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Abstract: Metamaterials with artificially designed architectures are increasingly considered as 

new paradigmatic material systems with unusual physical properties. Here we report a class of 

architected lattice metamaterials with mechanically tunable negative Poisson’s ratios and 

vibration mitigation capability. The proposed lattice metamaterials are built by replacing regular 

straight beams with sinusoidally shaped ones, which are highly stretchable under uniaxial tension. 

Our experimental and numerical results indicate that the proposed lattices exhibit extreme 

Poisson’s ratios variations between -0.7 and 0.5 over large tensile deformations up to 50%. This 

large variation of Poisson’s ratio values is attributed to the deformation pattern switching from 

bending to stretch within the sinusoidally shaped beams. The interplay between the multiscale 

(ligament and cell) architecture and wave propagation also enables remarkable broadband 

vibration mitigation capability of the lattice metamaterials, which can be dynamically tuned by an 

external mechanical stimulus. The material design strategy provides insights into the 

development of classes of architected metamaterials with potential applications including energy 
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absorption, tunable acoustics, vibration control, responsive devices, soft robotics, and stretchable 

electronics. 
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I. INTRODUCTION 

Metamaterials are rationally designed multiscale material systems whose unusual equivalent 

physical properties are dictated by their architectures rather than compositions. Metamaterials 

have recently attracted significant interest within the research community because of their 

intrinsic capability of exhibiting unusual properties for broad ranges of potential applications [1-

3]. For example, metamaterials with artificially designed architectures can exhibit a negative 

refractive index that is unattainable for conventional materials [4-6]. The metamaterial concept 

has been rapidly extended from photonic systems to acoustic [7-10] and mechanical systems [11-

16]. Among them, the mechanical metamaterials with a negative Poisson’s ratio (NPR) are of 

particular interest [17-26]. For instance, by tailoring the geometric features of the ligaments in 

cellular structures, auxetic behavior can be achieved over a wide range of geometric parameters 

[24, 25]. In addition, by integrating topology optimization with 3D printing technique, architected 

materials with non-straight ligaments have been optimized and display a nearly constant 

Poisson’s ratio over large deformations [26]. Most materials (both isotropic and anisotropic) 

exhibit positive Poisson’s ratios, however, the existence of negative Poisson’s ratios is still 

permitted under the tenets of the classic theory of elasticity.  

Materials with a negative Poisson’s ratio that will contract (expand) transversally when they 

are axially compressed (stretched) are also called auxetics [27-35]. Auxetic behavior has been 

observed in a variety of natural systems, including cubic metals [36],  zeolites [37, 38], natural 

layered ceramics [39], silicon dioxides [40], single-layer graphene [41, 42], and 2D protein 
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crystals [43]. Following the seminal work of Lakes [30], a significant body of research work has 

been established to develop materials with a negative Poisson’s ratio. For example, the auxetic 

behavior of materials provides a wrapping effect around a penetrating object when subjected to 

indentation, a feature that may be useful in protective and blast engineering applications [44-46]. 

Several microstructure architectures and deformation mechanisms have been developed to obtain 

the auxetic behavior. Between the various architectures it is worth to note dimpled and perforated 

elastic sheets [47], origami/Kirigami-based metamaterials [18, 48, 49], hierarchical metamaterials 

with fractal cuts [50] and foams [51-55]. Auxetic materials and structures are intrinsically 

multifunctional because of the coupling originated between their unusual deformation 

mechanisms and their multiphysics behavior. For example, piezoresistive sensors with an auxetic 

substrate demonstrate a 300% improvement in piezoresistive sensitivity, making them capable of 

multimodal sensing [55].  

Most of the theoretical and experimental investigations related to auxetic cellular materials 

are focused on microstructure configurations with straight ligament topologies. Recent numerical 

and experimental studies indicate that thin film materials with serpentine microstructures can 

have improved stretchability, owing to the introduced microstructure and small intrinsic strain in 

the materials [56-59]. A non-straight (corrugated) rib configuration for open cell polyurethane 

foams has also recently been considered as a likely explanation for the existence of an unusual 

blocked shape memory effect in auxetic open cell polyurethane foams [60]. Although it has been 

theoretically shown that the auxetic behavior can also be attained in hierarchically architected 

lattice metamaterials with triangular topology [57], a convincing experimental evidence of the 

auxetic behavior of these materials has not been reported yet. Moreover, little attention has been 

paid to the performance of engineered auxetic metamaterial lattices with sinusoidally curved 

(non-straight) ligaments in their microstructure, especially at the hierarchical level. The goal of 
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this work is to investigate the auxetic behavior and vibration control capability of one of these 

materials by combining computational modeling with 3D printing techniques and related 

experimental testing. 

Here we create the architected lattice metamaterials by replacing the regular straight beams 

with beams of sinusoidal shape (Fig. 1).  Our metamaterial design concept is motivated by the 

observation that conventional lattice metamaterials have small or no wave band gaps [61, 62], 

while tunable phononic band gaps could arise in buckled structures [63]. In addition, 

buckled/curved beams have excellent stretchability under tension because the local strain is much 

smaller than the macroscopic strain when the lattice metamaterials subjected to uniaxial stretch. 

Note that here we are not able to create the desired buckled lattice metamaterials using external 

mechanical loading, because short-wavelength buckling mode is never preferred for regular 

lattice metamaterials under macroscopic compression. We numerically and experimentally 

investigate the macroscopic auxetic response of the proposed lattice metamaterials over large 

strains of up to 50% in tension. Our results indicate that the Poisson’s ratios can be effectively 

tuned from negative to positive, which is attributed to the deformation behavior of sinusoidally 

curved beams transiting from bending-dominated to stretching-dominated behavior. We further 

show that by tailoring the amplitude and wavelength of the sinusoidally curved beams it is 

possible to efficiently control this transition phenomenon. The proposed lattice metamaterials 

exhibit significant broad phononic band gaps when compared with regular square lattice 

metamaterials. In particular, these band gaps can be dynamically tuned by applying an external 

mechanical stimulus, like uniaxial stretching in our case.  

II. METAMATERIALS DESIGN AND FABRICATION 
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A schematic of our 2D lattice microstructure with auxetic behavior is illustrated in Fig. 1 

(a) – (c). The shape of the sinusoidally curved beams can be mathematically described as 

( )sinny A n x lπ= , where nA  is the wave amplitude,  n is the number of half wavelength, and l 

is the length of regular straight beams. The length of the sinusoidally curved beam is given by: 

( )
2

2'

0 0
1 1 cos

l l
nA n n xs y dx dx
l l

π π⎛ ⎞⎛ ⎞= + = + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫ ∫ ,                                                                     (1) 

Under the mass equivalence assumption, the width of the sinusoidally curved beam can be 

calculated as 

2

0
1 cos

l
nA n n xw t l dx
l l

π π⎛ ⎞⎛ ⎞= ⋅ + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫ ,                                                                                       (2) 

where t is the width of regular beams. Then, for a given nA n l , the width of the sinusoidally 

curved beam is the same for any n. In this work, we focus on structures with volume fraction 

smaller than 0.1, where l/t > 15 for all cases.  

The proposed lattice metamaterials are fabricated using a multi-material 3D printer (Objet 

Connex260, Stratasys). To ensure the stretchability of the cellular configuration a rubber-like 

material, FLX9795-DM, is used as the constitutive (core) material for the sinusoidally shaped 

beams [64]. Fig. 1 (d) shows the center area of the specimen, which consists of an array of 4×5 

unit cells with 1 3nA n l = , n=1, 1 20w l =  and a representative sequence of images taken at 

different tensile strains. By simple inspection it is evident that at a small initial strain the lattice 

material expands transversally, indicating therefore the presence of an auxetic behavior. However, 

when the macroscopic tensile strain increases to 30%, the lattice material starts to contract along 

the x direction. These phenomena suggest that the fabricated 2D lattice metamaterials exhibit 

auxetic behavior and a strain-dependent Poisson’s ratio.  
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FIG. 1. Schematics and deformation behavior of the sinusoidally architected lattice material. (a) 

Regular square lattice with 2×2 unit cells. Here t and l are the width and length of regular beams. 

(b) Buckling modes of a single beam under compression. (c) Proposed architected lattice 

metamaterials with 2×2 unit cells with n=1; (d) Deformation behavior of the center area 

consisting of 2×2 unit cells of the architected lattice material under uniaxial tension.  

 

To understand from a quantitative point of view the auxetic behavior of the square lattice 

metamaterials we have fabricated and mechanically tested three specimens consisting of 4×5 unit 

cells, where 1 3nA n l =  and n=1, 2, 3, respectively [64]. To verify our design, numerical 

simulations are also performed on each specimen topology by using a nonlinear finite element 

code (COMSOL Multiphysics). The rubber-like constitutive material is modeled using the 
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Arruda-Boyce hyperelastic model [65]. In addition, plane strain conditions are assumed in the 

simulation and the out-of-the-plane thickness of the 2D lattices is 1 cm[64]. 

III. MECHANICALLY TUNABLE POISSON’S RATIO 

A. Auxetic Behavior of Lattice Metamaterials 

Fig. 2 (a) shows the macroscopic stress-strain relations of three selected specimens under 

uniaxial tension. The Arruda-Boyce hyperelastic model can accurately capture the mechanical 

behavior of the lattice metamaterials. At high strain level, numerical predictions slightly deviate 

from the experimental measured data. The discrepancy between numerical and experimental data 

is mainly due to the failure of some beam ligaments. When the applied strain is higher than 0.35, 

some beams starts to break, leading to the drop in the stress-strain curves. Since the specimens 

are fabricated layer-by-layer in the 3D printer, anisotropy, porosity and imperfections are 

introduced during 3D printing [66, 67], which also play a role. These specific aspects are not 

taken into consideration in our model.  

We find that these structures exhibit J-shaped stress-strain curves, which are very similar to 

the mechanical response of bioinspired soft network composite materials and other stretchable 

electronics [56-59]. However, the stress-strain behavior is different from that of plates with 

rectangular auxetic perforations, which exhibit a softening phenomenon in the tensile stress–

strain curve for an increasing magnitude of Poisson’s ratio [44]. Apparently, at small strains the 

structure has an auxetic behavior, moving from a more anti-rubber behavior (n = 1) to be 

marginally auxetic (n = 3, yxν  ~ 0). The lowest stiffness at small and medium strains (up to ~ 

0.20) belongs to the specimens with the most negative νxy. That means that under tensile loading 

the cross section of the specimen increases, and therefore for a given tensile force the equivalent 

stress is lower. Close to a critical strain (i.e., when yxν  ~ 0), the lattice tends to provide an 
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equivalent constant cross section for increasing strains. Densification is apparent at strains close 

to 0.22 – 0.25, when the Poisson’s ratio tends to change dramatically and decrease its magnitude, 

coming close to be marginally auxetic or even slightly PPR, depending on the sinusoidal order 

adopted.  This unique deformation behavior is intrinsically dictated by the sinusoidal architecture 

of the artificially designed ligaments. The pre-set configuration of the sinusoidally shaped 

ligaments enables switching deformation mechanisms between bending and stretching of the 

ligaments [68]. In conventional lattice materials with straight beams this deformation 

transformation is not envisioned. 

The numerical and experimental results of the Poisson’s ratio of the lattice metamaterials as a 

function of the tensile strain are presented in Fig. 2 (b). For tensile strains below 0.20, the 

numerical predictions tend to slightly overestimate the experimental results for n=1 and 2. Note 

that since the lattice metamaterials are soft, unavoidable misalignments in the test setup can 

influence the measurement of the Poisson’s ratios. Furthermore, when calculating the Poisson’s 

ratio by means of digital image correlation, minor errors can be introduced in the processing. We 

also note that over this range of strain, the proposed square lattice metamaterials exhibit a nearly 

constant negative Poisson’s ratio. This is because vertical and horizontal beams are both 

subjected to bending at macroscopic strains below 0.2 (Figure 2 (c)). At this small strain range, 

the magnitudes of the vertical and horizontal strain increments are changing in a similar manner. 

As a result, the Poisson ratio is nearly constant. With the increase of the stretching, the Poisson’s 

ratio gradually turns from negative to marginally positive. To elucidate the mechanisms 

responsible for the transition of the Poisson’s ratio we present the mechanical response of a 

representative unit cell taken from the central area of the specimen under different tensile strains 

(Fig. 2 (c)). Here we only show the mechanical behavior of the lattice metamaterials with n=1 

and 3. Again, one can notice an excellent agreement between the numerical and the experimental 
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deformations. At strains below ~0.20, the deformation response of the vertical beams is clearly 

bending-dominated due to the initial curvature of sinusoidal architecture. With the increase of 

macroscopic stretching, the sinusoidal architecture will be stretched to an approximately straight 

beam. As a result, the deformation behavior will become stretching-dominated and very similar 

to regular materials, which typically exhibit a positive or zero Poisson’s ratio. Here the numerical 

and experimental results demonstrate that a mechanically tunable negative Poisson’s ratio can be 

achieved by introducing curved sinusoidal beams in regular lattice structures. The evolution of 

the Poisson’ ratio strongly depends on the coupled deformation behavior of vertical and 

horizontal beams. 
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FIG. 2. (a) Stress-strain relations of the architected lattice metamaterials. (b) Evolution of the 

Poisson’s ratios as a function of the applied tensile strain. (c) Deformed configuration at different 
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macroscopic strains. The von Mises stresses are normalized with respect to the Young’s modulus 

of the constitutive materials. Here 1 3nA n l = . 

B. Mechanically Tunable Poisson’s Ratios 

Having demonstrated that the sinusoidally architected lattice metamaterials exhibit auxetic 

behavior under uniaxial tension at specific strain ranges, we now systematically investigate the 

effects of amplitude nA n l  and half wavelength n on the mechanical response and the Poisson’s 

ratios. Fig. 3 (a) shows the stress-strain relations of the lattice metamaterials with different nA n l  

and n. Each structure exhibits a J-shaped stress-strain curve, which is similar to our previous 

experimental observation. For a given amplitude a short wavelength (i.e., a large n) gives rise to a 

higher stress-strain curve, indicating the presence of a significantly stiffer mechanical response. 

For a given value of n a smaller wave amplitude (i.e., a smaller curvature but with a larger beam 

width) however, leads to a higher stress-strain curve within the small strains range. These 

mechanical responses are intrinsically controlled by the bending stiffness of the sinusoidal curved 

beams, which is defined as 3S CE wκ= , where C is the geometric constant, E is the Young’s 

modulus of the beam, κ is the curvature, and w is the width of the beam. The effective stiffness 

of the lattice metamaterials as a function of nA n l  and n are summarized in Fig. 4 (a). We further 

note that for a given wave amplitude a significant auxetic behavior can be observed for n=1, 2 

(Fig. 3 (b)). Interestingly, the transition strain for the in-plane Poisson’s ratio is proportional to 

the wave amplitude because large macroscopic stretching is needed to make straight vertical 

beams with larger wave amplitudes. The minimum Poisson’s ratios as a function of nA n l  and n 

are summarized in Fig. 4 (b). 
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We have numerically demonstrated that the geometric parameters of the sinusoidally curved 

beams have a great impact on the evolution of the Poisson’s ratio. Among these, the number of 

half wavelength n is critical to the existence of the auxetic behavior. For a smaller n, strong 

synergistic deformation behavior exists between horizontal behavior and vertical behavior. As a 

result, the pre-existing deformation can be harnessed to generate an auxetic behavior. However, 

with the increase of n, this synergistic deformation between vertical and horizontal beams 

becomes week. For a given n, the wave amplitude is crucial to the transition between negative 

Poisson’ ratio and positive Poisson’s ratio. 

 

 
FIG. 3. Effect of (a) amplitude, nA n l  and (b) number of half wavelength, n, on the stress-strain 

relation and Poisson’ ratio. Here 1 20w l =  for all of the simulations. 
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FIG. 4. Effect of amplitude, nA n l  and the number of half wavelength, n, on the (a) effective 

stiffness and (b) Poisson’ ratio of the proposed lattice metamaterials. 

 

Another geometric parameter with a significant impact on the mechanical response and in-

plane Poisson’s ratios is the slenderness ratio w l . To demonstrate this, we examine the 

mechanical response and the auxetic behavior of the lattice material with 1 3nA n l =  and n=1, 2. 

Highly nonlinear stress-strain curves arise in those cases for a small strain range (Fig. 5(a)) 

because the mechanical response of the sinusoidally curved beam is bending-dominated, with the 

bending stiffness being proportional to 3w . Therefore, large slenderness ratio will give rise to 

higher stiffness. At large strains the mechanical response of sinusoidally curved beam becomes 

stretching-dominated and a nearly linear response can be observed in the stress-strain curves. 

The bending-dominated and stretching-dominated behaviors at different strains have also a 

significant impact on the Poisson’s ratios (Fig. 5 (b)). At strains below 0.20, the lattice 

metamaterials with n=1 and 2 have a nearly constant negative Poisson’s ratio of ~ -0.65 and ~ -

0.45, respectively. This phenomenon indicates that the Poisson’s ratio is almost independent of 

the slenderness ratio when the sinusoidally curved beams are highly bending-dominated. By 

contrast, at large stretching strain, the Poisson’s ratio rapidly changes from negative to positive 
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for both cases. The transition is much sharper for a smaller slenderness ratio, since the nearly 

straight beam is, in this case, more compliant.   

 

FIG. 5. Effect of w l on the stress-strain relation and Poisson’s ratios of the proposed lattice 

metamaterials. Here 1 3nA n l = . 

C. Effect of the Lattice Topology 

Having shown that the mechanical response and the Poisson’s ratios can be tuned by tailoring 

the geometric features of the sinusoidally curved beams, we now proceed to examine the effect of 

the lattice topology on the auxetic behavior from a numerical and experimental standpoint. Four 

types of sinusoidally architected lattice metamaterials with hexagonal, Kagome, square, and 

triangular topology are fabricated using 3D printing (Fig. 6 (a)). Here we use as geometry 
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parameters 1 3nA n l =  and n=2. The specific lattice topology has a significant impact on the 

overall mechanical response of the lattice metamaterials under tension (Fig. 6 (b)). The triangular 

lattice has (as expected) the largest stiffness, while the hexagonal tessellation is the more 

compliant [69]. Experimental and numerical results related to the Poisson’s ratios for the four 

types of topology are presented in Fig. 6 (c), and they all show a good agreement. In contrast to 

the negative Poisson’s ratio of square lattice metamaterials, both hexagonal and kagome lattice 

configurations exhibit a positive Poisson’s ratio below 0.40 tensile strains. The evolution of the 

Poisson’s ratio of the triangular lattice is however strongly strain-dependent and there is a switch 

between NPR and PPR at a critical strain of 24%.  

This metamaterial design concept can be extended to other lattice topologies, thereby offering 

different deformation behaviors and mechanical responses. For example, it is well known that 

regular beams in hexagonal lattices are bending-dominated, while the introduction of sinusoidally 

curved beams enables the coexisting of bending and stretching behavior. The study of the effect 

of lattice topology not only provides opportunities to tailor the auxetic behavior, but also provides 

us a better understanding of the coupling deformation behavior in novel lattice metamaterials. It 

is anticipated that topologies along with sinusoidal architecture can be used to explore 

mechanical properties and other functionalities. 
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FIG. 6. Effect of the topology on the stress-strain curves and Poisson’s ratio. (a) 3D printed 

specimens with hexagonal, Kagome, square, and triangular topology. (b) Stress-strain relations 

and (c) Evolution of Poisson’s ratio as a function of the strain. The legend is the same as that in 

(b). Here 1 3nA n l = , n=2, and 1 20w l = . Scale bar: 1cm. 

IV. BROADBAND AND MECHANICALLY TUNABLE VIBRATION MITIGATION 

A. Broad and Multiple Phononic Band Gaps 

We have demonstrated that the proposed sinusoidally architected lattice metamaterials exhibit 

tunable Poisson’s ratios over a large tensile strain range. The evolution of Poisson’s ratio strongly 

depends on the geometric features of the sinusoidal architecture as well as the global topology of 

the lattice metamaterials. From a metamaterial design perspective, the interplay between 

Poisson’s ratios and the intrinsic architecture can guide us to explore other functionalities arising 

from the use of these architected materials. In this section we investigate the elastic wave 
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propagation occurring within these lattice metamaterials and explore their capability in providing 

a dynamic tunability for vibration alleviation using an external mechanical stimulus.  

We start by examining the phononic dispersion relations and the transmission spectra of the 

lattice metamaterials [64, 70-74].  In our case, the normalized frequency is defined as 1ω ωΩ = , 

where ω  is the frequency of the elastic wave obtained by solving the Bloch eigenvalue problem 

and 2 2 4
1 12Et lω π ρ=  is the first pinned-pinned flexural resonance frequency of a lattice beam 

[61]. For the material and structures studied in this work 1 982ω = . 

Fig. 7 (a)-(d) show the phononic dispersion relations and the associated transmission spectra 

of a regular lattice material (A=0, n=0) and configurations with 1 3nA n l =  and n=1, 3, 5. The 

simulated transmission spectrum for each lattice material agrees extremely well with the presence 

of the partial band gaps along the M-K direction found via the Bloch wave analysis. No band 

gaps exist in the regular lattice material, however, five complete band gaps can be observed for 

the sinusoidally architected lattice material with n=1. Within the observed band gaps, the largest 

one lies within Ω =1.12-1.36. Both multiple and broad phononic band gaps arise for n=3 and 5. 

More specifically, five and six complete band gaps emerge for n=3 and 5, and the maximum band 

gaps for n=3 and 5 lies within Ω =3.25-3.59 and Ω =0.79-1.26, respectively. A direct comparison 

between the geometric features of the regular and proposed lattice metamaterials shows that 

mechanism associated with the broad and multiple band gaps formation are intrinsically dictated 

by the wave amplitude and wavelength of the sinusoidally curved beams, leading to the coupling 

of axial and bending motion [75]. The formation of complete wave band gaps can be due to 

Bragg scattering and/or local resonances. For our lattice metamaterials, both effects can be 

observed in the phononic dispersion diagram. For example, for n=5, local resonances are 

responsible for the first two band gaps, as evidenced by the flat bands between these two band 
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gaps (Figure 7 (d)). Other band gaps are attributed to Bragg scattering at both the microstructural 

level of the sinusoidally curved beam as well as the macroscopic level of lattice topology.  

 
FIG. 7. Phononic dispersion relations and transmission spectra of the architected lattice 

metamaterials. (a) 0A = , 0n =  ; (b) 1 3nA n l = , 1n = ; (c) 1 3nA n l = , 3n = ;(d) 1 3nA n l = , 

5n = . Here 1 20w l =  for all of the simulations. 

B. Mechanically Tunable Phononic Band Gaps 

We have shown that by introducing a sinusoidal architecture into regular lattice 

metamaterials broad and multiple phononic band gaps can arise. It is obvious that these band 

gaps can be tuned by tailoring the geometric features of the ligaments (beams) of the lattice 

metamaterials. Here, we explore the dynamic tunability of the phononic band gaps using now an 

external mechanical stimulus, i.e., a uniaxial tensile deformation. Fig. 8 (a) and (b) show the 
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phononic dispersion relations at different stretching strains for n=4 and 6, respectively.  We note 

that most of the initial band gaps will close for n=4, while the band gaps tend to shrink for n=6 

with the increase of the applied stretching. To better understand the effect provided by the 

applied tensile strain we plot the evolution of the band gaps as a function of εyy for n=2, 4, 6 (Fig. 

8 (c)). It is interesting to note that for n=2 all of the band gaps are suppressed when stretching the 

lattice material by 30%. For n=4 and 6 the band gaps will partially close, while new band gaps 

will arise with the increase of the applied tensile strain. The sinusoidal architecture of the beams 

not only gives rise to broad and multiple phononic band gaps but also allows to tune dynamically 

the same band gaps by virtue of the beam compliance. From a geometric perspective, this 

prominent vibration control capability of the proposed lattice material is intrinsically associated 

with the introduced sinusoidally corrugated ligaments and its peculiar deformation behavior. 

These phenomena suggest that the application of a uniaxial stretching can be viewed as a useful 

tool to control the vibration mitigation and suppression for the proposed lattice metamaterials, 

which therefore can be used as programmable devices for wave filtering and waveguiding.                                    
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FIG. 8. Mechanically tunable band gaps for the architected lattice metamaterials. Phononic 

dispersion relations as a function of stretching strain for (a) 4n =  and (b) 6n = ; (c) Evolution of 

band gaps as a function of strain for 2n = , 4n = , and 6n = . Here 1 3nA n l =  and 1 20w l =  for 

all simulations. The insets show the deformation of the unit cell at each stretching strain.  
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V. CONCLUSION 

We have presented a class of lattice metamaterials with sinusoidally architected beams 

and evaluated their mechanical response and wave propagation performance. Under uniaxial 

tension, the proposed sinusoidal architecture in the lattice beams provides an intrinsic 

deformation mechanism to switch from bending-dominated to stretching-dominated behavior. 

This transition of deformation mechanisms allows obtaining tunable Poisson’s ratios over a large 

tensile strain range. Our experimental and numerical results show a very good agreement in terms 

of overall stress-strain relations, Poisson’s ratios, and deformation patterns exhibited by these 

lattices. The investigation into the interplay between the multiscale (ligament and cell) 

architecture and wave propagation shows that broad and multiple phononic band gaps can be 

achieved in these lattice metamaterials. Quite importantly, this significant vibration mitigation 

capability can be dynamically tuned by an external mechanical stimulus, i.e., a uniaxial stretching. 

Although we have not built a quantitative relation between the auxetic behavior and the vibration 

mitigation capability of the lattice metamaterials, it is evident that both NPR and dynamic 

alleviation effects can be attributed to the unique deformation behavior and the vibrational modes 

of the artificially designed beams. The deformation behavior of the proposed metamaterials, 

together with their vibration mitigation capability makes them particularly suitable for the design 

of programmable mechanical metamaterials. The findings presented here provide insights into the 

development of architected metamaterials with unusual physical properties and a broad range of 

potential applications, such as tunable particle filters, stretchable electronics, configurable energy 

absorption materials, as well as adjustable acoustic metamaterials for vibration control. 
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