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Degenerate Band Edge (DBE) modes are known for their exceptionally high field intensity at
near flat dispersion diagram profile. Due to the latter property, resonances supported by these
modes are associated with very strong field at the band edge. DBE and similar resonances of this
class have been typically realized by introducing anisotropic dielectric slabs in volumetric photonic
crystals. By contrast, in this paper, we present an analytic model of DBE modes using a simple
set of non-identical coupled transmission lines. The unequal phase velocities of the supported
waves supported by these transmission lines lead to mode degeneracy, that in turn provide quartic
solutions of dispersion (ω−β) relations. DBE mode appear as one these quartic solutions. As such,
the proposed model generalizes the concept of DBE modes using the construct of non-identical
coupled transmission lines. In this paper, we also propose a propagation medium using a dual
pair of non-identical transmission lines. The medium is referred to as ‘butterfly’ structure and
is composed of four coupled transmission lines. These four coupled transmission lines generate
TM01−like Degenerate Band Edge mode. This is done by coupling the TE modes supported on
each pair of the transmission lines. Mode purity at the resonance frequency and the intense field
profile on the axis are properties that can be exploited for high power microwave sources.
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I. INTRODUCTION

Periodic and/or metamaterial structures are routinely
used to control propagation characteristics of electromag-
netic waves. They have been successfully used in numer-
ous applications, including antenna arrays [1], leaky wave
antennas [2], electromagnetic bandgap structures [3], ar-
tificial magnetic conductors [4], frequency selective sur-
faces [5] and slow wave realization [6–8]. Depending on
the unit elements used in periodic layers, different prop-
erties of electromagnetic wave propagation is achieved.
For example, (i) using split rings and copper strips in a
two dimensional periodic array, negative index of refrac-
tion was achieved [9]; (ii) periodically spaced antenna
elements provide arbitrary beam-forming for multipath
signal reception and target tracking [10, 11]; (iii) two di-
mensional textured lattice of resonant elements in metal
sheet forms high impedance surface, preventing certain
frequencies from propagation [4]. However, the simplest
form of periodic structures is periodic dielectric stacks
that have been traditionally used to achieve electromag-
netic bandgaps [12]. In this paper, we focus on the latter
and propose a replacement of those dielectrics using cou-
pled transmission lines.
Periodic stacks of dielectrics are often referred to as

photonic crystals as in Fig. 1(a). These crystals support
band gaps in their dispersion diagrams caused by the
coupling of forward and backward waves. The actual
dispersion curve can be of second order with the edge of
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the bandgap located at the βp = π point, referred to as
‘regular band edge (RBE)’ (Fig. 1(a)). Field intensity
is typically high at the band edge and is proportional to
N2 [13], where N is the number of periodic cells in an
array.

When anisotropic dielectric layers are used to form unit
cells of the stack, additional resonances can be supported
[7, 14, 15]. The dispersion diagram for these cases can be
up to fourth order and the edge of the band is usually re-
ferred to as Degenerate Band Edge (DBE) [15, 16]. Due
to this fourth order ω − β relation, the field intensity at
the band edge is proportional to N4 [13, 15], where N is
the number of periodic cells in an array. That is, huge
field enhancement is associated with this resonance real-
ized by these special DBE crystals[13, 15]. This property
has been exploited in the past to improve the directiv-
ity of dipole antennas [17]. The insertion of a magnetic
layer into the unit cell can generate Magnetic Photonic
Crystal modes [8, 18]. These modes are specially useful
to achieve frequency independent scanning of leaky wave
antennas [2].

Despite their attractive properties and applications,
DBE crystals lack simplicity in realization. These crys-
tals are usually formed of bulk dielectric slabs and require
large space. Due to this, the DBE crystals are difficult
to conform into certain applications e.g. electronic chips,
planner antennas, waveguides etc. where space is lim-
ited. Therefore, alternate approaches to realize such me-
dia are of interest. As shown in [13, 19, 20], the physics of
DBE/MPC modes are associated with anisotropic media
and special mode coupling mechanism. Already, as a sim-
pler alternative, Locker et. al. [7] introduced the concept
of coupled transmission lines (TLs) to emulate photonic
crystals. As shown by Locker et. al. [7], coupled and un-
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FIG. 1. (a) 1-D photonic crystals composed of dielectric stacks (top left); Equivalent medium in the form of printed circuits
(top right); ω − β diagram showing regular band edge resonance (bottom) (b) Dual pair of coupled non-identical microstrip
lines and its equivalent circuit; DbBE (bottom left) and DBE (bottom right) resonances are supported on these lines.

coupled sections of meandered microstrip lines emulate
the required anisotropy for the realization of DBE modes.
This approach has also been used to realize miniatur-
ized antennas [6] and to achieve frequency independent
beams-scanning [2] in leaky wave antennas.

Although the concept of coupled TLs has been suc-
cessfully used [21] in various applications, its potential
has yet to be exploited. For example, DBE modes have
yet to be realized inside waveguide structures. Recently,
Othman et al. [22] proposed a medium formed by mis-
aligned elliptic irises that demonstrates DBE modes in-
side circular waveguides. These modes can be useful to
amplify RF wave that interacts with an electron beam
[23] in traveling wave tubes and/or Backward Wave Os-
cillators (BWOs). Typically, the electronic efficiency of
traveling wave tubes and BWOs is low and dependent on
the axial field intensity of the waveguide modes. There-
fore, the introduction of new modes within waveguide
that support strong axial electric field at the center can
improve beam-to-RF mode interactions. However, the
elliptic irises [22] do not support pure TM01 modes, an
essential property for efficient beam-wave interactions.
Even though, the DBE mode was demonstrated in dis-
persion diagrams [22], the physics of mode coupling in
the presence of natural TE and TM modes inside has
not been explained. To do so, a generalized approach of
mode coupling mechanism is introduced in this paper.

We present a generalized method of mode coupling
using non-identical coupled transmission lines to realize
fourth-order dispersion diagrams (DBE modes). In pre-
vious papers [7, 8], only a single pair of coupled TLs was

considered and the associated coupled modes were TEM

types. However, single pair of non-identical TLs does not
provide sufficient coupling to support DBE modes due to
the presence of the natural waveguide (TE, TM) modes
in background. Also, in previous works, the coupling was
not characterized in terms of simple (L,C) parameters.
Further, as noted above, the mode coupling mechanisms
leading to higher-order dispersion was not explained.
In this paper, we build upon the concept of coupled

transmission lines and proceed to generate higher-order
dispersion curves using a new ‘coupled mode’ technique
for dual pairs of non-identical coupled TLs (Fig. 1(b)).
The key characteristics of the new coupled TLs are:

1. Non-identical TLs

2. Coupled (L,C) parameters

3. Coupling co-efficients, later defined as Kc1,Kc2,
and Kc3;

These will be explained in Section-II. Section-III presents
a ‘butterfly’ structure that realizes the non-identical TLs.
The structure demonstrates DBE modes with TM01−like
field profile. In section-IV, a BWO example will be given
as a sample of vacuum tube applications using four cou-
pled transmission lines. It is shown that, the field en-
hancement due to DBE mode improves the BWO’s elec-
tronic efficiency. Overall, we believe that the findings
and analysis in this paper will provide a basis for dis-
persion engineering pertaining to other applications such
as resonator antennas [24], waveguides [25] and cavities
[26].
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FIG. 2. (a) A pair of coupled non-identical TLs to realize DbBE and DBE modes. Two oppositely traveling waves with unequal
phase velocities couple through mutual inductance, LM and capacitance, CM (b) Pair of uncoupled and coupled non-identical
TLs supporting forward and backward waves whose propagation constants are defined in (2)-(9). (c) ω− β dispersion diagram
of the uncoupled TLs for each of the supported modes given in (2)-(5). The solid blue and red line represent (2) and (4), while
dashed blue and red lines represent (3) and (5). (d) Regular band edge resonances realized by the non-identical coupled TLs
are found due to unequal velocities (υ1, υ2) (6)-(9). These curves refer to circuit parameters (L1, C1) ≡(16.17 µH, 68.8 pF) and
(L2, C2) ≡(6.5 µH, 27.52 pF).

II. DISPERSION ENGINEERING USING DUAL

NON-IDENTICAL PAIR OF TLS

A. Background

Transmission lines are inherently periodic structures
as they can be modeled with periodically spaced lumped
elements (L,C) of period p. TLs support both forward
and backward waves. By controlling the (L,C) param-
eters of the TLs, slow waves (υ ≪ c) can be realized.

Indeed, this property has been used to enhance coupling
of the electron beam to RF waves in traveling wave tubes
and BWO applications. Examples of coupled transmis-
sion lines include double helix [27], ring-bar [28, 29] and
ring-loop [30] etc. For these cases, the TL pair had iden-
tical lumped elements (L,C) and supports regular band
edge mode only. This mode is observed at the frequency
(ωπ) corresponding to βp = π, 3π, 5π, .... in the dispersion
diagram, where β is the propagation constant and ωπ is
the angular frequency. We remark that regular band edge
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FIG. 3. ω − β diagrams associated with coupled pairs of TLs. The (L,C) parameters of the coupled TLs of each pair are:
(L1, C1) ≡(16.17 µH, 68.8 pF) and (L2, C2) ≡(6.5 µH, 27.52 pF). (a) DbBE dispersion curves viz. weak coupling of the dual
TL pair. For DbBE mode, the coupling parameters are: Kc1 = Kc2 = Kc3 = 20.85 (b) DBE dispersion curves viz. strong

coupling of the dual TL pair. These are fourth-order curves and higher-order dispersion condition: ∂3ω
∂β3 6= 0., the coupling

parameters are: Kc1 = Kc2 = 20.85 6= 50 = Kc3

resonances are a consequence of the coupling between the
forward and backward wave modes [29, 31, 32].

When the coupled TLs are not identical viz. composed
of different lumped elements (blue and red) as shown in
Fig. 1(b) (top), the forward and backward waves have
unequal phase and group velocities and give rise to dou-
ble band edge (DbBE) as in Fig. 1(b) (bottom left). The
term ‘double band’ originates from the presence of dual
RBE resonances in the dispersion diagram. Typically,
DbBE resonances are weak in comparison to DBE reso-
nances and are not useful since the field intensity at the
band edge is proportional to N2. The non-identical na-
ture of the TLs induces weak coupling between two RBE
resonances, creating a crest in between them (Fig. 1(b)).
The latter affects the electric field intensity at the band
edge. The coupling strength between these two RBE res-
onances is completely dependent on the type of mode
involved i.e. the field profiles of each mode.

In contrast, DBE modes are quite strong due to their
degeneracy at the band edge. The coupling strength be-
tween the TLs, if chosen appropriately by modifying the
geometry of RF structure, furnish appropriate coupling
environment required for DbBE modes to evolve into
DBE modes (Fig. 1(b) (bottom right)). Therefore, DBE
resonance can be achieved if the lumped parameters of
the non-identical coupled TLs are chosen appropriately.
Unlike DbBE resonances, four modes are strongly cou-
pled together to form DBE resonances. Due to this, field
intensity at the band edge is couple of degrees higher as
compared to RBE or DbBE resonances. Actually, more
than second-order dispersion can be achieved using a pair
of non-identical coupled TLs. Depending on the modes
involved in the coupling process and lumped (L,C) el-
ements, DbBE or DBE modes can be achieved. Below,

we provide a theoretical analysis for the coupled TLs to
generate higher-order dispersion curves.

B. Theoretical Analysis

The presented analysis follow the coupled mode the-
ory [31, 33]. For any continuously coupled system, the
coupled mode propagation constants are functions of the
propagation constants of each uncoupled mode [31]. For
detailed information about the continuous coupling in pe-
riodic systems and the associated propagation constants,
please refer to the derivation in the Supplemental ma-
terial [34]. Since coupled TLs comprise of periodically
spaced lumped coupling elements (LM , CM ), the analogy
of continuously coupled system can be translated to cou-
pled transmission line systems. Accordingly, the coupled
pair of TLs are associated with the propagation constants
[31]:

β± =
βm + βn

2
±
√

(
βm − βn

2
)2 −K2

c (1)

Here, βm = ω
√
LC, βn = 2π

p − ω
√
LC, the uncoupled

propagation constants of each line being coupled and β±
refer to the forward and backward modes for the coupled
TLs system. Also, the coefficient, Kc represents the cou-
pling between the βmn modes. We remark that (1) is the
building block of our analysis. Specifically, by choosing
appropriate modes to replace the (βm, βn) pair, fourth-
order dispersion curves can be generated.
To begin, let us consider two uncoupled TLs associ-

ated with different lumped inductances and capacitances
(L1, C1) and (L2, C2). These lines are depicted in blue
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and red color in Fig. 2(a), 2(b). Each TL supports for-
ward and backward waves associated with unequal ve-
locities, υ1 = 1√

L1C1

6= 1√
L2C2

= υ2. The propagating

constants of these four waves are:

βa = ω
√

L1C1 =
ω

υ1
(2)

βb =
2π

p
− ω

√

L1C1 =
2π

p
− ω

υ1
(3)

βc = ω
√

L2C2 =
ω

υ2
(4)

βd =
2π

p
− ω

√

L2C2 =
2π

p
− ω

υ2
(5)

Each of the above β’s, gives rise to the linear disper-
sion curves (2)-(5) in Fig. 2(c). Notably, unlike iden-
tical TLs, each line supports non-overlapping forward
wave and backward wave modes represented by solid and
dashed lines, respectively. We denote the forward wave
propagation constants as βa (solid blue line) and βc (solid
red line). Similarly, βb (dashed blue line) and βd (dashed
red line) represent the backward wave propagation con-
stants.
When the TLs are coupled, they couple through the

forward and backward mode pairs. This gives rise to
second-order dispersion curves as in Fig. 2(d). Specifi-
cally, the coupling between forward and backward mode
pairs e.g. βa(ω), βd(ω) and βb(ω), βc(ω) gives rise to
second-order dispersion curves. The associated propaga-
tion constants are given by

βu =
π

p
− ω

2
(
1

υ2
− 1

υ1
) +

√

{π
p
− ω

2
(
1

υ2
+

1

υ1
)}2 −K2

c1

(6)

βv =
π

p
− ω

2
(
1

υ2
− 1

υ1
)−

√

{π
p
− ω

2
(
1

υ2
+

1

υ1
)}2 −K2

c1

(7)

βw =
π

p
+

ω

2
(
1

υ2
− 1

υ1
) +

√

{π
p
− ω

2
(
1

υ2
+

1

υ1
)}2 −K2

c2

(8)

βx =
π

p
+

ω

2
(
1

υ2
− 1

υ1
) +

√

{π
p
− ω

2
(
1

υ2
+

1

υ1
)}2 −K2

c2

(9)
It is noted that (6)-(9) represent second-order disper-

sion curves and are associated with an regular band edge
resonances at βp = 2 (rad) and βp = 4.3 (rad), respec-
tively. Their associated dispersion curves are given in
Fig. 2(d).

To characterize and observe higher-order coupling, we
introduce a new coupling parameter, Kc3. This quantity
represents coupling between βv and βw. Since βv and βw

have same phase velocity at the π− point, these pairs
couple further inside waveguide and form fourth-order
dispersion curves.

β1 =
π

p
+

√

√

√

√[
ω

2
(
1

υ1

− 1

υ2

) −
√

{π

p
− ω

2
(
1

υ1

+
1

υ2

)}2 − K2

c1
] − K2

c3

(10)

β2 =
π

p
−

√

√

√

√[
ω

2
(
1

υ1

− 1

υ2

) −
√

{π

p
− ω

2
(
1

υ1

+
1

υ2

)}2 − K2

c1
] − K2

c3

(11)

β3 =
π

p
+

√

√

√

√[
ω

2
(
1

υ1

− 1

υ2

) −
√

{π

p
− ω

2
(
1

υ1

+
1

υ2

)}2 − K2

c2
] − K2

c3

(12)

β4 =
π

p
−

√

√

√

√[
ω

2
(
1

υ1

− 1

υ2

) −
√

{π

p
− ω

2
(
1

υ1

+
1

υ2

)}2 − K2

2
] − K2

c3

(13)

The corresponding propagation constants, β2 and β3 are
of fourth-order and can be derived using the process de-
scribed in [31].
When (10)-(13) are plotted in Fig. 3, DbBE and DBE

modes are observed subject to appropriate choices for
Kc1,Kc2 and Kc3. That is, Kc3 is important in realizing
higher-order dispersion curves.
Above, Kc1, Kc2 and Kc3 signify different mode for-

mation mechanisms. It is noted that these parameters
are strongly dependent on geometric features and mode
profile. For example, the parameters Kc1 and Kc2 repre-
sent natural coupling between the forward and backward
modes of two non-identical TLs. Each forward and back-
ward wave velocities can be non-identical to each other
and degree of coupling is strongly dependent on their field
profile.
On the contrary, Kc3 represents coupling between two

RBE resonances of two different modes. Therefore, the
derivation of Kc3 is a cumbersome process and is beyond
the scope of this paper. Indeed, a numerical approach
can be employed to compute Kc3.
We note that special choices for Kc1, Kc2 and Kc3 lead

to the realization of DbBE (Fig. 3(a)) and DBE modes
(Fig. 3(b)). For example, a strong flat top fourth-order
resonance (DBE mode) is observed for Kc1 = Kc2 6= Kc3

(Fig. 3(b)). Since the ω − β diagram is a fourth or-
der polynomial, i.e. ω ∝ (β4), the first, second and third
derivatives of ω are non-zero at the band edge. This is an
important property that verifies the presence of the DBE
modes in the dispersion diagram. Recently, Othaman et
al. [23] demonstrated that DBE modes can be realized
by imposing angular anisotropy using elliptic irises in cir-
cular waveguide. In the following section, we present
an example of such DBE mode realization using coupled
TLs.
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(a) (b)

FIG. 4. (a) The ‘butterfly’ slow wave structure placed within a circular waveguide for realizing DBE modes. Unit cell is shown
below the circular waveguide. Each of the four TLs is formed of a series of elliptical loops. Also, a ring at the center of the
TLs serve to achieve coupling among the TLs. The dimensions of the elliptical and circular rings are: ha = 50.8 mm, hb = 36.4
mm, hc = 7.4 mm, p = 22 mm, rb = ring radius = 4.5 mm, rg = waveguide radius = 63.5 mm. Notably, the unequal pairs in
different planes emulate non-identical coupled TLs. (b) ‘butterfly’ geometry and its equivalent TL structure.

III. REALIZATION OF DBE MODE USING

‘BUTTERFLY’ GEOMETRY

Above, we proposed a pair of non-identical TLs to re-
alize higher-order dispersion curves. However, depending
on the geometry and mode profile, the coupling param-
eters are affected and either DbBE or DBE mode is ob-
served. In this section, we present an example of RF
structure based on coupled TLs placed inside a waveg-
uide. As already stated, strong coupling among the non-
identical coupled TLs is necessary to achieve DBE modes.
Othman et. al. [22] demonstrated such a medium by
using misaligned elliptic irises placed on the axis of a
circular waveguide.

In this paper, we realized DBE modes using two pairs
of free standing wire TLs placed orthogonally to each
other. One such structure is demonstrated in Fig. 4(a).
The associated structure is formed by a ‘butterfly’ unit
cell. This unit cell is composed of two non-identical pairs
of TLs represented by elliptic wires/bars, marked as blue
and red in Fig. 4(b). Notably, the four TLs are placed
circularly among a set of rings. These rings serve to
realize coupling among the four TLs. Each pair of TLs
(blue or red) are in essence Curved Ring-bars [29]. The
coefficients, Kc1 and Kc2 represent the coupling between
oppositely traveling modes for the TL pairs. They are

given as follows [29]:

Kc1 =
(1 + πha

4a )

E1(m)

√

βaβd

|βa − βd|
(14a)

Kc2 =
(1 + πhb

4a )

E2(m)

√

βbβc

|βb − βc|
(14b)

where, E1(m = ha

hc

) =
∫ π/2

0

√

1− (m2 − 1) sin2(θ)dθ

and E2(m = hb

hc

) =
∫ π/2

0

√

1− (m2 − 1) sin2(θ)dθ is the

elliptic integral of the second kind.
In Fig. 4(a), the coupling rings are marked

with green color and allow control of mutual induc-
tances/capacitances between the TL pairs. It is noted
that each identical pair (blue or red) in Fig. 4 serves as
a single TL component of the non-identical TL model as
shown in Fig. 2(b). This coupling mechanism serves to:

1. Provide a medium that support slow waves.

2. Lower the cut-off frequency of waveguide modes

3. Facilitates coupling of the lower order modes to
form higher-order such as DBE mode.

To illustrate the above mechanism, we refer to Fig.
5(a), 5(b). Indeed, the introduction of ‘butterfly’ geom-
etry lowered the cut-off frequency of each mode form-
ing slow waves inside the circular waveguide as shown in
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FIG. 5. Comparison of the dispersion diagrams with (a) and without (b) the ‘butterfly’ periodic geometry inside the circular
waveguide. As seen, the introduction of the ‘butterfly’ TL structure lowered the cut-off frequency of each mode by splitting the
TE11 degenerate modes. (c) Illustration of coupling to form the DBE TM01 mode by coupling of TE21 and TE11 degenerate
is shown. The field profiles are magnitudes of the overall field amplitude with E normalized to 0.1 V/m. (d)(top) Overall
electric field magnitude, E and Ez field magnitude (bottom) in XZ plane at the DBE resonance of the ‘butterfly’ geometry and
elliptical iris loaded waveguide [22]. The units are in dB (1 mV/m) [35].

Fig. 5(b). As depicted in Fig. 5(c), the degenerate TE11

mode coupled to the TE21 mode to form the DBE TM01-
like resonance. We remark that coupling is achieved via
the mutual Hz fields supported by the TE11 and TE21

modes. It is noted that unlike DBE crystals, no bandgap
was observed in dispersion diagrams. This is due to the
presence of other higher order waveguide modes in the
waveguide which are not affected by the geometry. One
key property of the ‘butterfly’ geometry is its strong Ez

field that leads to strong TM01−like mode at the DBE
resonance. As shown in Fig. 5(d), the strong and uni-
form Ez provides mode purity as compared to the elliptic
iris loaded waveguide [22]. In fact, Ez field at the center

(r = 0), is approximately 300 times stronger than that
of the elliptical iris loaded waveguide as shown in Fig.
6(a). Therefore, the purity of the mode supported by
the strong DBE resonance is suitable for vacuum tube
devices where strong Ez field is required. The provided
field profiles were obtained from CST Microwave Stu-
dio [35]. The detailed dispersion diagram for DBE mode
of ‘buttefly’ structure was obtained via full-wave simu-
lation using Ansoft High Frequency Simulation Software
(HFSS) package, 2015 [36]. It was also verified using
Computer Simulation Technology(CST) Microwave Stu-
dio [35]. It is shown in Fig. 6(b). The resonant frequency
of the DBE TM01-like mode is observed at approximately
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FIG. 6. (a) A comparison of Ez field along the axis of ‘butterfly’ geometry and elliptical iris loaded waveguide. As shown,
‘butterfly’ geometry provides Ez approximately 300 times larger compared to elliptic irises [22]. (b) ω−β diagram of ‘butterfly’
structure. DBE mode is depicted along with its field profile. The DBE resonance is observed at ωd/2π = 3.52 GHz.

ωd = 3.52 GHz.
The above geometry utilized the property of Curved

Ring-bar unit cells, known for supporting TM01 mode.
For other geometry, the mode profile defines the (L,C)
parameters. The challenge is to model each mode to
its transmission line equivalents and find the appropri-
ate coupling parameters: Kc1, Kc2 and Kc3. Hence, the
above approach forms mathematical tool for all.

IV. BWO DESIGN USING ’BUTTERFLY’

STRUCTURE

DBE modes have been used before to miniaturize di-
electric resonator antennas by lowering their resonance
frequencies [6]. They have also been demonstrated to
enhance the directivity of horn antenna due to their
strong resonance [38]. However, they have never been
used before in high power microwave sources e.g. Trav-
eling Wave Tubes or BWOs. These sources typically re-
quire ‘mode purity’ and intense axial field at the cen-
ter. Previously, DBE crystals [17] or RF structures [22]
supported strong resonant field. Yet, they lacked mode
purity and supported hybrid modes, inapt for such appli-
cations. Since we have demonstrated that TM01−DBE
modes with mode purity can be achieved using coupled
TL based ‘butterfly’ geometry, there is a strong potential
for DBE mode based tube applications. That is, DBE
mode can be useful for electron beam-RF wave interac-
tion for vacuum tubes. However, since DBE modes are
associated with narrow bandwidth, BWOs or klystrons
are more appropriate applications for this. In this pa-
per, we focus on BWO only. BWOs are active devices
designed to oscillate in single frequency depending on
the electron beam energy passing through it. The space
charge field of the beam couple to the backwardly propa-
gating wave, creating a feedback path for RF energy and

oscillation is established. The oscillation frequency de-
pends on the matching of the velocity of the beam and
the phase velocity of the backward wave. Typically, it
is the intersecting point of the beam line and ω − β di-
agram of the slow wave structure. As seen in Fig. 7(a),
ω − β diagrams of the first 20 modes of ‘butterfly’ slow
wave structure is given along with 52 kV beam line. The
beam will interact with all modes that have Ez field
at the center. To illustrate the BWO interaction with
DBE mode, a BWO design was simulated using Com-
puter Simulation Software (CST) Particle in Cell (PIC)
[37] code. The BWO draws 4 A current from a circular
cathode biased at 52 kV. The tube is 16 cm long and
generates 68 kW power at 3.34 GHz with 33% electronic
efficiency. The ‘butterfly’ slow wave structure is placed
at the center of the waveguide as shown in Fig. 7(b).
The bunching of electrons verifies the beam-wave inter-
action (Fig. 7(b)). Typically, the homogenous section
BWOs are associated with nominal electronic efficiency
of 15-20% [39, 40]. Hence, a 13-18% efficiency improve-
ment was observed by introducing the DBE mode in the
BWO using the ‘butterfly’ geometry.

V. CONCLUSION

We introduced a new class of TLs that can generate
DbBE and DBE modes. It was demonstrated that dual
pair of non-identical TLs can generate higher-order dis-
persion curves, specially DBE modes. Fourth-order dis-
persion equations were derived using the coupled mode
analysis for the non-identical pair of coupled TLs. Fur-
ther, it was shown that the order of the dispersion curves
are dependent on the choice of coupling parameters, Kc1,
Kc2 and Kc3 and dispersion can be controlled by them.
An alternate approach of DBE mode realization inside
circular waveguides was demonstrated via ‘butterfly’ ge-
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FIG. 7. (a) ω − β diagram of the first 20 modes of ‘butterfly’ slow wave structure using HFSS [36]. A 52 kV, 4 A beam
line is drawn to show resonant point (intersecting point of straight line and DBE mode) where beam-wave interaction takes
place in a simple ‘butterfly’ BWO design. (b) Demonstration of beam-wave interaction in a BWO loaded with ‘butterfly’
slow wave structure simulated using CST PIC code [37]. The presence of bunching due to velocity modulation verifies the
electron modulation process, essential for wave-particle coupling and power transfer. The color ramp shows the beam velocity,
υe normalized to the speed of light, c.

ometry, a design based on four coupled TLs. This geom-
etry provided approximately 300 times stronger Ez field
on the axis compared to elliptic irises. The presence of
DBE mode verifies the coupled TLs as an effective alter-
native of bulk photonic crystals. The same concept can
be extended further to design couplers, filters, printed
circuits and to engineer new class of vacuum tubes and
BWOs. An example of BWO design was presented to
verify the beam-wave interaction with DBE TM01−like
mode. The BWO demonstrated efficiency improvement

by 13-18% compared to nominal BWOs. This theory
and example are expected to serve as tools to engineer
dispersion curves for more practical applications.
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