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We propose and theoretically study a parity-time (PT)-symmetric photonic crystal coupled res-
onator optical waveguide (CROW) based on buried heterostructure nanocavities, which has potential
scalability and controllability. We analytically reveal its spectral transport properties with a tight-
binding model and show the possibility of the wide-range control of its group velocity using the PT
phase transition. While the group velocity at the PT phase transition point diverges, the group
velocity dispersion converges. A numerical estimation of the system response to temporal pulse
inputs shows that the pulse broadening is not severe in a device of hundreds of micrometers in
size. Furthermore, longer pulse duration results in a higher upper limit of the pulse peak velocity,
which can be in principle superluminal. We next perform numerical simulations on the considered
photonic crystal slab structures with the finite element method, and successfully observe PT phase
transitions. In the simulated parameter range, gain and loss coefficients of the order of 100 cm−1

meet the condition for the maximum group velocity coefficient in the context of the tight-binding
approach. 9.3-fold increase in the group velocity at 1502 nm is obtained in a three-dimensional
device by switching between the conventional and PT-symmetric CROWs. Meanwhile, we also en-
counter band smoothing around the phase transition, which hampers the group velocity divergence.
Our simulation result indicates that it arises from interfering evanescent waves decaying out of the
device structure, and we discuss ways to suppress this effect.

I. INTRODUCTION

It has been a long-standing goal to fully control the
speed of light in photonic devices. With respect to
slowing the light, an array of optical microcavities with
evanescent coupling, called a coupled resonator optical
waveguide (CROW) [1, 2], is one of the most promising
platforms. In such a system, the confinement of pho-
tons in cavities and their limited tunneling give their ef-
fective mass and hence a gentle cosine-shaped photonic
band curve. As a result, a CROW can achieve an opti-
cal group velocity orders of magnitude smaller than the
speed of light in vacuum and a negligible group velocity
dispersion at the band center. Applications such as a
compact optical delay line [3], enhancement of the non-
linear optical effect [4] and mode-locking [5, 6] have been
proposed. Also, the number of coherently coupled res-
onators in the experimental demonstration has been ex-
tended to over one thousand, which amounts to as long
as 1 mm in terms of device length [7]. Here, the practical
challenge is to significantly tune their optical response
with external signals.

To realize optical devices with extra controllability and
functionality a new feature in artificial dielectric struc-
tures with balanced gain and loss has recently been stud-
ied. It originates from a quantum-mechanical concept,
known as parity-time (PT) symmetry [8], in which the

system Hamiltonian is invariant to the parity (P̂) and

time (T̂ ) reversal operation set. It has suggested an
exotic class of systems that retain their real and hence
observable energy eigenvalues, even in the presence of
partial non-Hermitian factors such as amplification and

dissipation. In addition, it is known that its protection
of quasi-Hermiticity is not always perfect, meaning that
increasing the imaginary potential can induce a phase
transition from real to imaginary eigenvalues. Because
of the correspondence between the Schrödinger equation
and the paraxial wave equation, classical optics has been
suggested as a good test bed for PT symmetry and its
symmetry breaking [9–11]. A certain condition is re-
quired for the complex refractive index n(r) = n∗(−r),
meaning that its real part has an even spatial parity while
the imaginary part is an odd function thereby leading to
PT symmetry. Various interesting phenomena have al-
ready been observed in such systems, for example, power
oscillation [9, 12], double refraction [9], unidirectional re-
flectivity [13, 14], and single-mode lasing [15, 16]. Here,
large PT-symmetric waveguide arrays in the time domain
have been reported [12, 17], however, practical demon-
strations using spatial gain and loss structures are still
challenging in terms of scale or gain control.

PT-symmetric CROWs have both strong light con-
finement and optical gain and loss in their constituent
cavities. Thus, their non-Hermitian structures, along
with the propagation direction, greatly affect their dis-
persion relation and hence group velocity. A theoretical
analysis [18] shows that large systems can show signifi-
cant unidirectional reflectivity and transmission restric-
tion. Furthermore, a non-Hermitian CROW is expected
to show the divergence of its group velocity due to and
exceptional point [19]. However, experimental realiza-
tion of such theoretical bulk features has not been exten-
sively pursued. Demonstrations are still limited to two
coupled high-Q microtoroid resonators [20, 21] showing
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nonlinearity-induced isolation, which need optical pump-
ing and fine tuning of their positions and hence coupling.

In this paper, we propose and study theoretically a new
PT-symmetric CROW based on photonic crystal buried-
heterostructure mode-gap (BHM) nanocavities [22–24],
which will have both experimental scalability and gain
controllability. We first illustrates the device and de-
scribe it with a coupled mode equation corresponding
to the tight-binding model. Here, we derive the input
frequency dependences of its group velocity and group
velocity dispersion, which are of practical importance.
They show that the group velocity diverges at the phase
transition frequency, while the group velocity dispersion
converges. This suggests that the switching from the
slow light transport of a conventional CROW to fast
light transport in a PT-symmetric CROW might be re-
alized by external pumping control. The result also clar-
ifies that the optimum group velocity and group velocity
dispersion can be estimated by the cavity coupling and
cavity spatial interval of a given conventional CROW
without gain and loss. This supports the advantage of
our system based on compact and then strongly cou-
pling nanocavities. Next, we perform a numerical anal-
ysis of the temporal system response to pulse inputs.
It shows that the fundamental upper limit of the pulse
peak velocity depends on the input pulse width, although
the system might allow superluminal propagation. Fur-
thermore, propagation in the device over 200 µm does
not significantly broaden input pulses with durations of
tens of picoseconds. Finally, we simulate realistic de-
vice structures composed of photonic crystal nanocavities
with complex refractive indices and examine their band
structures. Here, the PT phase transition is successfully
observed assuming realistic gain coefficient values. The
simulated band curves are reproduced by a theoretical
model that includes up to the second-nearest neighbor
coupling, where the coupling rates can be estimated with
moderate data points. However, we observed the smooth-
ing of the exceptional point singularity [25]. It can lead
to a small available group velocity and impede possible
exotic phenomena based on the PT phase transition. Our
result suggests that this is because of the interfering light
radiating out of the structure, which can be modelled by
a small imaginary part of the cavity-cavity coupling [26].
Here, a high system Q factor is shown to be essential
to obtain a large group velocity. Our structure tuning
achieves a 9.3-fold increase in the velocity by switching
between the conventional and PT-symmetric CROWs in
three dimension.

The remainder of this paper is organized as follows. In
Sec. II, we describe the device proposed in this study.
Sec. III shows theoretical transport properties of the
system based on the tight-binding approach. Sec. IV
provides the result of a numerical simulation of realistic
photonic crystal structures. Sec. V discusses the trade-
off between the possible group velocity and required gain
and loss. It also mentions ways to recover the singularity
in imperfect systems. Sec. VI concludes the paper.

II. PT-SYMMETRIC CROW BASED ON

BURIED HETEROSTRUCTURE NANOCAVITIES

In this section, we describe the device structure pro-
posed in this study. Fig. 1 (a) shows the structure
schematically. The system is composed of a semiconduc-
tor photonic crystal slab, a line defect, BHM nanocavities
along with the line defect, and an appropriate pumping
mechanism for each cavity. The photonic crystal struc-
ture is omitted from Fig. 1 (a) for simplicity. A periodic
gain and loss profile is realized by electrical or optical
pumping in BHM cavities. Fig. 1 (a) shows the case for
electrical pumping. Here, the green and purple parts in
the semiconductor slab are p-doped and n-doped, respec-
tively, for each independent current injection channel to
control gain and loss in each cavity. The red and blue
rectangular BHM nanocavities mean their gain by the
current injection and loss by the material absorption, re-
spectively. Closely placed nanocavities give large cavity
coupling rates, which result in the CROW bandwidth of
& 1nm. Fig. 1 (b) shows the complex refractive index
profile along with the center of the line defect. Here, each
BHM works as a cavity due to a sharp index modulation
and at the same time induces gain or loss (a finite Im(n))
as a result of pumping and intrinsic material absorption.
When we use the x axis at the center of the BHM cav-
ity array as a reference, Re(n) is even in x and Im(n) is
odd. Thus, the system guarantees the existence of PT
symmetry for suitable amounts of equal gain and loss.

FIG. 1. (a) Schematic of the proposed PT-symmetric CROW
with electrical pumping. (b) The refractive index profile along
with the line defect and the array of BHM cavities.
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III. THEORETICAL ANALYSIS WITH

TIGHT-BINDING MODEL

A. Theoretical model

For a theoretical analysis of the system, we consider a
simplified coupled mode equation analysis equivalent to
the tight-binding model illustrated in Fig. 2 (a). Here,
each cavity mode is described by the slowly varying elec-
tric field amplitude Em(t), where m is the cavity index.
The system comprises N pairs of cavities with alter-
nating loss and gain, and the periodic boundary is set
by the perfect electric conductors at its edges, requiring
E0 = E2N+1 = 0. The real part of the local index for
each BHM cavity nBH is assumed to be constant, whereas
its imaginary part varies depending on whether the cav-
ity undergoes gain (+g) or loss (−g). The cavities are
evanescently coupled and their real coupling coefficient is
expressed by κ. The spatial interval of the cavities LCC

affects the transport properties estimated later. Note
that the period of identical unit cells is 2LCC, namely
a pair of cavities with gain and loss. Thus, the cosinu-
soidal band structure of the conventional empty CROW
(g = 0) is folded in half, as shown in Fig. 2 (b). We
obtained some device parameters such as κ = 2 × 10−3

and LCC = 2.1 µm from Ref. 3. The equation of motion
for each field amplitude can be described as a series of
temporal coupled mode equations [27, 28],

dEm

dt
= − ω0

2Q
Em +

gmc

2nBH
Em − i

κω0

2
(Em+1 + Em−1) .

(1)
Here, ω0 is the single cavity resonance frequency, which
equals the frequency of the rotating frame, Q is the cavity
quality factor and ω0/(2Q) is the cavity decay rate. c is
the speed of light in vacuum and gmc/(2nBH) is the gain
and loss rate in term of photons with the local phase
velocity in each cavity. We combine the first and second
terms in Eq. (1) and define the cavity index dependent
coefficient gm for Em as follows,

gm =

{

g + nBHω0

cQ (m is even),

−g + nBHω0

cQ (m is odd).
(2)

This means that the single cavity decay is just a linear
term in Eq. (1) and hence can be cancelled by the con-
trolled gain and loss. g > 0 is the net gain (even m) and
loss (odd m) coefficient for the considered cavity mode.
We also assume that a large part of the field decay works
as photonic tunneling (evanescent coupling) between the
cavities. Thus, the coupling rate is sufficiently large com-
pared to the decay rate. The device can then be regarded
as a large coherently coupled cavity system, and its total
gain and loss are balanced. Therefore, PT symmetry will
be realized without lasing as in previous studies [20, 21],
and we focus on the linear PT-symmetric system with re-
gard to the gain and loss terms. Note that g parametrizes
various factors such as mode confinement, carrier dynam-
ics and gain saturation.

FIG. 2. (a) Illustration of the theoretical model for the PT-
symmetric CROW. (b) Sketch of the half-folded band struc-
ture of the conventional CROW (g = 0) with a spatial period
of 2LCC.

After substituting Eq. (2) into Eq. (1), we find
that the resultant field equation corresponds to the
Schrödinger equation of a non-Hermitian tight-binding
model [18],

i
dΨm

dt
= ig′mΨm + κ′ (Ψm+1 +Ψm−1) . (3)

with simplification,

κ′ =
1

2
κω0, g′m =

{ gc
2nBH

= g′ (m is even),

− gc
2nBH

(m is odd)
(4)

where we have changed the notation of the field Em →
Ψm for the visual correspondence. With the ansatz for
the differential equation Ψm(t) = exp(−i∆ω t)ψm, we
obtain the eigenvalue equation for the frequency detuning
∆ω,

∆ωψm = ig′mψm + κ′ (ψm+1 + ψm−1) . (5)

Here, the reference for ∆ω in the rotating frame is the
resonance frequency ω0.

B. Complex band structure with nearest-neighbor

coupling

The eigenvalues of Eq. (5) can be derived by using
Bloch theorem as [18],

∆ω(Ks) = ±
√

4κ′2 cos2Ks − g′2, (6)

where the eigenstates require Bloch phase factors with
discrete values,

Ks =
sπ

2N + 1
(s = 1, . . . , N). (7)

Note that Ks is dimensionless and the wavenumber is
Ks/LCC < π/(2LCC). The negative Ks case is omit-
ted for simplicity. The effect of the gain and loss shows
up as −g′2 in the square root of Eq. (6), and it en-
ables the eigenvalues to be purely imaginary. Here, the
shape of the band structure does not depend on N . We
hence focus on N → ∞, leading to band curves formed
by the continuum of eigenstates (Ks → kLCC ∈ R,
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FIG. 3. (a) Real and (b) imaginary parts of the eigenfre-
quency detuning in the PT-symmetric CROW for different
gain and loss rates g. nBH = 3.54, λ0 = c/ω0 = 1.55 µm,
κ = 2×10−3. The curve for g = 405 cm−1 in (a) is a parabola
with the longest focal length and hence the largest group ve-
locity coefficient, satisfying Eq. (10).

where k is the Bloch wavenumber). Fig. 3 (a) and
(b) show the real and imaginary eigenfrequency detun-
ing ∆ω(k) for different magnitudes of the net gain and
loss, g = 0, 200, 405, 500 cm−1. The black curves give
the folded cosine-shaped band structure of the empty
CROW. When g is finite, the two real branches coa-
lesce inside the first Brillouin zone, and non-degenerate
imaginary branches appear. The point with Re (∆ω) =
Im (∆ω) = 0 is hence called the PT phase transition
point or exceptional point, and it induces switching from
extended CROW modes to a pair of amplifying and de-
amplifying modes localized in the gain and loss parts.
Comparing different curves, we see that as g increases
by hundreds of cm−1 the transition point moves largely
toward the inside of the band for the set of parameters
considered. Many exotic and interesting phenomena oc-
cur around this exceptional point, and here we pay at-
tention to the divergence of the group velocity, namely
the gradient of the real branches.

C. Group velocity and group velocity dispersion

Here, we theoretically clarify the transport proper-
ties of the PT-symmetric CROW with the tight-binding
model. First, differentiation of ∆ω(k) and variable trans-
formation give the spectral group velocity. For the lower
branch before the phase transition, the analytical expres-
sion is,

vg(∆ω) =
d∆ω

dk
= LCC

d∆ω

dKs
= −LCC

∆ω

√

(∆ω2 + g′2) (4κ′2 −∆ω2 − g′2) (∆ω < 0). (8)

Eq. (8) for different gain and loss coefficients is plotted
in Fig. 4 (a). Here, ∆ω = 0 means the phase transition
point, as seen in Fig. 3 (a). Clear divergence of the
curves for finite g due to 1/∆ω → ∞ (∆ω → 0) in Eq.
(8) is observed. On the other hand, the group velocity
for the empty CROW (g = 0) is finite and small at ∆ω =
0, meaning that a great change is induced in vg by the
introduction of the PT phase transition. We can easily
obtain the asymptotic behavior of vg from Eq. (8) for
∆ω ≈ 0,

vg → −LCC

∆ω

√

g′2 (4κ′2 − g′2)

= −LCC

∆ω

√

− (g′2 − 2κ′2)
2
+ 4κ′4. (9)

We then find that the condition for the largest vg around
the transition point is,

g′ =
√
2κ′. (10)

With this relation, the continuous solution of Eq. (6)
for ∆ω = 0 is k = π/(4LCC). This means that the

highest group velocity is obtained when the transition
occurs at the middle of the band for k > 0. The
plot for vg with g = 405 cm−1 in Fig. 3 (a) actually
meets this condition (Eq. (10)). Therefore, the curve
with g = 405 cm−1 in Fig. 4 (a) is uppermost for
∆ω ≈ 0 of the four g values. The resultant coefficient
in Eq. (9) with Eq. (10) is 2LCCκ

′2 = LCCκ
2ω2

0/2,
which is proportional to both the cavity period LCC

and the square of the coupling factor κ2. In contrast,
the group velocity for the empty CROW at ∆ω = 0 is
vg,empty = 2κ′LCC = κω0LCC. Thus, around the transi-
tion point (∆ω ≈ 0), vg/vg,empty ≈ κω0/(2∆ω), showing
linear enhancement of the velocity ratio with the cou-
pling coefficient κ. As shown previously [3], κ decays
exponentially with LCC. A smaller LCC thus leads to a
larger vg for the light near the exceptional point.

Next, we examine the group velocity dispersion
(GVD), which characterizes the pulse broadening. GVD
is defined as the spectral gradient of the group delay for
unit propagation distance and is derived with Eq. (8),
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GV D(∆ω) =
d

d∆ω

(

1

vg

)

=
−∆ω4 − 4g′2κ′2 + g′4

LCC [(∆ω2 + g′2) (4κ′2 −∆ω2 − g′2)]
3/2

(∆ω < 0). (11)

FIG. 4. (a) The spectral group velocity and (b) group velocity
dispersion of the PT-symmetric CROW for different gain and
loss rates. nBH = 3.54, λ0 = 2πc/ω0 = 1.55 µm, κ = 2 ×
10−3. The curve for g = 405 cm−1 in (b) gives the minimum
|GVD(∆ω = 0)| in finite g.

The data obtained with Eq. (11) for different g values
are displayed in Fig. 4 (b). An empty CROW (g = 0)
does not suffer from any GVD around ∆ω = 0. On the
other hand, the gain and loss result in a finite GVD in
PT-symmetric CROWs. It diverges under large negative
frequency detuning (flat band regime), while it converges
at the transition point because vg(∆ω ≈ 0) ∝ 1/∆ω.
Here, the spectral width of the region with small |GVD|
depends on 4κ′2−g′2. The magnitude of the GVD at the
transition point for finite g′ can be obtained as,

|GVD(∆ω = 0)| = 1

LCC

√

− (g′2 − 2κ′2)2 + 4κ′4
. (12)

We see that the condition for the smallest |GVD(∆ω =
0)| is the same as Eq. (10). The consequent mini-

mum |GVD| is 1/(2LCCκ
′2) = 2/(LCCκ

2ω2
0), which is

the inverse of the maximum coefficient of vg for ∆ω ≈ 0.
Again, a shorter LCC leads to an exponentially larger κ
and hence smaller pulse broadening, depending on 1/κ2.
Note that the curve of g = 405 cm−1 in Fig. 4 (b) shows
the smallest GVD around ∆ω = 0 when the gain and
loss rates are nonzero. Overall, we can estimate the pos-
sible group velocity and group velocity dispersion in a
PT-symmetric CROW, from the device parameters of its
conventional counterpart {κ, ω0, LCC} with no gain or
loss introduced. Available values of κ′ and LCC in in-line
coupled photonic crystal nanocavities are 200 GHz and
2 µm [3], while those for microtoroid resonators, which
are also good for PT-symmetric systems, can be 1 GHz
and 60 µm [20, 21]. Thus, the optimum coefficient of
vg and 1/|GVD| is by two orders of magnitude larger in
photonic crystal systems. This shows the advantage of
our device in terms of achieving fast light transport.

D. Estimation of temporal response

We have already studied analytically the group velocity
and group velocity dispersion of the system, along with
their parameter dependence. Here, we provide a numer-
ical estimation of the temporal response of the bulk sys-
tem to a pulse running over a finite distance. As shown
in Fig. 3, the band structure of the system is nonlinear
and hence will lead to non-negligible high-order disper-
sion. Therefore, a pulse with a broad spectral distribu-
tion can show propagation slower than that with the the-
oretical group velocity. The dependence of the response
on the input pulse duration will hence be of significant
importance. We take these factors into account and show
the upper limit of the pulse peak velocity. In addition,
the finite length of the system limits the temporal de-
lay of propagating optical pulses. Thus, we see whether
a detectable temporal shift of the pulses are obtained
by switching between empty and PT-symmetric CROWs
over a moderate propagation distance.

The evolving pulse amplitude at cavity sitem, Φ(m, t),
is expressed by the Fourier integral of the Bloch-Floquet
eigenmodes ψ±,m(k), including their wavenumber spec-
tral functions F±(k) and phase rotations [19, 29]. For
our system with a period of two cavities, it is given by

Φ(m, t) =

∫ π/(2LCC)

−π/(2LCC)

dk F+(k)ψ+,m(k) exp
[

i 2kLCC

⌈m

2

⌉

− i∆ω+(k) t
]

+

∫ π/(2LCC)

−π/(2LCC)

dk F−(k)ψ−,m(k) exp
[

i 2kLCC

⌈m

2

⌉

− i∆ω−(k) t
]

, (13)
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where the subscript {+,−} corresponds to the sign of the
eigenfrequency detuning ∆ω(k) (see Eq. (6)), and

ψ±,m(k) =

{

1 (m is even),
−ig′

±

√
4κ′2 cos2(kLCC)−g′2

κ′[1+exp(i 2kLCC)] (m is odd).

(14)
The absence of an offset for m and t in Eq. (13) means
that the initial pulse is excited at the spatial and tempo-
ral references, i.e. m = t = 0.
To set the spectral function F±(k), we perform a vari-

able transformation from an input frequency distribu-
tion,

F (∆ω,∆ω0, σt) =
√
2π σt exp

[

−σ
2
t

2
(∆ω −∆ω0)

2

]

,

(15)
which corresponds to a temporal Gaussian pulse with a
variance σ2

t and a central frequency detuning of ∆ω0 in
free space. Note that F±(k) is not Gaussian because of
the nonlinear band structure of the considered system,
namely,

F±(k) = F (∆ω,∆ω0, σt) ·
d∆ω±(k)

dk
. (16)

Indeed, d∆ω±(k)/dk in Eq. (16) is the group veloc-
ity (Eq. (8)), diverging at the phase transition point.
However, the integration represented by Eq.(13) is finite
as long as the amplification by the states with imagi-
nary eigenfrequencies in the broken PT phase (after the
PT symmetry breaking) is avoided. Here, we limit the
analysis to the exact PT phase (before the symmetry
breaking). This is because the states in the broken PT
phase have flat real bands (vg = 0) and curved imagi-
nary bands, which only support monochromatic standing
waves with amplification and deamplification (see Fig.
3). Furthermore, we focus on a single propagation di-
rection and hence the case where the states are pumped
with positive group velocities. As a result, the integral
ranges for the first and second terms of Eq. (13) can
be [−kPT, 0] and [0, kPT], respectively, where kPT is
the phase transition point in [0, π/(2LCC)]. Note that
the states with ∆ω+(k) support positive group velocities
in the negative wavenumber region [−kPT, 0], although
that is omitted in the tight-binding analysis.
We consider detecting the temporal pulse intensities at

m = 100, corresponding to a distance ofmLCC = 210 µm
from the excitation point, for both PT-symmetric and
conventional empty CROWs. Fig. 5 (a) and (b) show ex-
amples of pulse propagation for different pulse intensity
widths of 10 and 100 ps, with their central frequencies
at the phase transition point. With a short input pulse,
we can achieve a large relative shift in time by switch-
ing between the PT-symmetric and empty CROWs (Fig.
5 (a)). In addition, the pulse broadening in the PT-
symmetric CROW is not significant for the propagation
distance of 210 µm. However, the maximum peak veloc-
ity (ideally corresponding to the group velocity) is lim-
ited because it is affected by the broad spectral width.

FIG. 5. Examples of the propagation of pulses with the cen-
tral frequency at the exceptional point and temporal dura-
tions of (a) 10 and (b) 100 ps in the PT-symmetric (in red)
and conventional (blue) CROWs. m = 100. nBH = 3.54,
λ0 = 2πc/ω0 = 1.55 µm, κ = 2× 10−3, g = 405 cm−1 (satis-
fying Eq. (10)).

A longer pulse (Fig. 5 (b)) has a narrower spectrum and
hence enables a faster peak velocity. However, it is more
difficult to detect the absolute time delay caused by the
propagation in the PT-symmetric CROW and the tem-
poral pulse shift than with the conventional CROW.
Fig. 6 shows the dependence of the forward peak veloc-

ity on the central frequency for different temporal pulse
durations. The maximum peak velocity is obtained with
the central frequency at the exceptional point for both
the PT-symmetric CROW (shown as curves with mark-
ers) and the conventional empty CROW (dash-dotted
line). The peak velocity in the PT-symmetric CROW
agrees with the theoretical analysis (Eq. (8)) shown by
the dotted curve for detuning approximately larger than
the spectral width of the input pulse. On the other hand,
it does not diverge around the phase transition point,
∆ω = 0. This is very probably because the peak is de-
layed by the third and higher-order dispersion, and the
effect is more significant for pulses with broader spectral
widths and hence shorter temporal durations. However,
a long pulse can show superluminal peak propagation
there, as shown by the example for 100 ps in Fig. 5 (b),
which achieves 4.66 × 108 km/s. The ratios of the max-
imum velocity in the PT-symmetric CROW to that in
the conventional CROW for ∆ω = 0 are 9.72, 18.4, 45.4
and 91.3 for 10, 20, 50 and 100 ps pulses, respectively.
Meanwhile, as shown in the next section, the group ve-
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FIG. 6. Dependence of forward peak velocity of the pulse
on its central frequency. Lines with markers are for the PT-
symmetric CROW with different input pulse widths. The
dotted line shows the theoretical group velocity for the PT-
symmetric CROW. The dash-dotted line is the group velocity
of the empty CROW. The parameters are the same as those
in Fig. 5.

locity around the exceptional point is decreased by the
radiation loss of the device, thus a low-loss system will
also be needed to keep the controllability of the velocity.
It is noteworthy that if we excite the bands with pos-

itive and negative group velocities at the same time, a
pair of pulses propagating in the opposite directions are
formed. This can cause a sharp decrease in the apparent
pulse velocity around the exceptional point, which might
be seen in previous work for honeycomb photonic lattices
[30]. The velocity drop might also indicate the flux ve-
locity cancellation discussed in Ref. 19. To achieve the
sole advancing pulse in our simulation above, within the
scope of the exact PT phase, the system needs the se-
lectivity of the propagation direction (i.e. wavenumber)
and frequency in the excitation. The way to realize this
selectivity is nontrivial and to be further explored.

IV. NUMERICAL SIMULATION FOR

PHOTONIC CRYSTAL STRUCTURES

A. Theoretical model

In this section, we show and discuss the result of a
simulation of realistic photonic crystal structures based
on the finite element method. We perform an eigenfre-
quency analysis of the Maxwell equation mainly on two-
dimensional structures to explore basic features. We em-
ploy a three-dimensional numerical simulation to confirm
the main result, compare the devices in two and three di-
mensions, and estimate the actual device specifications.
Fig. 7 (a) and (b) show the simulated three-

dimensional device structure and its two-dimensional top
view, respectively. Here, two BHM cavities with di-
mensions of 2.1 µm × 0.3 µm × 0.15 µm undergo loss

(Im nBH > 0) and gain (Im nBH < 0) via the imag-
inary parts of their input material indices (Im nBH).
The lattice constant of the triangular photonic crystal is
a = 420 nm, and the airhole radius is R = 100 nm. Seven
rows of airholes are aligned on each side of the line defect.
As shown in Fig. 7 (a), symmetric boundary planes are
placed along with the center of the line defect and on the
bottom of the structure in the simulation, while Fig. 7
(b) shows the entire two-dimensional unit cell for refer-
ence. The periodic boundary condition is set to enable us
to analyze the band structure of infinite pairs of cavities.
Perfectly matched layers (PMLs) are attached outside the
main structure. Two widths W of the two-dimensional
line defect part, W = 0.98W0 and W = 0.85W0 are con-
sidered. Here, W is defined as the distance between the
airhole rows on the upper and lower sides of the waveg-
uide, and W0 =

√
3a. We found that narrowing the

line defect improves the total Q factor of the leaky lower
CROW supermode. This effect is much more significant
in three-dimensional structures than in two-dimensional
structures. For the two-dimensional system, as in Fig. 7
(b), we use the effective refractive indices nSL = 2.59 for
the InP slab and Re nBH = 2.77 for the InGaAsP BHM
cavities [22]. In the three-dimensional simulation, the
thickness of the slab is 250 nm, and the material indices
nSL = 3.17 and Re nBH = 3.54 are introduced. In the
vertical direction, air layers are sandwiched between the
slab and PMLs. Typical device parameters {Q, κ′, LCC}
obtained in our simulation are {106, 130 GHz, 3.4 µm}
and {5 × 105, 50 GHz, 3.4 µm} in two and three dimen-
sions, respectively. The cavity couplings here are smaller
than that in a Si system [3]. This might diminish values
of vg obtained in this section, compared with our previous
tight-binding analysis. Couplings in a diagonal direction
[7] will be available to increase κ′, although those are
beyond the scope of this work.
Fig. 8 shows the considered eigenmodes for the empty

CROW (Im nBH = 0) in terms of the out-of-plane com-
ponent of the magnetic field Hz(x, y). Here, the ground
even mode in terms of Hz is excited and well confined in
the cavities. In the lower band eigenmode (Fig. 8 (a)),
an antinode is formed in the middle of the line defect
part, and the two BHM cavity modes are in-phase. On
the other hand, the upper band mode (Fig. 8 (b)) has
a node at the center of the line defect and out-of-phase
cavity modes.
When the cavities are close, the second and higher or-

der couplings are not negligible and the resultant band
structure verges on that of the line defect waveguide of
the BH medium. To fit the simulation data, we apply the
Rice-Mele model [29, 31] which covers up to the second
nearest neighbor coupling,

ω±(k) = ω0 − 2ρ cos(2LCCk + φ)

±
√

−g′2 + 2κ′2[1 + cos(2LCCk)]. (17)

Here, ω0 is the single cavity resonance frequency. ρ and φ
are the second nearest neighbor coupling rate and phase,
respectively. Note that the second nearest neighbor cou-
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FIG. 7. (a) Schematic of the simulated device structure in
three dimensions. (b) Top view of (a) without the symmetry
boundary on x-z plane, which corresponds to the considered
two-dimensional structure.

FIG. 8. Hz fields of the considered supermodes for the empty
CROW (Im nBH = 0). The lower and upper modes have
in-phase and out-of-phase couplings, respectively. k = 0.

pling, that is the second term in Eq. (17), just adds a
small change in vg and does not impede its divergence at
the transition point. If we assume that the data obey Eq.
(17), all the parameters can be determined without any
free fitting parameters. κ′, ρ and φ are obtained from the
eigenfrequencies for (k, Im nBH) = (0, 0), (π/(2LCC), 0)
(empty CROW). The ratio between Im nBH and g′ is
estimated by using the data points for k = 0 and some
different Im nBH values.

B. PT phase transition by loss and gain

We first investigate the complex eigenfrequency depen-
dence on the magnitude of the gain and loss in a two-
dimensional device with LCC = 8a. Here, we fix the
Bloch wave number to the middle of the band for k > 0,
i.e. k = π/(4LCC), to find the gain and loss rates that

give the largest group velocity around the phase transi-
tion, within the first order limits (see Sec. III C). Fig.
9 (a) shows the wavelength λ (black curve) and system
gain or loss rate (red curve), which are calculated with
Re ω±(k) and Im ω±(k), respectively. Positive and neg-
ative Im ω±(k) values correspond to the system loss and
gain. The markers show the result of the numerical sim-
ulation, and the curves are drawn with Eq. (17). We
have found that Eq. (17) with the calculated device pa-
rameters does not well reproduce the simulation data in
terms of the position of the phase transition point. We
attributed this deviation to the higher-order couplings
and then reduced κ′ by 4% to take it into account ap-
proximately within the scope of the theoretical model.
With this shift, the data points agree well with the de-
pendence on g′ in Eq. (17) without any other fitting
parameters. The result presents a sharp PT phase tran-
sition from real to imaginary ω±(k) around λ ≈ 1587.25
nm. Here, the material imaginary index to reach the
transition is Im nBH = ±0.0103, and the corresponding
spatial loss and gain rates are gBH = ±823 cm−1. This
means that the PT phase transition for a large change
in vg will be achievable with a realistic carrier-injection
gain in III-V quantum wells [32]. Fig. 9 (b) depicts the
norm of the magnetic field for the eigenmodes after phase
transition, with Im nBH = ±0.015. We see that we can
attribute the two states with loss (Im ω±(k) > 0) and
gain (Im ω±(k) < 0) to the localized modes in the left
(Im nBH > 0) and right (Im nBH < 0) cavities, respec-
tively. Note that the cavity mode profiles before and at
the phase transition are similar to those shown in Fig. 8.
It means that the localization effect gradually appears,
as the imaginary part of the eigenfrequency increases.

C. Band structure and group index for two- and

three-dimensional structures

With the gain and loss coefficients inducing the phase
transition at k = π/(4LCC), we next explore the complex
band structure, to examine the behavior of the PT phase
transition and possible group velocity in the wave num-
ber space of realistic systems. Fig. 10 (a) shows the band
curves in terms of the wavelength and gain or loss rate
for a two-dimensional system withW = 0.98W0. The pa-
rameters used here are the same as those in Fig. 9. The
small deviation between the simulated data points and
theoretical curves can probably be attributed to the in-
sufficient compensation of the effect of third and higher
nearest-neighbor couplings. We have used Im nBH =
±0.0104 considering Fig. 9 (a) and successfully observed
a PT phase transition around k = π/(4LCC). It is seen
that the real band has finite slopes after the phase transi-
tion, due to hopping propagation via the second nearest
neighbor coupling. Fig. 10 (b) shows the wavelength de-
pendent group index ng = c/vg for the two-dimensional
device. It includes finer data points around the phase
transition than in Fig. 10 (a). When ng of the PT-
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FIG. 9. (a) Dependence of the eigenwavelength (black) and system gain or loss rate (red) on the imaginary part of the cavity
refractive index |Im nBH| at the middle of the band for k > 0: k = π/(4LCC). Markers show the simulated data points. Curves
are based on Eq. (17) with ω0 = 189.0 THz, κ′ = 124.0 GHz, ρ = 16.17 GHz, φ = 0.008730 rad, and g′ = 1.700 × 104 Im nBH

GHz. (b) Magnitudes of the magnetic fields for the eigenmodes with Im nBH = ±0.015. LCC = 8a, in two dimensions.

symmetric CROW is minimum, the ratio of ng compared
with the empty CROW reaches 7.2. Note that the mag-
nitude of vg itself depends on the coupling κ′.
We found that a narrower line defect resulted in a

faster vg, probably due to the balanced and high-Q fac-
tors of the CROW supermodes. Fig. 10 (c) and (d) show
the complex band curves and the group index around
the transition point for W = 0.85W0. Here, we have
Q = 1.5× 106 for the upper mode and 2.0× 106 for the
lower mode with k = g = 0. The coupling rates are in-
creased slightly due to the better field confinement, and
the entire band structure appears nearly unchanged, ex-
cept for the shorter wavelengths resulting from the nar-
rower line defect. However, a closer look with Fig. 10
(d) reveals that a smaller ng of 2.69 is obtained, and this
results in as much as 19-fold acceleration. Note that the
minimum value is slightly below the two-dimensional BH
material index Re nBH = 2.77.
Fig. 11 (a) and (b) show the complex band struc-

ture and the group index of a three-dimensional device
with W = 0.85W0. Its coupling rates, including higher
nearest-neighbor coupling rates, are smaller than those
for two-dimensional systems because of the radiation loss
in the z direction. Thus, the data points in Fig. 11 (c)
agree well with the theoretical curves assuming Eq. (17)
(without any parameter adjustment). The CROW band-
width is about 1 nm, and the magnitude of the applied
loss and gain is 334.6 cm−1. In Fig. 11 (b), we have a
relatively large minimum index of 15.91 due to the small
coupling rates. However, it shows a steep change of ng

around the phase transition and hence gives a large maxi-
mum ratio in ng of 9.3 compared with the empty CROW.

D. Band smoothing around phase transition

As previously seen, the group velocity for the realis-
tic photonic crystal structure does not exhibit divergent

behavior despite the fine data points under the periodic
boundary condition. This is because the band around
the phase transition is smoothed by the field decay from
the system. Fig. 12 (a) and (b) depict the complex band
curves for the two-dimensional devices with 7 and 15 rows
of photonic crystal airholes, respectively. Here, the cav-
ity spacing is larger, LCC = 10a, thus the couplings are
smaller than those in the previous two-dimensional ex-
amples. In Fig. 12 (a), the sharp phase transition is lost
due to the radiation loss and weak coupling, and the min-
imum ng in the PT-symmetric CROW is as large as 35.7.
At this wavelength, there is only a 3.4-fold change in ng

compared with the empty CROW. The Q factors of the
upper and lower CROW supermodes for k = g = 0 are
5.0 × 104 and 8.8 × 105, meaning there is a low-Q state
and imbalance of the loss in the supermodes. As shown
in Fig. 12 (b), a stronger confinement of light in the sys-
tem with more airholes restores the large vg around the
transition. Here, the minimum ng and maximum group
index ratio are 12.7 and 10.3, respectively. Nevertheless,
the improved Q factors are 2.9× 105 and 1.4× 108, thus
there is still a large difference between them.

In our system, disproportionate Q factors in the su-
permodes, hampering a large group velocity around the
transition, stem from the interference of the evanescent
fields. It means that the gain in the BHM cavities cannot
compensate for the radiation of the superposed evanes-
cent fields to the outside the structure. This is expressed
by the non-self-conjugate complex coupling terms, which
were phenomenologically considered [25] and then con-
firmed theoretically and experimentally [26] in the con-
text of coupled waveguides. We can introduce this effect
by the replacement of κ′2 with κ′2 exp(iθ) in Eq. (6).
Indeed, θ = 0.02024 is used in the theoretical curves in
Fig. 12 (a), which agree well with the data points. Such
a non-Hermitian term breaks the unitarity and hence
the photon number conservation in the time evolution
of the effective system Hamiltonian. Thus, it can be a
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FIG. 10. (a) Complex band structure shown as the eigenwavelength (black) and gain or loss rate (red, positive for loss, negative
for gain) in a two-dimensional device with a line defect width of 0.98 W0. Markers indicate the simulated data. The parameters
for the theoretical curves are the same as those for Fig 9. (b) Dependence of the group index on the wavelength in the same
two-dimensional device. (c) Band curves of a two-dimensional device with a narrower line defect W = 0.85W0. Dashed lines:
theoretical curves with ω0 = 198.0 THz, κ′ = 134.340 GHz, ρ = −14.26 GHz, φ = 0.007432 rad and g′ = 2.0503 × 104 Im nBH

GHz. Here, the calculated κ′ is decreased by 3.5 % to fit the simulated data points. (d) Fine data of the group index around the
phase transition wavelength for a two-dimensional device with the line defect width of 0.85 W0. The minimum index ng = 2.69
is slightly below the cavity material effective index Re nBH = 2.77.

reason for additional loss in our system and detrimental
effects. We emphasize that Ref. 26 focuses on the mate-
rial absorption in the waveguide cores and surrounding
medium, but the radiation loss in our system (caused
by the additional system-reservoir coupling [33]) behaves
equivalently. This is implied in the experiment of Ref. 26
using scattering loss and indicated by nearly cosinusoidal
imaginary bands obtained in the case of our conventional
CROWs with low Q and no material gain or loss.

It is noteworthy that such a complex coupling com-
ponent is out of the limit of the standard tight-binding
model discussed in Sec. III. However, evanescent waves
come from the cavity decay, thus this term would be
implicitly dependent on the cavity Q factor. If we as-
sume that the complex coupling rate has the same order
of the cavity decay rate, the approximate single-cavity
Q factor showing significant band smoothing would be
ω0/(2

√
κ′2 sin θ) ∼ 104. This supports the loss magni-

tude of the low-Q supermodes in Fig. 12 (a).

In the supermode where the evanescent fields outside
the BH cavities are enhanced, the decay is significant.
When the evanescent fields are cancelled, however, the
loss is small while the coupling is maintained. A narrow
line defect contributes to the balanced high Q factors of
the CROW modes and hence fast vg around the phase

transition, probably because it broadens the mode gap
between the CROW and photonic crystal. Note that the
defect modification does not change the band structure
of the surrounding photonic crystal.
Basically, three-dimensional structures are more likely

to suffer from band smoothing than two-dimensional sys-
tems because of the loss in the vertical direction. As
shown in Fig. 11, however, narrowing the line defect in
the device largely suppresses this effect, which is signifi-
cant otherwise. Our design will hence open up the pos-
sibility of the experimental realization of PT-symmetric
cavity lattices maintaining sharp exceptional point be-
havior, which will contribute to group velocity control
and also other phenomena, such as unidirectional reflec-
tion and nonlinear optical isolation.

V. DISCUSSION

Here, we discuss the design and setting of the PT-
symmetric CROW described in this study. First, in Sec.
III we anticipated that a larger nearest neighbor coupling
rate κ would lead to a faster vg and a smaller GVD. On
the ohter hand, a larger magnitude g of gain and loss
is needed to achieve the condition for the maximum vg
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FIG. 11. (c) Band structure for a three-dimensional device
with LCC = 8a and a line defect width of 0.85 W0. ω0 = 199.7
THz, κ′ = 46.87 GHz, ρ = −4.089 GHz, φ = −0.006088
rad, and g′ = 1.661 × 104 Im nBH GHz for theoretical curves
(dashed lines). (d) Group index versus the eigenwavelength
in the same three-dimensional device.

around the phase transition (Eq. (10)). Our simulation
result shows that the required g for the three-dimensional
devices with LCC = 2a, 3a and 4a are 460.1, 334.6 and
110.4 cm−1, respectively. These values are typical in re-
ports for other photonic devices [15, 34], and thus will
also be realizable in our devices. However, we have to
design the cavity interval LCC with caution. A long
LCC will result in a small κ and induce significant band
smoothing effects. On the other hand, a short LCC will
complicate the band structure due to large higher order
couplings, in addition to the need for large g.

Finally, we mention the literature of ways to keep the
PT symmetry in realistic systems. A recent theoretical
report [35] showed that the gain-induced dispersion in
coupled GaAs waveguide cores could wash out the phase
change itself, as well as the singularity. Here, the mode
index detuning caused by the structural asymmetry and
imbalanced gain and loss in the waveguides were intro-
duced to restore their PT-symmetric behavior. As the
detuning of constituent waveguides has been examined
to dominate the imaginary part of the coupling and heal
the singularity [25], the radiation loss might conversely
work as a dispersion and detuning compensator, although
this is out of the scope of this paper. In future experi-

FIG. 12. Complex band curves for two-dimensional devices
with different numbers of rows of airholes for photonic crys-
tals, namely different system Q factors. (a) 7 rows and (b)
15 rows on both sides of the line defect. (a) shows the band
smoothing caused by significant radiation loss, and the en-
hancement of vg is limited. In (b) a sharp phase transition
structure is restored by a larger Q factor. LCC = 10a and the
line defect width is 0.98 W0.

ment, slightly detuned cavity arrays might be picked for
small system demonstrations. Delicate injection current
control, including biased pumping, will also be consid-
ered.

VI. CONCLUSION

In conclusion, we have proposed a PT-symmetric
CROW based on buried heterostructure photonic crys-
tal nanocavities and studied theoretically its applica-
tion for controlling transport properties. Using the one-
dimensional tight-binding model, we derived analytical
expressions of the frequency dependence of its group ve-
locity and group velocity dispersion. Within the limits
of this first order approximation, the group velocity di-
verges while the group velocity dispersion converges at
the PT phase transition point, showing the good po-
tential of the device. Here, the condition for the max-
imum velocity and the minimum group velocity disper-
sion around the transition point is the same. In this
case, the velocity is enhanced and the dispersion is sup-
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pressed, depending on the square of the cavity coupling
rate. An estimation of the system temporal response to
input pulses shows that pulse duration of 10 ps is short
enough to detect a boost by switching between conven-
tional and PT-symmetric CROWs with a length of 210
µm, while the ratio of their pulse peak velocities is rel-
atively limited. Longer duration and hence a narrower
spectral distribution of the pulse provide with a higher
upper limit of the velocity around the PT phase tran-
sition point, although a judicious pulse excitation setup
could be required in experiment. In a device simula-
tion based on the finite element method, we successfully
observed the PT phase transition in the proposed pho-
tonic crystal structures with controlled amplification and
absorption. In the parameter range we examined, the
second nearest-neighbor coupling is not negligible and
it bends the band curves after the phase transition. For
three-dimensional devices, loss and gain magnitudes with
an order of 100 cm−1 are sufficient to satisfy the condi-
tion for the maximum group velocity around the phase
transition. A problem as regards achieving a large group

velocity in the actual device is the band smoothing that
destroys the exceptional point singularity. Our simula-
tion result indicates that the main reason for this is the
decay of the interfering evanescent waves from the pairs
of cavities, which can be considered as the imaginary part
of the cavity coupling rate. Increasing and balancing the
Q factors of the CROW supermodes with an appropriate
design will open up the possibility of the wide-range con-
trollability of the optical transport, potentially including
superluminal light propagation.
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