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Entangling remote qubits is an essential technological element in the distributed quantum infor-
mation processing. Here, we propose a deterministic scheme to generate maximal entanglement
between remote superconducting atoms, using a propagating microwave photon as a flying qubit.
The building block of this scheme is an atom-photon two-qubit gate, in which the photon qubit is
encoded on its carrier frequencies. The gate operation completes deterministically upon reflection
of a photon, and the gate type can be continuously varied (including SWAP,

√
SWAP, and Identity)

through in situ control of the drive field. Applying such atom-photon gates sequentially, we can
perform various gate operations between remote superconducting atoms.

I. INTRODUCTION

Physical implementation of scalable quantum information processing is one of the main objectives in modern quan-
tum technology. There are two approaches for achieving this goal. In the first approach, we construct an integrated
quantum circuit which is composed of qubits of the same kind: the one-qubit gates are realized by local operations on
a single qubit, and the two-qubit gates are realized by mutual interaction between a pair of adjacent qubits. For exam-
ple, high-fidelity gate operations reaching the fault tolerance threshold for surface code error correction [1] have been
achieved in an array of superconducting qubits [2]. Recently, a scalable Shor’s algorithm [3] has been demonstrated
using a trapped ion quantum computer [4].
In the second approach, which is known as the distributed or modular architecture, we use a hybrid quantum

network composed of flying and stationary qubits [5–10]. Flying qubits, which are typically implemented by photons,
transfer quantum information among the stationary nodes. The stationary qubits, which are implemented by real or
artificial atoms, are used to register and process quantum information. Construction of such hybrid quantum networks
has been developed actively in cavity quantum electrodynamics (QED) using real atoms and optical photons. For
example, a deterministic quantum gate between a propagating photon and an atom has been demonstrated, which has
been further extended to a photon-photon gate [11–13]. The observation of single-photon Raman interaction [14, 15]
would be a crucial step towards achieving the swap-based photon-photon gates [16]. Similarly, in the microwave
quantum-optics setups based on circuit QED [17, 18], we can connect superconducting atoms by microwave photons
propagating in waveguides. Recently, entanglement generation between two remote superconducting atoms has been
achieved through the joint qubit-state measurement aided by a continuous field [19] or single photons [20] in the
microwave domain. In both schemes, entanglement generation succeeds probabilistically, conditioned on a specific
outcome of the joint measurement.
In this study, we propose a deterministic scheme for generating maximal entanglement between remote super-

conducting atoms, which is free from measurements on microwave photons. The building block of this scheme is a
two-qubit gate between a superconducting atom and a propagating microwave photon. In this gate, a driven su-
perconducting atom is coupled to a waveguide photon via a resonator (Fig. 1). The atomic qubit is encoded on
its two lowest levels, and the photon qubit is encoded on its carrier frequencies [21]. The gate operation completes

deterministically upon reflection of a photon, and the gate type is continuously variable (including SWAP,
√
SWAP,

and Identity gates) through in situ control of the drive field to the atom. Using a propagating photon as a flying
qubit, we can execute various gate operations between remote superconducting atoms, such as the entanglement gen-
eration and the qubit-state transfer. The present scheme provides a communication channel between distant clusters
of superconducting qubits and thus widens the potential of quantum computation in superconducting devices.
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FIG. 1: Schematic of the tunable atom-photon quantum gate. We input a photon qubit through waveguide 1 and drive the
superconducting atom through waveguide 2. The quantum-gate operation completes deterministically upon reflection of the
photon. We can realize various types of quantum gate by changing the drive condition.

II. ATOM-PHOTON GATE

A. Setup

In this section, we discuss a two-qubit gate between a superconducting atom and a microwave photon propagating
in a waveguide. The schematic of the considered device is shown in Fig. 1. A superconducting artificial atom,
which can be regarded as a two-level system, is dispersively coupled to a resonator. The resonator and the atom
are respectively coupled to waveguides 1 and 2. Through waveguide 1, we input a microwave-photon qubit, whose
quantum information is encoded on its carrier frequencies. Through waveguide 2, we apply a drive field to the atom
in order to engineer the dressed states of the atom-resonator system [22]. Assuming a static drive field of amplitude
Ωd and frequency ωd, the Hamiltonian of the atom-resonator system is given, in the rotating frame, by

Har = ωra
†aσσ† + [(ωa − ωd) + (ωr − 2χ)a†a]σ†σ +Ωd(σ

† + σ), (1)

where σ (a) is the annihilation operator for the atom (resonator), ωa (ωr) is the resonance frequency of the atom
(resonator), and χ is the dispersive shift. For concreteness, we assume the following parameter values: ωa/2π = 5 GHz,
ωr/2π = 10 GHz, and χ/2π = 75 MHz.
Throughout this study, we use the lowest four levels of the atom-resonator system, |g, 0〉, |e, 0〉, |g, 1〉, and |e, 1〉.

These bare states are the eigenstates of Har when the drive field is off (Ωd = 0). We set the drive frequency ωd

within the range of ωa − 2χ < ωd < ωa. Then, in the frame rotating at ωd, we obtain a nested energy diagram of
the bare states, where ω|g,0〉 < ω|e,0〉 < ω|e,1〉 < ω|g,1〉. When the drive field is on, the bare states are hybridized to

form the dressed states. We label them from the lowest in energy and denote them by |1̃〉, |2̃〉, |3̃〉, and |4̃〉 [Fig. 2(a)].
Diagonalizing Har, they are given by

|1̃〉 = cos θl|g, 0〉 − sin θl|e, 0〉, (2)

|2̃〉 = sin θl|g, 0〉+ cos θl|e, 0〉, (3)

|3̃〉 = cos θh|e, 1〉 − sin θh|g, 1〉, (4)

|4̃〉 = sin θh|e, 1〉+ cos θh|g, 1〉, (5)

where θl =
1
2arg(

ωa−ωd

2 + iΩd) and θh = 1
2arg(

ωd−ωa+2χ
2 + iΩd). Their eigenenergies are given by

ω̃1,2 = ωa−ωd

2 ±
√(

ωa−ωd

2

)2
+Ω2

d, (6)

ω̃3,4 = ωr − ωd−ωa+2χ
2 ±

√(
ωd−ωa+2χ

2

)2
+Ω2

d, (7)

where the plus (minus) sign is taken for ω̃2 and ω̃4 (ω̃1 and ω̃3). In this four level system, |3̃〉 and |4̃〉 decay to |1̃〉 and
|2̃〉 emitting a photon into waveguide 1. Denoting the radiative decay rate of resonator by κ, the decay rates between
the dressed states are given by

κ̃32 = κ̃41 = κ cos2 θt, (8)

κ̃31 = κ̃42 = κ sin2 θt, (9)

where θt = θl + θh.
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FIG. 2: Dressed-state engineering. (a) Level structure of the dressed states in the rotating frame. (b) Drive conditions to
achieve various quantum gates. We change the drive condition along the red solid line, where ∆ω = ω̃21 is kept constant.
SWAP gate is realized at Psw,

√
SWAP is realized at Prs1/2, and Identity gate is realized at Pid. In the shadowed areas, the

gate fidelities are degraded due to the parasitic excitations. (c) Transition frequencies ω̃ij , (d) normalized decay rates κ̃ij/κ,
and (e) transition probabilities |ξij |2 as functions of ωd. Ωd is adjusted to satisfy ∆ω/2π = 125 MHz.

B. Single-photon response

We discuss the response of this four-level system to a single microwave photon input through waveguide 1. For
simplicity, we assume that the input photon is monochromatic with frequency ω. Furthermore, we assume that both
|1̃〉 and |2̃〉 are stable and the four-level system is in their superposition initially. Due to the oblique decay paths (κ̃31
and κ̃42), the input photon may induce the Raman transition upon reflection. The state vector of the overall system,
consisting of a propagating photon and the dressed states, evolves as

|1̃, ω〉 → ξ11(ω)|1̃, ω〉+ ξ12(ω)|2̃, ω −∆ω〉, (10)

|2̃, ω〉 → ξ21(ω)|1̃, ω +∆ω〉+ ξ22(ω)|2̃, ω〉, (11)

where ∆ω = ω̃21 = ω̃2 − ω̃1. The coefficients ξij are given by (see Appendix A)

ξ11(ω) = 1− κ sin2 θt
κ
2 − i(ω − ω̃31)

− κ cos2 θt
κ
2 − i(ω − ω̃41)

, (12)

ξ12(ω) =
κ sin θt cos θt
κ
2 − i(ω − ω̃31)

− κ sin θt cos θt
κ
2 − i(ω − ω̃41)

, (13)

ξ21(ω) =
κ sin θt cos θt
κ
2 − i(ω − ω̃32)

− κ sin θt cos θt
κ
2 − i(ω − ω̃42)

, (14)

ξ22(ω) = 1− κ cos2 θt
κ
2 − i(ω − ω̃32)

− κ sin2 θt
κ
2 − i(ω − ω̃42)

. (15)
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We can confirm the probability conservation, |ξ11|2 + |ξ12|2 = |ξ21|2 + |ξ22|2 = 1.

C. SWAP gate

In the proposed atom-photon gate, we use |1̃〉 and |2̃〉 as the logical basis for the material node. Note that these

states are roughly the atomic ground and excited states (|1̃〉 ≈ |g, 0〉 and |2̃〉 ≈ |e, 0〉) under our choice of the drive
condition. For the photonic qubit, we encode quantum information on its career frequency: the basis states are |ωl〉
and |ωh〉, where (ωl, ωh) = (ω̃32, ω̃31) or (ω̃42, ω̃41). For concreteness, we focus on the former case and use |1̃〉, |2̃〉 and
|3̃〉 as a Λ system hereafter. The case of an “impedance-matched” Λ system, where θt = π/4 and therefore κ̃31 = κ̃32,
is of particular importance. If ωl(= ω̃32) is detuned sufficiently from the non-target transitions (ω̃31, ω̃41, and ω̃42),
we immediately observe in Eqs. (12)–(15) that ξ11(ωl) = ξ21(ωl) = 1 and ξ12(ωl) = ξ22(ωl) = 0, which implies that

|1̃, ωl〉 → |1̃, ωl〉 and |2̃, ωl〉 → |1̃, ωh〉. Similarly, |1̃, ωh〉 → |2̃, ωl〉 and |2̃, ωh〉 → |2̃, ωh〉. These four time evolutions are
summarized as

(α1|1̃〉+ α2|2̃〉)⊗ (β1|ωl〉+ β2|ωh〉) → (β1|1̃〉+ β2|2̃〉)⊗ (α1|ωl〉+ α2|ωh〉). (16)

where α1, α2, β1 and β2 are arbitrary coefficients. Namely, SWAP gate is achieved between the photon and atom
qubits. Note that the deterministic Raman transition, |1̃, ωh〉 → |2̃, ωl〉, has been demonstrated recently as the
deterministic down-conversion [22, 23] and is applied for detection of single microwave photons [24, 25].
The frequency ωd and the amplitude Ωd of the qubit drive are chosen as follows: (i) In order to constitute an

impedance-matched Λ system (θt = π/4), ωd and Ωd should satisfy

4Ω2
d = (ωa − ωd)(ωd − ωa + 2χ). (17)

This is represented as an ellipse on the (ωd,Ωd) plane [green dashed line in Fig. 2(b)]. (ii) ωl(= ω̃32) and ωh(= ω̃31)
should be detuned sufficiently from the non-target transitions. This requires that (ωd,Ωd) 6= (ωa − 2χ, 0), (ωd,Ωd) 6=
(ωa, 0), and ωd 6= ωa − χ [shadowed areas in Fig. 2(b)]. (iii) The frequency difference between the two basis states,
∆ω = ωh − ωl is given, from Eq. (6), by

∆ω =
√
(ωa − ωd)2 + 4Ω2

d. (18)

The condition that ∆ω = constant is also represented as an ellipse on the (ωd,Ωd) plane [red solid line in Fig. 2(b)].
Practically, a large ∆ω is advantageous, since we can suppress the effects of finite qubit lifetime by using a short
photon pulse. Hereafter we set ∆ω/2π = 125 MHz. From Eqs. (17) and (18), the drive condition to achieve a SWAP
gate is determined as

ωsw
d = ωa − (∆ω)2

2χ , (19)

Ωsw
d = ∆ω

4χ

√
4χ2 − (∆ω)2, (20)

which amount to ωsw
d /2π = 4.896 GHz and Ωsw

d /2π = 34.55 MHz, respectively [Psw in Fig. 2(b)]. With this qubit
drive, the carrier frequencies of the photon qubit are determined as

ω∗
l = ωr − χ−

√
χ2 − (∆ω

2 )2 − ∆ω
2 , (21)

ω∗
h = ωr − χ−

√
χ2 − (∆ω

2 )2 + ∆ω
2 , (22)

which amounts to ω∗
l /2π = 9.821 GHz and ω∗

h/2π = 9.946 GHz, respectively [Fig. 2(c)].

D.
√
SWAP and Identity gates

A merit of the present scheme is that the transition frequencies and the decay rates between the dressed states
are controllable through the drive field. In particular, we can vary the drive condition conserving the frequency
difference ∆ω between |1̃〉 and |2̃〉 [solid line in Fig. 2(b)]. By changing the drive condition smoothly with a transit

time of the order of 10 ns, we can suppress the non-adiabatic transition between |1̃〉 and |2̃〉. This implies that various
atom-photon gates can be realized without changing the logical basis.



5

 0.1

 1

 10

 100

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  10  20  50 5 2

fid
e
lity

(b)

photon

drive condition

(a)

Prs2

atom 1

Psw

atom 2

FIG. 3: Entanglement generation between remote superconducting atoms. (a) Schematic of the circuit. Superconducting

atoms 1 and 2 are cascaded by circulators. Initially, both atoms are prepared to be in state |1̃〉 and a single photon |ω∗

h〉 is
input. The drive conditions for atoms 1 and 2 are respectively set at Prs2 and Psw of Fig. 2(b). (b) Fidelity of the generated
entangled state as a function of the resonator linewidth κ and the pulse length l. The maximum fidelity of 0.983 is obtained
by setting κ/2π =5.482 MHz and l = 1.584 µs.

We observe in Fig. 2(c) that ω∗
l (ω∗

h) is always out of resonance with ω̃31 and ω̃41 (ω̃32 and ω̃42). Therefore,

two of the basis states, |1̃, ω∗
l 〉 and |2̃, ω∗

h〉, remain unchanged upon reflection of a photon regardless of the drive

condition. In contrast, the dynamics of |1̃, ω∗
h〉 and |2̃, ω∗

l 〉 are highly sensitive to the drive condition. To observe this,
we show the drive-frequency dependence of |ξ11(ω∗

h)|2, |ξ12(ω∗
h)|2, |ξ21(ω∗

l )|2, and |ξ22(ω∗
l )|2 in Fig. 2(e). Note that

|ξ11(ω∗
h)|2 = |ξ22(ω∗

l )|2 and |ξ12(ω∗
h)|2 = |ξ21(ω∗

l )|2 in this plot. As we discussed in Sec. II C, |ξ12(ω∗
h)|2 and |ξ21(ω∗

l )|2
take their maximal value of unity under the drive condition of SWAP gate [Psw in Fig. 2(b)–(e)]. In contrast, when the
qubit drive is off, |ξ12(ω∗

h)|2 and |ξ21(ω∗
l )|2 take their minimal value of zero [Pid of Fig. 2(b)–(e)]. Then we realize an

Identity gate, where both of the atom and the photon qubits remain unchanged upon reflection. Another important
operation mode is a

√
SWAP gate, which generates maximal entanglement between the atom and photon qubits [26].

This is realized at Prs1 and Prs2 of Fig. 2(b)–(e), where |ξ11(ω∗
h)|2 = |ξ12(ω∗

h)|2 = |ξ21(ω∗
l )|2 = |ξ22(ω∗

l )|2 = 1/2. The
basis states evolve as

|1̃, ω∗
l 〉 → |1̃, ω∗

l 〉, (23)

|1̃, ω∗
h〉 → 1∓i

2 |1̃, ω∗
h〉+ 1±i

2 |2̃, ω∗
l 〉, (24)

|2̃, ω∗
l 〉 → 1±i

2 |1̃, ω∗
h〉+ 1∓i

2 |2̃, ω∗
l 〉, (25)

|2̃, ω∗
h〉 → |2̃, ω∗

h〉, (26)

where the upper (lower) signs should be taken at Prs1 (Prs2). The drive conditions are ωrs1
d /2π = 4.893 GHz and

Ωrs1
d /2π = 32.46 MHz at Prs1, and ω

rs2
d /2π = 4.899 GHz and Ωrs2

d /2π = 36.60 MHz at Prs2.

III. ENTANGLEMENT GENERATION BETWEEN REMOTE ATOMS

A. Evolution of atom–atom–photon system

By cascading such atom-resonator systems using circulators, we can construct a one-dimensional network of atomic
qubits which are connected quantum-mechanically by flying qubits, and perform various gate operations between
remote qubits. As an application of practical importance, we here discuss a deterministic entangler of two remote
superconducting atoms, which is essential for distributed quantum information processing.
We consider a system of two remote superconducting atoms connected by a microwave transmission line, as depicted

in Fig. 3(a). Initially, both atoms are in the ground state |g〉. We adiabatically switch on the drive fields to the atoms:
the drive condition is Prs2 of Fig. 2(b) for atom 1 and Psw for atom 2. After adiabatic switching on of the drive

fields, which typically takes several tens of nanoseconds [24, 25], both atoms are in state |1̃〉. Then, we input a
single photon |ω∗

h〉 into this circuit. The state vector of the overall system (atom 1, 2, and photon) is written as

|1̃〉1 ⊗ |1̃〉2 ⊗ |ω∗
h〉p ≡ |1̃, 1̃, ω∗

h〉. After reflection of the photon at atom 1, a
√
SWAP gate is applied to atom 1 and the
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photon. According to Eq. (24), the state vector evolves as

|1̃, 1̃, ω∗
h〉 → 1+i

2 |1̃, 1̃, ω∗
h〉+ 1−i

2 |2̃, 1̃, ω∗
l 〉. (27)

After reflection of the photon at atom 2, a SWAP gate is applied to atom 2 and the photon. According to Eq. (16),
the state vector further evolves as

→
(

1+i
2 |1̃, 2̃〉+ 1−i

2 |2̃, 1̃〉
)
⊗ |ω∗

l 〉. (28)

Finally, by adiabatically switching off the drive fields, we obtain a maximally entangled state of remote qubits,
1+i
2 |g, e〉+ 1−i

2 |e, g〉. Note that, in the final state of Eq. (28), the photon is disentangled from both atoms. Therefore,
the present scheme completes deterministically, without the need for measurement on the output microwave photons.

B. Fidelity

In the above discussions, the lifetime T1 of the superconducting atom and the length l of the photon pulse are
assumed to be infinite. Here, taking account of their finiteness, we quantitatively evaluate the fidelity of the generated
entangled state. We assume a long-lived superconducting atom with T1 = 80 µs and with negligible pure dephasing,
and employ a trigonometric pulse profile for the photon qubit, as given by

fω,l(t) =

{√
2/l cos(πt/l) exp(−iωt) (|t| < l/2)

0 (otherwise)
, (29)

where l is the pulse length and ω(= ω∗
l , ω

∗
h) is the center frequency. For ∆ω/2π = 125 MHz, the two basis states |ω∗

h〉
and |ω∗

l 〉 are almost orthogonal (|〈ω∗
l |ω∗

h〉| . 10−3) for l & 50 ns. Note that a pulse-shaped single photon is available
in the microwave domain [27].
Typically, the propagation time between the superconducting atoms is much shorter than the pulse length of the

input photon. Therefore, we can safely regard the pulse length l as the gate time. Setting the initial moment at
t = −l/2, we evaluate the fidelity of the generated two-qubit entangled state after photon reflection at t = l/2. In
Fig. 3(b), the fidelity is plotted as a function of κ and l (see Appendix B for calculation details). The conditions for
high-fidelity entanglement generation are as follows: (i) The gate time l is much shorter than the lifetime T1 of the
atom. (ii) In atom-photon gates, the photon pulse is generally delayed due to absorption and reemission by the atom
and degrades the fidelity. Therefore, the pulse length l should be much larger than the delay time (∼ κ−1) so that such

delay becomes negligible. (iii) Levels |3̃〉 and |4̃〉 are well resolved in frequency, which requires κ≪ ω̃43 ≃ 2π×70 MHz
[see Fig. 2(c)].
The fidelity of the generated entangled state is plotted in Fig. 3(b) as a function of the resonator linewidth κ and

the pulse length l. By setting κ/2π = 5.482 MHz and l = 1.584 µs, the fidelity of the generated entangled state reach
0.983. This is sufficient for the communication channel in the distributed quantum information processing [8]. We
can further improve this fidelity by enhancing the lifetime T1 of the atom. Alternately, we can improve the fidelity
by enhancing the dispersive shift χ and the cavity linewidth κ, which enables the use of a shorter photon pulse.

C. Tunability of operation mode

An advantage of the present scheme is that the operation mode can be controlled in situ through the atomic drive,
without changing the circuit configuration nor the carrier frequencies ω∗

l and ω∗
h of the photonic qubits. For example,

by setting the drive condition of atom 1 at Prs1, we obtain a maximal entangled state of 1−i
2 |g, e〉+ 1+i

2 |e, g〉. Thus,
we can control the relative phase of superposition.
Another operation mode of practical importance is the deterministic qubit-state transfer between remote atoms.

For this purpose, we set the drive conditions of both atoms at Psw, and send a single photon tuned to |ω∗
l 〉 or |ω∗

h〉
(or their arbitrary superposition). This deterministically transfers the qubit stored in atom 1 to atom 2; the input
photon qubit is transferred to atom 1, and the qubit stored in atom 2 is transferred to the output photon. If three or
more superconducting atoms are cascaded, the input photon induces a quantum domino, in which the atomic qubits
are successively transferred to the subsequent ones.
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IV. SUMMARY

In summary, we theoretically proposed a two-qubit gate between a superconducting atom and a propagating mi-
crowave photon. The gate operation completes deterministically upon reflection of the photon, and various two-qubit
gates (including SWAP,

√
SWAP, and Identity) are realizable through in situ control of the drive field. Applying this

atom-photon gates successively, we can perform various gate operations between remote superconducting atoms. For
example, we can deterministically generate maximum entanglement between two atoms using a microwave photon as
a flying qubit. This opens the way for deterministic and quantum-mechanical connection between remote clusters of
superconducting qubits and thus widens the potential of superconducting quantum computing.
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Appendix A: Derivation of ξij(ω)

Here, we derive the coefficients ξij(ω) which appear in Eqs. (12)–(15). The Hamiltonian of the overall system
including waveguide 1 is given by

H = Har +Hrw, (A1)

Har = ωra
†aσσ† + [(ωq − ωd) + (ωr − 2χ)a†a]σ†σ + Ωd(σ

† + σ), (A2)

Hrw =

∫
dk

[
ka†kak +

√
κ/2π(a†ak + a†ka)

]
, (A3)

where Har describes the driven atom-resonator system [Eq. (1)], Hrw describes the interaction between the resonator
and the propagating photon in waveguide 1, and ak is the annihilation operator of the waveguide photon with wave
number k. The superconducting atom is assumed to have an infinite lifetime here. Switching to the dressed-state
basis [Eqs. (2)–(5)], H is rewritten as

H =
∑

j

ω̃jσjj +

∫
dk

[
ka†kak +

∑
i,j(ηjiσjiak + η∗jia

†
kσij)/

√
2π

]
, (A4)

where the indices run over i, j = 1, · · · , 4 and σji = |̃j〉〈̃i|. ηji is given by η32 = η41 =
√
κ cos θt, η42 = −η31 =

√
κ sin θt,

and ηji = 0 otherwise.

We introduce the real-space representation of the field operator by ar = (2π)−1/2
∫
dk eikrak. In this representation,

the r < 0 (r > 0) region corresponds to the incoming (outgoing) field. From Eq. (A4), we can rigorously derive the
following input-output relation,

ar(t) = ar−t(0)− iθ(r)θ(t − r)
∑

i,j

η∗jiσij(t− r), (A5)

where θ(r) is the Heaviside step function. We can also derive the following Heisenberg equations,

d

dt
σ13 = (−iω̃31 − κ/2)σ13 + i[η31(σ33 − σ11)− η32σ12 + η41σ43]a−t(0), (A6)

d

dt
σ14 = (−iω̃41 − κ/2)σ14 + i[η41(σ44 − σ11)− η42σ12 + η31σ34]a−t(0), (A7)

where ω̃ij = ω̃i − ω̃j.

Hereafter, we consider a case in which the atom is in the state |1̃〉 and a single photon with wavefunction f(r) is
input at the initial moment (t = 0). The initial and final state vectors are written as

|φin〉 =

∫
drf(r)a†r |1̃〉, (A8)

|φout〉 = e−iω̃1t

∫
drg11(r, t)a

†
r|1̃〉+ e−iω̃2t

∫
drg12(r, t)a

†
r |2̃〉, (A9)
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where g11(r, t) and g12(r, t) are the photon wavefunctions after reflection, and the final moment t is sufficiently large.
The initial and final state vectors are connected by the unitary time evolution, |φout〉 = e−iHt|φin〉. Note that
the natural time evolution of the dressed state (e−iω̃j t) is separated. For later convenience, we introduce s13(t) =

〈1̃|σ13(t)|φin〉 and s14(t) = 〈1̃|σ14(t)|φin〉. Their equations of motion are given, remembering that a−t(0)|φin〉 =

f(−t)|1̃〉 and that |1̃〉 is an eigenstate of H, by

d

dt
s13 = (−iω̃31 − κ/2)s13 − iη31f(−t), (A10)

d

dt
s14 = (−iω̃41 − κ/2)s14 − iη41f(−t). (A11)

If the pulse length of the input photon is much larger than κ−1, we can adiabatically solve the above equations.
Denoting the central frequency of the input photon by ω, the adiabatic solutions are given by

s13(t) =
−iη31

κ/2− i(ω − ω̃31)
f(−t), (A12)

s14(t) =
−iη41

κ/2− i(ω − ω̃41)
f(−t). (A13)

From Eq. (A9), we have g11(r, t) = eiω̃1t〈1̃|ar|φout〉 = 〈1̃|ar(t)|φin〉. Substituting Eq. (A5) into this equation, we
obtain

ξ11(ω) =
g11(r, t)

f(r − t)
= 1− κ sin2 θt

κ/2− i(ω − ω̃31)
− κ cos2 θt
κ/2− i(ω − ω̃41)

. (A14)

Thus, ξ11(ω) [Eq. (12)] is derived. ξ12, ξ21 and ξ22 are derivable similarly.

Appendix B: Fidelity of the generated entangled state

Here, we present the formalism for evaluation of the fidelity of the generated entangled state. Considering the finite
pulse length of the input pulse, the input state vector is written as

|1̃, 1̃, ω∗
h〉 =

∫
dωfω∗

h
(ω)|1̃, 1̃, ω〉, (B1)

where fω∗

h
(ω) is the wavefunction of the input photon in the frequency space. It is given, as the Fourier transform of

Eq. (29) with ω = ω∗
h, by

fω∗

h
(ω) =

√
4π

l3
1

(π/l)2 − (ω − ω∗
h)

2
cos[(ω − ω∗

h)l/2], (B2)

where l denotes the pulse length.
Upon reflection of the photon at the atom-resonator system, the state vector evolves as Eqs. (10)–(11). Considering

that the drive condition of atom 1 (2) is set at Prs2 (Psw), the state vector after second reflection is written as∑
i,j=1,2

∫
dωmij(ω)|̃i, j̃, ω〉, where

m11(ω) = fω∗

h
(ω)ξrs211 (ω)ξsw11 (ω), (B3)

m12(ω) = fω∗

h
(ω +∆ω)ξrs211 (ω +∆ω)ξsw12 (ω +∆ω), (B4)

m21(ω) = fω∗

h
(ω +∆ω)ξrs212 (ω +∆ω)ξsw11 (ω), (B5)

m22(ω) = fω∗

h
(ω + 2∆ω)ξrs212 (ω + 2∆ω)ξsw12 (ω +∆ω). (B6)

We also consider here the decay of the atomic excited state |e〉 during the gate time tg. Using Eqs. (2) and (3), and

denoting the atomic lifetime by T1, the dressed states |1̃〉 and |2̃〉 evolve as

|1̃〉 → |1̃′〉 = cos θl|g, 0〉 − e−tg/2T1 sin θl|e, 0〉+ · · · , (B7)

|2̃〉 → |2̃′〉 = sin θl|g, 0〉+ e−tg/2T1 cos θl|e, 0〉+ · · · , (B8)
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where the dots denote the decayed states, which are entangled with the environment and are out of the considered
Hilbert space. The density matrix ρ of atoms 1 and 2 is then written as

ρ =
∑

i,j

∑

k,l

[∫
dω mij(ω)m

∗
kl(ω)

]
|̃i′, j̃′〉〈k̃′, l̃′|. (B9)

On the other hand, from Eq. (28), the target entangled state is |ψt〉 = 1+i
2 |1̃, 2̃〉 + 1−i

2 |2̃, 1̃〉. The fidelity of the
generated entangled state F is given by

F =
√
〈ψt|ρ|ψt〉. (B10)

The fidelity thus calculated in shown in Fig. 3(b).
Practically, there exists finite photon loss in conventional circulators. When a photon passes a circulator once, the

state vector evolves as |ψ〉 →
√
Ptr|ψ〉 +

√
1− Ptr|ψ′〉, where Ptr is the photon transmission probability, |ψ〉 is the

initial state, and |ψ′〉 is the state with photon loss. Note that |ψ′〉 is entangled with the environment and does not
contribute to the fidelity. Considering that a photon qubit passes the circulators four times in the proposed scheme
[Fig. 3(a)], the fidelity should be modified as F → P 4

trF . Thus, the maximum fidelity 0.983 reached under the optimal
condition (κ/2π = 5.482 MHz and l = 1.584 µs) is degraded to be 0.896 (0.620), when the photon loss per one passage
through a circulator is 0.1 dB (0.5 dB). However, we would like to remind that the high fidelity presented in Fig. 3(b)
can be recovered by detecting a microwave photon at the end of the circuit and using the present scheme as a heralded

one. For this purpose, an input single photon can be replaced with a weak classical pulse with the mean photon
number much less than unity.
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