermal magnons increases at elevated temperatures, which gives rise to more scattering space that contributes
to the linear mode coupling. This temperature dependence, as we will show later, implies that temperature alone
can change the manifold of the system’s dynamics and leads to thermally-induced mode-hopping [17] consistent with
experimental observations [10]. The phases of the coupling coefficients, however, are insensitive to temperature, as
shown in the inset of Fig. 4, since we have implicitly made the random phase approximation whereby the thermal
magnons of different wave-vectors are taken to be incoherent.

III. PHASE PORTRAIT OF THE MODE EQUATIONS

Although the energy of an individual mode varies instantaneously through pumping and damping, we may assume
that the total energy of the two dominant modes 1 and 2 are approximately conserved on time scales much longer
than the periods of the eigenmodes, i.e.,

ω1 |A1|2 + ω2 |A2|2 = ω . (9)

where ω is a constant, the value of which indicates the total energy in the two-mode subsystem. Substitution of
Ai (t) = Ki (t) eiφi(t) [i = 1, 2] into Eq. (9) immediately reveals the relation between the amplitudes of the two modes,
which can be captured by following transformation [15]:

√
ω1K1 =

√
ω cos

(
θ
2 + π

4

)
and

√
ω2K2 =

√
ω sin

(
θ
2 + π

4

)
,

where the variable θ characterizes the relative magnitude of the two mode amplitudes. Placing these transformations
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FIG. 3. Magnitude of the mode coupling coefficients R1,2 and R2,1 as functions of the angle θH between the film plane and the
external magnetic field of fixed strength 15000 Oe at room temperature. In the inset of the figure, we show the phases of R1,2

and R2,1 as functions of θH . Other parameters used here are α = 0.05, Ms = 1000 emu/cm3, aJ = 500 Oe, Rc = 50 nm, the
exchange length lex = 3 nm and radius of the free layer RF = 500 nm.
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R2,1 as functions of T . Other parameters: αG = 0.05, MS = 1000 emu/cm3, aJ = 500 Oe, Rc = 50 nm, the exchange length
lex = 3 nm, and radius of the free layer RF = 500 nm.

6



into the mode equations (6) and (7) and separating the real and imaginary parts of the resulting equations, we arrive
at a set of coupled dynamic equations for two real variables, i.e.,

θ̇ = ω cos θ

[
(ΓG,1P1,1 − ΓG,2P2,1)

(
1− sin θ

2ω1

)
− (ΓG,2P2,2 − ΓG,1P1,2)

(
1 + sin θ

2ω2

)]
+ωΓJ cos θ

[
(Q1,1 −Q2,1)

(
1− sin θ

2ω1

)
− (Q2,2 −Q1,2)

(
1 + sin θ

2ω2

)]
+Re

(
R2,1e

−iψ)√ω2

ω1
(1− sin θ)−Re

(
R1,2e

iψ
)√ω1

ω2
(1 + sin θ) (10)

and

ψ̇ = ω

[
(η1,1 − η2,1)

(
1− sin θ

2ω1

)
− (η2,2 − η1,2)

(
1 + sin θ

2ω2

)]
+Im

(
R2,1e

−iψ) sec θ

√
ω2

ω1
(1− sin θ)− Im

(
R1,2e

iψ
)

sec θ

√
ω1

ω2
(1 + sin θ) , (11)

where ψ ≡ φ2 − φ1 is the phase difference of the two modes. As we can see, the original mode equations, which
involve four independent dynamical variables, have been mapped onto a 2-dimensional phase space, similar to those
describing the dynamics of a ring laser with backscattering [15, 16].

In a previous work [17], a similar set of the coupled effective mode equations was solved for a given external field and
temperature, with the various coefficients being treated as phenomenological parameters. Notably, the coefficients of
the linear coupling terms were assumed to be complex conjugates which is manifestly not generally true (see Fig. 3
and Fig. 4). Now that we have derived these coefficients as functions of the external field and temperature, we are in
a position to further investigate the evolution of the two modes in the phase space spanned by θ and ψ for varying
field angles and temperatures. We note that because the system of equations (10) and (11) is invariant under the
transformations θ → ±π − θ and ψ → ψ ± π, in principle it suffices to show the phase space for −π2 < θ < π

2 ;
however, we choose to show the phase space in the extended zone of −π < θ < π in order to avoid confusing overlay of
trajectories corresponding to in-phase and out-of-phase solutions with crossing of trajectories, which is prohibited by
the uniqueness of solutions for dynamical systems that evolve smoothly. Note that this extended scheme will depict
the singularities at θ = ±π2 given by Eq. (11).

In Fig. 5, we show the phase portraits of mode dynamics for ω = 1 GHz at several different temperatures with a
given external field of magnitude 15000 Oe and angle θH = 82◦. In this case, the coupling phase is constant and only
the magnitude increases with temperature, similar to the perpendicular-to-plane case shown in Fig. 4. Well below
room temperature (T = 300 K), pairs of unstable fixed points (solid gray circles) are present as shown in Fig. 5
(a) and (b), which are accompanied by steady state trajectories (solid blue lines) representing coexistence of the two
modes with periodic mutual energy transfer due to the mode coupling. As temperature increases, some of the unstable
fixed points are converted into stable ones due to the increased strength of the linear mode coupling (as shown in
Fig. 5(c)). When the temperature is further increased, the linear mode coupling will dominate and the fixed points
have to approach θ = ±π or θ = 0, as indicated by Fig. 5(d).

Physically, stable fixed points correspond to phase-locked or synchronized modes, i.e., the differences in both phase
and energy of the two modes remain constant in time. The existence of equal numbers of stable and unstable fixed
points across the singularities (red dotted lines) is consistent with an in-phase/out-of-phase synchronization. These
results demonstrate that the phase portrait of the multi-mode dynamics in a NC-STO can be strongly affected
by temperature and can lead to mode transitions, in agreement with experimental observations of temperature-
dependent mode transitions above room temperature [10]. We note that in the calculation of the phase portraits,
the temperature dependence only enters through the linear mode coupling coefficients Ri,j in Eqs. (10) and (11).
Inclusion of temperature as a stochastic field will merely blur the phase portraits and potentially lead to mode
transitions across saddle points on the stable manifolds, leading to mode-hopping [9, 17], but not change the orbits
or manifolds themselves.

More complex behaviors are found when the external field angle θH is varied at a fixed temperature T = 200 K (as
shown in Fig. 6), in which case both the magnitude and phase of the linear mode coupling coefficients Ri,j vary with
θH . We consider four regimes as the field angle increases: (i) weak coupling magnitude and large phase difference,
(ii) weak coupling magnitude and small phase difference; (iii) local coupling magnitude maximum and small phase
difference; and (iv) strong coupling magnitude and identical phases. Exemplary phase portraits of these regimes are
shown in Fig. 6 as the angle is varied from in-plane to perpendicular-to-plane. For case (i) [Fig. 6 (a)], the phase
portrait exhibits two unstable fixed points (spirals) and stable steady state trajectories, similar to the phase portraits
well below room temperature as shown in Fig. 5(a). For case (ii) shown in Fig. 6(b), the trajectories get pulled around
to form the large elliptical closed orbits which imply self-sustained periodic oscillation of the coupled subsystem. For
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case (iii) [Fig. 6(c)], the two closed orbits collapse to two stable fixed points as the system reaches a local maximum
of linear mode coupling strength (see Fig. 3). Finally, for (iv), the phase portrait is again dominated by closed
orbits [Fig. 6 (d)] accompanied by heteroclinic-like orbits and chaotic dynamics near the singular line θ = π/2. This
observation is consistent with the poor spectral content of STT-driven excitations in perpendicularly magnetized
STOs [4] despite the fact that such a high-symmetry case theoretically favors a Slonczewski mode in a single-mode
approximation.

FIG. 5. Portrait of the dynamics of two coupled modes in the phase space spanned by θ and ψ for an external field of 15000 Oe
and θH = 82◦ at (a) T = 70 K (b) T = 130 K, (c) T = 200 K, and (d) T = 300 K. The vertical red dotted lines denote the
singularities at θ = ±π

2
. As the mode coupling magnitude increases with temperature, the trajectories (blue lines) established

by unstable fixed points (gray circles) transition into stable fixed points (blue circles). In all cases, the features are even
indicating in-phase and out-of-phase synchronized modes.

In addition to the field and temperature dependence of the coupled mode dynamics, another observation is that
increasing/decreasing the amount of energy in the two-mode subsystem (characterized by ω) is equivalent to reduc-
ing/enhancing the strength of the linear coupling coefficients Ri,j . This can be seen if one divides both sides of
Eqs. (10) and (11) by ω, and the resulting equations indicate the steady state solutions of the system only rely on the
ratio |Ri,j |/ω. To illustrate this effect, we show in Fig. 7 the nearly identical phase portraits at a fixed field angle of
θH = 82◦ for two different sets of parameters: (a) temperatures and (a) T = 90 K, ω = 1 GHz and (b) T = 270 K,
ω = 10 GHz. This is consistent with the fact that the strength of linear mode coupling coefficient for θH = 82◦ at
T = 270 K is about 10 times as large as that for T = 90 K, according to Fig. 4.

Lastly, in Fig. 8, we show a schematic phase diagram of the dynamic behavior of the coupled mode system as a
function of the field angle and temperature, which depicts how changing these control parameters alters the dynamical
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FIG. 6. Portrait of the dynamics of two coupled modes in the phase space spanned by θ and ψ for an external field of 15000 Oe
and T = 200 K at (a) θH = 30◦, (b) θH = 54◦, (c) θH = 80◦, and (d) θH = 90◦. (a) Unstable fixed points (gray circles)
define trajectories (blue lines) for small external field angles. (b) Closed orbits (blue) are observed when the coupling angles
are similar. (c) Stable and unstable fixed points (blue and gray circles) are observed at the local coupling strength maximum
and identical coupling angles. (d) Closed orbits and heterloclinic-like orbits are observed at the high-symmetry condition of a
perpendicularly magnetized sample.

landscape.

IV. SUMMARY AND CONCLUSIONS

We theoretically investigated the coupled dynamics of linear spin wave eigenmodes in NC-STOs using a previously
derived multi-mode theory [9, 17, 20]. For a simple but experimentally relevant geometry in which the external
magnetic field and both equilibrium magnetizations of the free and fixed layers are coplanar, we derived the rate
equations that govern the slow dynamics of a subsystem involving several dominant modes, as a generalization of the
single mode STO theory proposed earlier by Slavin and Tiberkevich [5, 23, 26]. In this particular geometry, we could
explicitly calculate the mode-coupling coefficients in the multi-mode theory and transform the system of equations
for two dominant modes into an effective two-dimensional driven dynamic system. This allowed us to explore the
effect of external field and temperature on the phase portraits of the system and to draw several conclusions about
the dynamics of the system. First of all, there is an intimate relation between the non-linear frequency shift and the
linear mode coupling [Eq. (8)]. This leads to a minimum in the magnitudes of the mode-coupling coefficients when
the non-linear frequency shift is zero, concomitant with a steep change in the phase shift between them. There are
profound consequences in the resulting dynamics and phase portraits as the mode-coupling coefficients go through
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FIG. 7. Portrait of the dynamics of two coupled modes in the phase space spanned by θ and ψ for an external field of 15000 Oe
and θH = 82◦ at (a) T = 90 K, ω = 1 GHz and (b) T = 270 K, ω = 10 GHz. Both phase portraits are equivalent.

FIG. 8. Phase diagram of coupled mode dynamics as a function of temperature and field angle of external magnetic field with a
fixed magnitude of 15000 Oe. Closed orbits and several different types of fixed points are shown, such as saddle points, nodes,
spirals and etc., and their stability changes across the phase boundaries. The horizontal black dotted line denotes the field
angle of 86◦ (i.e., the zero-crossing point of the nonlinear frequency shift), above which large closed orbits appear at elevated
temperatures (T > 100 K) as the strength of the linear mode coupling grows rapidly.

their minimum. The phase portrait of the sub-dynamical system changes rapidly, exhibiting closed orbits, and a set
of different types of fixed points as well as the change of their stabilities. This is consistent with and explains the
observed behavior in STOs [4]. Second, our work explains, through the temperature dependence of the mode-coupling
coefficients, how temperature alone can drive the dynamics of the system from one set of orbits and fixed points to
another. This is consistent with experimental observations [10] that to the best of our knowledge have until now eluded
explanation; a thermal stochastic field (not included here) only perturbs the orbits about the underlying manifold.
A stochastic field is, however, necessary to induce mode-hopping [9, 17] over saddle points separating orbits. Among
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other thing, our analysis reveals that increasing the power in the two-mode subsystem may effectively suppress the
linear mode coupling, as the system becomes less perturbed by the interaction between the modes.

Lastly, we stress that the multimode theory that we derived here is based on the expansion of general solutions of
modes in terms of the linear combination of eigenmodes, which are propagating spin wave modes in the present case,
and hence is not applicable for describing the coupled magnetodynamics involving a localized bullet mode [14, 26].
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Appendix A: Linear spin wave mode in NC-STO

In this appendix, we outline the derivation of the profiles of the linear spin wave mode by solving Eq. (3) given in
the main text. Separating the time and spatial variables of the wave function profile, i.e.,

d (r̃, t) = Ce−iωtν (r̃) , (A1)

where C is the normalization coefficient to be determined by boundary conditions, and r̃ ≡ r/Rc is the dimensionless
radial distance. Placing Eq. (A1) in Eq. (3), we arrive at a zeroth-order Bessel equation for the spatial part of the
wave function

r̃2 d2

dr̃2
ν (r̃) + r̃

d

dr̃
ν (r̃) +

(
ω̃ − ω̃r + iΓ̃α − iΓ̃J

)
r̃2ν (r̃) = 0 , (A2)

where ω̃r ≡ ωr/
(
Dex/R

2
c

)
, ω̃ ≡ ω/

(
Dex/R

2
c

)
, Γ̃α ≡ Γα/

(
Dex/R

2
c

)
and Γ̃J = ΓJ/

(
Dex/R

2
c

)
. The general solution for

r̃ ≤ 1 reads

ν< (r̃) = C1J0 (κ<r̃) , (A3)

where J0 is the zeroth order Bessel function with

κ2
< = ω̃ − ω̃r + iΓ̃α − iΓ̃J . (A4)

For r̃ > 1, we should have an outgoing waves so Hankel function of the first kind is chosen, i.e.,

ν> (r̃) = C2H
(1)
0 (κ>r̃) , (A5)

where

κ2
> = ω̃ − ω̃r + iΓ̃α . (A6)

The coefficients C1 and C2 are determined by the matching boundary condition as well as the normalization
condition, i.e.,

C1J0 (κ<) = C2H
(1)
0 (κ>) , (A7)

and ∫ RF /Rc

0

dr̃r̃ |d (r̃)|2 = 1 . (A8)

Explicitly, we have

|C1|2 =

∣∣∣H(1)
0 (κ>)

∣∣∣2∣∣∣H(1)
0 (κ>)

∣∣∣2 ∫ 1

0
dr̃r̃ |d (r̃)|2 + |J0 (κ<)|2

∫ RF /Rc

1
dr̃r̃ |d (r̃)|2

, (A9)
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and

|C1|2 =
|J0 (κ<)|2∣∣∣H(1)

0 (κ>)
∣∣∣2 ∫ 1

0
dr̃r̃ |d (r̃)|2 + |J0 (κ<)|2

∫ RF /Rc

1
dr̃r̃ |d (r̃)|2

. (A10)

By matching the wave functions and their derivatives at r̃ = 1, we find a transcendental equation

κ<J1 (κ<)

J0 (κ<)
=
κ>H

(1)
1 (κ>)

H
(1)
0 (κ>)

, (A11)

where we have used the recurrence relation dZ0 (x) /dx = −Z1 (x) with Z denoting J or H(1). Solving this equation,
we can obtain the eigenmodes for a given current density. There are infinitely many solutions correspond to the
excited spin wave modes with different wave vectors (associated with the number of nodes n in the current flowing
region). The spin wave frequency in the ultra-thin limit (knd� 1) can be expressed as [28–30]

ωn =
√

(ωH +Dexk2
n)
(
ωH +Dexk2

n + ωM cos2 θM − ωA sin2 θM
)
. (A12)

By solving Eq. (A11), we find the wave vectors of the two lowest spin wave modes are

k1 = 1.76/Rc and k2 = 4.61/Rc . (A13)

As indicated by Eqs. (A4) and (A6), the wavelengths of excited spin waves in general depend on both damping and
current; in the small damping limit, we recover Slonczewski’s result [21] of k1 = 1.19/Rc and k2 = 4.5/Rc.
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[17] E. Iacocca, O. Heinonen, P. K. Muduli, and J. Åkerman, “Generation linewidth of mode-hopping spin torque oscillators,”
Phys. Rev. B , 89, 054402 (2014).

[18] N. Sharma, P. Dürrenfeld, E. Iacocca, O. Heinonen, and J. Åkerman, Appl. Phys. Lett., 105, 132404 (2014).
[19] A. Eklund, S. Bonetti, S. R. Sani, S. Majid Mohseni, J. Persson, S. Chung, S. Amir Hossein Banuazizi, E. Iacocca,
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