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We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant
on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function
for Nelder-Mead optimization from real-time correlation of non-demolition measurements interleav-
ing gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999
average Clifford fidelity in one minute, as independently verified using randomized benchmarking
and gate set tomography. The adjustable sensitivity of the cost function allows detecting fractional
changes in gate error with nearly constant signal-to-noise ratio. The restless concept demonstrated
can be readily extended to the tuneup of two-qubit gates and measurement operations.

Reliable quantum computing requires the building
blocks of algorithms, quantum gates, to be executed with
low error. Strategies aiming at quantum supremacy with-
out error correction [1, 2] require ∼ 103 gates, and thus
gate errors ∼ 10−3. Concurrently, a convincing demon-
stration of quantum fault tolerance using the circuits
Surface-17 and -49 [3, 4] under development by several
groups worldwide requires gate errors one order of mag-
nitude below the ∼ 10−2 threshold of surface code [5, 6].

The quality of qubit gates depends on qubit coherence
times and the accuracy and precision of the pulses real-
izing them. With the exception of a few systems known
with metrological precision [7], pulsing requires meticu-
lous calibration by closed-loop tuning, i.e., pulse adjust-
ment based on experimental observations. Numerical op-
timization algorithms have been implemented to solve a
wide range of tuning problems with a cost-effective num-
ber of iterations [8–13]. However, relatively little atten-
tion has been given to quantitatively exploring the speed
and robustness of the algorithms used. This becomes cru-
cial with more complex and precise quantum operations,
as the number of parameters and requisite precision of
calibration grow.

Though many aspects of tuning qubit gates are im-
plementation independent, some details are specific to
physical realizations. Superconducting transmon qubits
are a promising hardware for quantum computing, with
gate times already exceeding coherence times by three
orders of magnitude. Conventional gate tuneup relies
on qubit initialization, performed passively by waiting
several times the qubit energy-relaxation time T1 or ac-
tively through feedback-based reset [14]. Passive initial-
ization becomes increasingly inefficient as T1 steadily in-
creases [15, 16], while feedback-based reset is technically
involved [17].

In this Letter, we present a gate tuneup method

that dispenses with T1 initialization and achieves ten-
fold speedup over the state of the art [9] without active
reset. Restless tuneup exploits the real-time correlation
of quantum-non-demolition (QND) measurements to in-
terleave gate operations without pause, and the evalua-
tion of a cost function for numerical optimization with
adjustable sensitivity at all levels of gate fidelity. This
cost function is obtained from a simple modification of
the gate sequences of conventional randomized bench-
marking (CRB) to penalize both gate errors within the
qubit subspace and any leakage from it. We quantita-
tively match the signal-to-noise ratio of this cost func-
tion with a model that includes measured T1 fluctua-
tions. Restless tuneup robustly achieves T1-dominated
gate fidelity of 0.999, verified using both CRB with T1
initialization and a first implementation of gate set to-
mography (GST) [18] in a superconducting qubit. While
this performance matches that of conventional tuneup,
restless is tenfold faster and converges in one minute.

In many tuneup routines [Fig. 1(a)], the relevant in-
formation from the measurements can be expressed as
the fraction ε of non-ideal outcomes (mn). In conven-
tional gate tuneup, a qubit is repeatedly initialized in
the ground state |0〉, driven by a set of gates ({G}) whose
net operation is ideally identity, and measured [Fig. 1(b)].
The conventional cost function is the raw infidelity,

εC =

N∑
n=1

(mn 6= 0)/N.

The central idea of restless tuning [Fig. 1(c)] is to re-
move the time-costly initialization step, by measuring the
correlation between subsequent QND measurements and
interleaving gate operations without any rest [19]. For
example, when the net ideal gate operation is a bit flip,
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FIG. 1. (a) A general qubit gate tuneup loop. In conven-
tional tuneup (b), the qubit is initialized before measuring
the effect of {G}. In restless tuneup (c), the qubit is not ini-
tialized, and instead mn−1 is used to estimate the initial state
(|m̃n−1〉). (d) Benchmark of various contributions to the time
per iteration in conventional and restless tuneup, without and
with technical improvements (see text for details).

we can define the error fraction

εR =

N∑
n=2

(mn = mn−1)/N. (1)

We demonstrate restless tuneup of DRAG pulses [20]
on the transmon qubit recently reported in [12] (sum-
mary of device parameters in [21]). We choose DRAG
pulses (duration τp = 20 ns) for their proven ability to
reduce gate error and leakage [22, 23] with few-parameter
analytic pulse shapes. These pulses consist of Gaussian
(G) and derivative of Gaussian (D) envelopes of the in-
and quadrature-phase components of a microwave drive
at the transition frequency f between qubit levels |0〉 and
|1〉. These components are generated using four channels
of an arbitrary waveform generator (AWG), frequency
upconversion by sideband modulation of one microwave
source, and two I-Q mixers. The G and D components
are combined inside a vector switch matrix (VSM) [24]
(details in [21]). A key advantage of this scheme using
four channels is the ability to independently set the G
and D amplitudes (AG and AD, respectively), without
uploading new waveforms to the AWG.

To measure the speedup obtained from the restless
method, we must take the complete iteration into ac-

count. The traditional iteration of a tuneup routine in-
volves: (1) setting parameters (4 channel amplitudes on a
Tektronix 5014 AWG); (2) acquiring N = 8000 measure-
ment outcomes; (3) sending the measurement outcomes
to the computer and processing them; and (4) miscel-
laneous overhead that includes determining the parame-
ters for the next iteration, as well as saving and plotting
data. In Fig. 1(d), we visualize these costs for an exam-
ple optimization experiment. We intentionally penalize
the restless method by choosing a large number of gates
(∼ 550). Even in these conditions, restless sequences re-
duce the acquisition time from 1.60 to 0.12 s. However,
the improvement in total time per iteration (from 1.98 to
0.50 s) is modest due to 0.38 s of overhead.

We take two steps to reduce overhead. The 0.23 s
required to send all measurement outcomes to the com-
puter and then calculate the error fraction is reduced to
< 1 ms by calculating the fraction in real time, using
the same FPGA system that digitizes and processes the
raw measurement signals into bit outcomes. The 0.09 s
required to set the four channel amplitudes in the AWG
is reduced to 1 ms by setting AG and AD in the VSM.
With these two technical improvements, the remaining
overhead is dominated by the miscellaneous contribu-
tions (40 ms). This reduces the total time per restless
(conventional) iteration to 0.16 s (1.64 s).

A quantity of common interest in gate tuneup is the
average Clifford fidelity FCl, which is typically measured
using CRB. In CRB, {G} consists of sequences of NCl

random Clifford gates, including a final recovery Clifford
gate that makes the ideal net operation identity. Follow-
ing [25], we compose the 24 single-qubit Clifford gates
from the set of π and ±π/2 rotations around the x and
y axes, which requires an average of 1.875 gates per Clif-
ford. Gate errors make εC increase with NCl as [26, 27]

1− εC = A · (pCl)
NCl +B. (2)

Here, A and B are constants determined by state prepa-
ration and measurement error (SPAM), and 1 − pCl is
the average depolarizing probability per gate, making
FCl = 1

2 + 1
2pCl. Extracting FCl from a CRB experi-

ment involves measuring εC for different NCl and fitting
Eq. (2). However, for tuning it is sufficient to optimize εC
at one choice of NCl, because εC(NCl) decreases mono-
tonically with FCl [9].

In the presence of leakage, CRB sequences and εC are
not ideally suited for restless tuneup. Typically, there is
significant overlap in the readout signals from the first-
(|1〉) and second- (|2〉) excited state of a transmon. A
transmon in |2〉 can produce a string of identical mea-
surement outcomes until it relaxes back to the qubit
subspace. If the ideal net operation of {G} is identity,
the measurement outcomes can be indistinguishable from
ideal behavior. Although the leakage on single-qubit
gates is typically small (10−5 − 10−3 per Clifford for the
range of AD considered [23, 24]), a simple modification
to the sequence allows penalizing leakage. By choosing
the recovery Clifford for restless randomized benchmark-
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FIG. 2. (a) Average error fraction of RRB for different FCl

vs NCl. (b) εC and εR as a function of AG for NCl = 80 and
NCl = 300. The curves are denoted by a dashed line in (c-d).
(c-d) ε for NCl = 300 as a function of AG and AD. White
circles indicate minimal ε. Total acquisition time is shown at
the bottom right.

ing (RRB) sequences so that the ideal net operation of
{G} is a bit flip, leakage produces an error. This simple
modification makes εR a better cost function.

We now examine the suitability of the restless scheme
for optimization (Fig. 2). Plots of the average εR(NCl)
[εR(NCl)] at various FCl (controlled via AG) behave sim-
ilarly to εC in CRB. Furthermore, εR is minimized at
the same AG as εC, with only a shallower dip because of
SPAM. The (AG, AD) landscapes for both cost functions
[Fig. 2(c-d)] are smooth around the optimum, making
them suitable for numerical optimization. The fringes far
from the optimum arise from the limited number of seeds
(always 200) used to generate the RB sequences. Note
that while the landscapes are visually similar, the differ-
ence in time required to map them is striking: ∼ 50 min
for εC versus < 5 min for εR at NCl = 300.

The sensitivity of εR to the tuning parameters depends
on both the gate fidelity and NCl. This can be seen
in the variations between curves in Fig. 2(a). In order
to quantify this sensitivity, we define a signal-to-noise
ratio (SNR). For signal we take the average change in
the error fraction, ∆εR = εR(F b

Cl) − εR(F a
Cl), from F a

Cl
to F b

Cl ≈ 1
2 + 1

2F
a
Cl (halving the infidelity). For noise we

take σεR , the average standard deviation of εR between
F a
Cl and F b

Cl. We find that the maximal SNR remains
∼ 15 for an optimal choice of NCl that increases with
F a
Cl (Fig. 3 and details in [21]). This allows tuning in

logarithmic time, since reducing error rates p → p/2M

requires only M optimization steps.

A simple model describes the measurement outcomes
as independent and binomially distributed with error
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FIG. 3. (a) Signal ∆εR for a halving of the gate infidelity,
plotted as a function NCl at F a

Cl ∼ 0.989 (red), 0.996 (green)
and 0.998 (blue). (b) Noise dependence on NCl at the same
fidelity levels. Added curves are obtained from the two models
described in the main text.

probability εR, as per Eq. (2) with εC → εR. This model
captures all the essential features of the signal. However,
it only quantitatively matches the noise at high NCl. Ex-
periment shows an increase in noise at low NCl. In this
range, εR is dominated by SPAM, which is primarily due
to T1. We surmise that the increase stems from T1 fluc-
tuations [28] during the acquisition of statistics in these
RRB experiments. To test this hypothesis, we develop
an extensive model incorporating T1 fluctuations into the
calculation of both signal and noise [21]. We find good
agreement with experimental results using independently
measured values of T1 and σT1

. The good agreement con-
firms the non-demolition character of the measurement
previously reported in [12].

Following its validation, we now employ εR in a two-
step numerical optimization protocol (Fig. 4). We choose
the Nelder-Mead algorithm [29] as it is derivative-free
and easy to use, requiring only the specification of a
starting point and initial step sizes. The first step us-
ing εR(NCl = 80) ensures convergence even when start-
ing relatively far from the optimum, while the second
step using εR(NCl = 300) fine tunes the result. We
test the optimization for four realistic starting devia-
tions from the optimal parameters (Aopt

D , Aopt
G ). AG

is chosen at both approximately 6% above and below
Aopt

G , selected as a worst-case estimate from a Rabi os-
cillation experiment. AD is chosen at both approxi-
mately half and double Aopt

D . The initial step sizes are

∆AG ≈ −0.03Aopt
G , ∆AD ≈ −0.25Aopt

D for the first step,

and ∆AG ≈ −0.01Aopt
G , ∆AD ≈ −0.08Aopt

D for the sec-
ond step.

We assess the accuracy of the above optimization and
compare to traditional methods. A CRB experiment
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FIG. 4. Two-parameter restless tuneup using a two-step
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tuned pulses (FCl = 0.9991), compared to F
(T1)
Cl = 0.9994 and
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2-par. (AG, AD) 3-par. (AG, AD, f)

conv. restl. conv. restl.

FCl 0.9991 0.9991 0.9990 0.9990

σFCl 3 · 10−5 3 · 10−5 0.0001 0.0001

τ 660 s 59 s 610 s 66 s

στ 110 s 11 s 110 s 13 s

Nit 400 370 370 420

σNit 70 70 70 80

F
(T1)
Cl 0.9994 0.9993

T1 21.4 µs 19.3 µs

TABLE I. Tuning protocol performance. Mean (overlined)
and standard deviations (denoted by σ) of FCl, time to con-
vergence τ , and number of iterations Nit for restless and con-
ventional tuneups with 2 and 3 parameters. Average T1 mea-

sured throughout these runs and corresponding average F
(T1)
Cl

are also listed.

[Fig. 4(c)] following two-parameter restless optimization
indicates FCl = 0.9991. This value matches the aver-
age achieved by both restless and conventional tuneups
for the different starting conditions. We also implement
GST to independently verify results obtained using CRB.
From the process matrices we extract the average GST
Clifford fidelity, FGST

Cl = 0.99907 ± 0.00003 (0.99909 ±
0.00003) for restless (conventional) tuneup [21], consis-
tent with the value obtained from CRB.

The robustness of the optimization protocol is tested

by interleaving tuneups with CRB and T1 measurements
over 11 hours (summarized in Table I, and detailed
in [21]). Both tuneups reliably converge to FCl = 0.9991,
close to the T1 limit [30]:

F
(T1)
Cl ≈ 1

6

(
3 + 2e−τc/2T1 + e−τc/T1

)
= 0.9994, (3)

with τc = 1.875 τp. However, restless tuneup converges
in one minute, while conventional tuneup requires eleven.

It remains to test how restless tuneup behaves as ad-
ditional parameters are introduced. Many realistic sce-
narios also require tuning the drive frequency f . As a
worst case, we take an initial detuning of ±250 kHz.
The initial step size in the first (second) step is 100 kHz
(50 kHz). The 3-parameter optimization converges to
FCl = 0.9990± 0.0001 for both restless and conventional
tuneups. We attribute the slight decrease in FCl achieved
by 3-parameter optimization to the observed reduction in
average T1.

In summary, we have developed an accurate and ro-
bust tuneup method achieving a tenfold speedup over
the state of the art [9]. This speedup is achieved by
avoiding qubit initialization by relaxation, and by using
real-time correlation of measurement outcomes to build
the cost function for numerical optimization. We have
applied the restless concept to the tuneup of Clifford
gates on a transmon qubit, reaching a T1-dominated fi-
delity of 0.999 in one minute, verified by conventional
randomized benchmarking and gate set tomography. We
have shown experimentally that the method can detect
fractional reductions in gate error with nearly constant
signal-to-noise ratio. An interesting next direction is to
develop an algorithm that makes optimal use of this tun-
able sensitivity while maintaining the demonstrated ro-
bustness. The enhanced speed combined with the generic
nature of the optimizer would also allow exploring other,
more generic non-adiabatic gates without analytic pulse
shapes, in a fashion analogous to optimal control the-
ory [31, 32]. Immediate next experiments will extend the
restless concept to the tuneup of two-qubit controlled-
phase gates [33, 34] exploiting interactions with non-
computational states [35], in which leakage errors often
dominate (∼ 10−2). In this context, we anticipate that
the RRB modification and the εR cost function will prove
essential to reach 0.999 fidelity. Finally, we also envision
applying the restless concept to the simultaneous tuneup
of single-qubit gates in the many-qubit setting (e.g, a
logical qubit).
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