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Three-qubit quantum gates are key ingredients for quantum error correction and quantum infor-
mation processing. We generate quantum-control procedures to design three types of three-qubit
gates, namely Toffoli, Controlled-Not-Not and Fredkin gates. The design procedures are applicable
to a system comprising three nearest-neighbor-coupled superconducting artificial atoms. For each
three-qubit gate, the numerical simulation of the proposed scheme achieves 99.9% fidelity, which is
an accepted threshold fidelity for fault-tolerant quantum computing. We test our procedure in the
presence of decoherence-induced noise as well as show its robustness against random external noise
generated by the control electronics. The three-qubit gates are designed via the machine learning
algorithm called Subspace-Selective Self-Adaptive Differential Evolution (SuSSADE).

PACS numbers: 42.50.Gy, 42.50.Ex

I. INTRODUCTION

Quantum computing requires a universal set of low-
error quantum gates to enable fault-tolerant quantum
computing [1], and characterization is typically per-
formed using average fidelity from which gate error rate
can be inferred [2]. A universal set of single- [3] and
two-qubit [4] gates can be employed to decompose [5]
multi-qubit gates into a series of single and two-qubit
gates. In practice, this decomposition-based approach is
undesirable because it leads to quantum circuits [6, 7]
with long operation time. We employ the recently
proposed machine-learning technique, which we named
Subspace-Selective Self-Adaptive Differential Evolution
(SuSSADE) [8], to generate procedures (i.e., set of in-
structions that determine the control parameters, and
hence the effectiveness of the control scheme) for design-
ing single-shot high-fidelity three-qubit gates without any
need to resort to a decomposition. We test our proce-
dure [9] in the presence of decoherence induced noise and
demonstrates its robustness under the effect of random
control noise. The three-qubit gates that we consider
here are Toffoli [10–12] (which has already been discussed
in Ref. [8] and we give a review here for completeness),
Fredkin [13, 14] and Controlled-NOT-NOT or CXX [15],
which are typical three-qubit gates employed for quan-
tum information processing.
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The three-qubit gates that we consider in this study
are key ingredients for quantum algorithms and error
correction. A quantum Toffoli gate is necessary for (non-
topological) quantum error correction [6, 7] and a key
component for reversible computing [16]. Toffoli gate to-
gether with single-qubit Hadamard gate comprise a uni-
versal set of quantum gates [17, 18]. The Fredkin gate
enables reversible computing [16], and also forms a uni-
versal set along with Hadamard gate [19]. The CXX
gate appears in the syndrome operator measurement cir-
cuit [20] for quantum error correction algorithms, such as
the Steane code [21] and surface code [15]. Although the
Fredkin and CXX gates can be decomposed into three
and two CX (i.e., CNOT) gates respectively [4], we avoid
the decomposition-based approach and generate a proce-
dure to design these three-qubit gates that achieve the
same gate action over a shorter timescale.

Thus far Toffoli and Fredkin gates are achieved by de-
composition into single- and two-qubit gates [22–24] in
various physical systems, and yet none of these efforts
have achieved the threshold fidelity [4]. Recently we have
proposed a quantum control scheme (called SuSSADE)
for designing a single-shot high-fidelity (> 99.9%) Tof-
foli gate for a system comprising three nearest-neighbor-
coupled superconducting artificial atoms [8]. In this work
we show that this machine learning technique enables the
design of other three-qubit gates as well for the same
physical model. For all the three-qubit gates considered
in this work we show that the gates operate as fast as a
two-qubit entangling Controlled-Z (CZ) gate under the
same experimental constraints.
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Recent progress in superconducting artificial
atoms [25–27] has made them appealing for quan-
tum information processing, especially for gate-based
quantum computing [28]. An avoided-crossing-based
CZ gate [29] has already been achieved for a system
comprising coupled superconducting artificial atoms.’
The idea of avoided-crossing-based gates is to vary the
energy level of artificial atoms such that energy levels
approach each other but avoid degeneracies. These
avoided crossings mix population and dynamical phases
at the corresponding levels such that the final evolution
of the system gives the required phase and population
for the target gates.

Our strategy to design the three-qubit gates is also
based on the avoided level-crossings. We employ an open-
loop quantum control approach to generate optimal ex-
ternal pulses for the frequencies of the superconducting
artificial atoms. We employ machine learning as a quan-
tum control tool to generate successful procedures and
show that our procedure can also be implemented in an
open quantum system where external noise is also acting
on the system.

Other approaches exist to design quantum gates for
a network of superconducting transmon systems, where
one can couple each transmon with a microwave genera-
tor [30] or couple the transmons via tunable couplers [31]
and control these external circuit elements to evolve the
system toward a specific unitary operation. These ap-
proaches require more resources (additional circuit el-
ements) compared to our approach [8], where we only
control the transmon frequency via a quantum control
scheme [32, 33] and evolve the system’s dynamics toward
the target gate.

Machine learning [34] is concerned with the construc-
tion of algorithms that can learn from data and make
predictions on data. Typical machine learning algo-
rithms tend to be greedy [35, 36], as they need less re-
source and computational time to complete the learning
task as well as converge faster (in comparison to non-
greedy approaches [37, 38]). However, we have observed
that greedy machine-learning techniques failed to gen-
erate a successful procedure for designing high-fidelity
three-qubit gates, which motivates us to employ the non-
greedy machine-learning technique. Our learning algo-
rithm is based on an enhanced version of Differential Evo-
lution (DE) algorithm [39], hence the name we assigned:
Subspace-Selective Self-adaptive DE or SuSSADE [8].

The rest of the paper is organized as follows. In Sec-
tion II we explain the physical model that we use to
design the three-qubit gates. In Section III we discuss
the avoided-crossing-based gates for two- and three-qubit
gates. In particular, we review the current theoretical
framework for designing avoided-crossing-based CZ gate
and also discuss that why taking the same theoretical
approach is challenging for avoided-crossing-based three-
qubit gates. In Section IV we discuss our quantum con-
trol scheme and show that how we translate the problem
of designing a three-qubit gate into a learning algorithm.

In Section V we discuss the noise model. In Section VI
we discuss each individual three-qubit gate and giving
their effect on a quantum state. Section VII presents
the results. The significance of the results is outlined in
Section VIII and we conclude our work in Section IX.

II. PHYSICAL MODEL

We consider a system comprising three nearest-
neighbor-coupled superconducting artificial atoms [4]
with parameters appropriate for the transmon sys-
tem [40, 41]. Each transmon is capacitively coupled to
its nearest neighbor, where the location of each trans-
mon is labeled by k = 1, 2, 3. The frequency εk(t), in the
rotating-frame, can be tuned via superconducting control
electronics. The anharmonicities of the second and third
energy levels are represented by η and η′.

We approximate η′ = 3η, which is valid for the cu-
bic approximation of the potential for the transmon sys-
tem [29]. The transmons are coupled capacitively, which
yields an XY interaction between adjacent transmons
(in the rotating frame) with a coupling strength g. The
Hamiltonian for three capacitively coupled transmons is
thus [29]

Ĥ(t)

h
=

3∑
k=1

0 0 0 0
0 εk(t) 0 0
0 0 2εk(t)− η 0
0 0 0 3εk(t)− η′


k

+
g

2

2∑
k=1

(X̂kX̂k+1 + ŶkŶk+1), (1)
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Ŷk
i
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√

2 0

0
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√

3

0 0
√

3 0


k

, X̂k =


0 1 0 0

1 0
√

2 0

0
√

2 0
√

3

0 0
√

3 0


k

are the generalized Pauli operators [29].
The experimental constrains for the transmons require

specific values for each physical parameter in Eq. (1).
The transmon frequencies εk(t) are varied between 2.5
and −2.5 GHz. We consider

η = 200 MHz, g = 30 MHz. (2)

Although the physical system considered for this work
consists of superconducting circuits, our quantum control
scheme is, however, not limited to a specific system.

The Hamiltonian (1) generating the three-qubit gates
acts on a 43-dimensional Hilbert space H ⊗3

4 . Under
the rotating-wave approximation, this Hamiltonian is a
block-diagonal matrix with each block corresponding to
a fixed number of excitations. This block diagonaliza-
tion property permits us to reduce the 43-dimensional
Hamiltonian to a subspace where at most 3 excitations
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are present, which is the relevant subspace for three-qubit
gates.

We define a projection operator Om that truncates the
Hamiltonian (1) up to the mth excitation subspace, and
for m = 3 (that allows at most 3 excitations, which is all
what we need for three-qubit gates) the projected Hamil-
tonian is given by,

Ĥp(t) = O3Ĥ(t)O†3 . (3)

We observe that the unitary evolution of the system is
unaffected by this truncation, which is what we expect
from a block-diagonal Hamiltonian.

We evolve Ĥp(t) such that the resultant unitary oper-
ator is

U(Θ) = T̂ exp

{
−i

∫ Θ

0

Ĥp(τ)dτ

}
(4)

with T̂ the time-ordering operator [42]. Note that U(Θ)
is a 20×20 unitary operator whereas the three-qubit gates
reside in 23-dimensional computational subspace. We
therefore, define another projection operator P, which
projects U(Θ) into the computational subspace of the
three-transmon system

Ucb(Θ) = PU(Θ)P†, (5)

where Ucb is the projected unitary operator.
Our goal is to achieve these specific three-qubit unitary

operation (Toffoli, Fredkin or CXX) over the duration
Θ, such that the distance between Ucb(Θ) and the target
three-qubit gate is minimal. We evolve the system Hamil-
tonian (4) such that the final time evolution operator
approaches to the target three-qubit gate modulo some
phases that can be compensated by local z-rotations on
each transmon. This phase compensation [29, 43] is per-
formed via the excursions of transmon frequencies and is
trivial for superconducting circuits.

To steer the system dynamics towards a specific en-
tangling gate operation, we define the equivalence class
of a given three-qubit gate Utarget under local z-rotations
as [29]

Utarget ≡ U ′target = UpostUtargetUpre, (6)

where

Upre,post(β1, β2, β3) ≡ Rz(β1)⊗Rz(β2)⊗Rz(β3). (7)

Rz in (7) denotes a unitary single-qubit rotation about
the z-axis. Equation (7) can be explicitly expressed in
terms of {βj}, which is the set of local phases acquired
by the jth transmon:

Upre,post =diag
(

1, e−iβ3 , e−iβ2 , e−i(β2+β3), e−iβ1 ,

e−i(β1+β3), e−i(β1+β2), e−i(β1+β2+β3)
)
. (8)

We use Upre,post, which are diagonal 8 × 8 matrices op-
erating on 23 dimensional computational subspace of the
three qubits, to perform phase compensation in the nu-
merical simulation of each three-qubit gate.
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FIG. 1. (color online) The energy (E) spectrum of the
system Hamiltonian of two capacitively coupled transmons.
The frequency of the first transmon is fixed at 6.5 GHz. The
frequency ε2(t) of the second transmon varies from 7.5 to 6.5
GHz

III. AVOIDED-CROSSING-BASED GATES

In this section, we first discuss the avoided-crossing-
based technique in designing the two-qubit entangling
CZ gate. Such a scheme was first proposed for a sys-
tem of two coupled phase qubits [44], which was later
adapted for a system of resonator-coupled superconduct-
ing qubits [29]. We describe the avoided-crossing-based
CZ gate for the physical model of two capacitively cou-
pled frequency-tunable transmons, with η and g (� η)
being the anharmonicity and the coupling strength, re-
spectively. This discussion is necessary to clarify why
finding a theoretical solution for three-qubit gates is chal-
lenging, which is in fact the motivation for our quantum
control approach.

A. CZ gate based on avoided level-crossing

CZ gate is a two-qubit entangling gate. It exerts a
Pauli z-rotation on the second (target) qubit if and only
if the first (control) qubit is |1〉. The CZ gate acts on the
basis states according to

|00〉 7→ |00〉 , |01〉 7→ |01〉 ,
|10〉 7→ |10〉 , |11〉 7→ − |11〉 , (9)

which leaves three two-qubit basis states intact and im-
poses a sign change on one basis state.
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The energy levels of two capacitively coupled trans-
mons are shown in Fig. 1, where we fix the frequency
of the first transmon at ε1 = 6.5 GHz and allow the
frequency of the second transmon ε2(t) to vary from
ωoff = 7.5 GHz (detuned frequency) to

ωon = ε1 + η = 6.7 GHz. (10)

We vary the frequency of the second transmon using a
time-dependent error function, with a switching time of
tramp and the gate operation time of tgate. This time-
dependent frequency is [29],

ε2(t) =ωoff +
ωon − ωoff

2

[
erf

(
4t− 2tramp

tramp

)
− erf

(
4t− 4tgate + 2tramp

tramp

)]
. (11)

The avoided-crossing-based CZ gate works as follows:
Initially, we detune the transmon frequencies from each
other by setting the frequency of the second transmon
equal to ε2(t = 0) = ωoff. This makes all the eigenstates
of the system non-degenerate. Then we tune the second
transmon to ωon for a time

ton = tgate − 2tramp, (12)

and finally detune the second transmon again to the fre-
quency ωoff. During the time ton, the computational ba-
sis state |11〉 mixes with the two auxiliary levels |02〉 and
|20〉, whereas all the other eigenstates in the computa-
tional basis (|00〉, |01〉, |10〉) are detuned from each other.
The parameters of the control pulse are determined such
that the mixing among |11〉, |02〉 and |20〉 states over the
time interval ton ensures the phase factors required for
the CZ gate as shown in Eq. (9).

Depending on the timescale ton, two distinct regimes
exist in which a CZ gate can operate: the sudden-
approximation regime and the adiabatic regime. In the
sudden-approximation regime we vary the second qubit
frequency fast enough, such that the switching time can
be made sudden with respect to g (but still adiabatic with
respect to η). For the sudden-approximation regime, the
switching time has an inverse relation with the coupling
factor as

ton =
π√
2g
. (13)

Under the sudden approximation, two parameters of the
pulse ωon and ton must be optimized to obtain a high-
fidelity CZ gate.

On the other hand, in the adiabatic regime, the switch-
ing is adiabatic with respect to g (and therefore, with
respect to η as well). In this regime, stronger coupling
is required between transmons to make the gate operate
as fast as the gates in the sudden approximation regime.
This increase of g leads to residual errors in a multiqubit
device, whereas the advantage of operating the trans-
mon in the adiabatic regime is that it suffices to opti-
mize only one parameter. This is because the adiabatic

regime ensures that the population of each energy level is
preserved. A CZ gate in the adiabatic regime is demon-
strated in Ref. [45].

B. Avoided-crossing-based approach for
three-qubit gates

Either in sudden or in adiabatic regime, the idea of
engineering a pulse for the avoided-crossing-based gate in
a superconducting system remains the same: Designing
a control pulse for the qubit frequency, such that the |11〉
state mixes with the other states in the second excitation
subspace, while the states in zero- and single-excitation
subspaces remain detuned from each other. However,
for practical implementations, both sudden and adiabatic
regimes are unsuitable for obtaining the threshold fidelity
required for fault-tolerance. Instead advanced machine-
learning-based techniques can be employed to engineer
optimal pulses, which is the motivation for our work.

One idea for designing three-qubit gates is to cou-
ple three transmons via a superconducting cavity, usu-
ally referred to as the circuit-quantum-electrodynamics
(cQED) architecture [46], and tune the transmon fre-
quencies in the dispersive regime such that the time-
evolution operator gives rise to the target three-qubit
at the end of operation. Such an approach has already
been used to demonstrate a Toffoli gate [7]. We, however,
do not consider the cQED hardware in our work, as the
architecture can only contain a few transmons inside a
superconducting cavity, and therefore, is not scalable.

Instead we consider a one-dimensional chain of three
transmons with nearest-neighbor coupling. To see if such
an approach is suitable for avoided-crossing-based three-
qubit gates, we first plot the energy spectrum of such
a three-transmon system in Fig. 2, where we fix the
frequencies of the first and third transmons to 4.8 and
6.8 GHz, respectively, and vary the frequency of the sec-
ond one from 4.5 to 7.5 GHz. We also set

g = 30 MHz, η = 200 MHz. (14)

In contrast to the two-qubit case, the energy spectrum
of a three-transmon system is crowded with many level-
crossings (or anticrossings in the presence of interaction).
For this system, therefore, finding optimal pulses theoret-
ically for the transmon frequencies, such that the |111〉
state mixes strongly with the other states in the third
excitation subspace, whereas all the other states are de-
tuned from each other is a challenging task, which is why
we employ the quantum control scheme and in particular
the machine-learning technique to devise a procedure for
designing such three-qubit gates [8].

IV. QUANTUM CONTROL

In this section we first give the application of quantum
control and elaborate how a gate-design problem can be
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FIG. 2. (color online) The energy (E) spectrum of three
nearest-neighbor-coupled transmons. The first and third
transmon frequencies are fixed at 4.8 and 6.8 GHz respec-
tively. The frequency of the second transmon varies from 4.5
to 7.5 GHz

transformed into a quantum-control problem. We intro-
duce supervised machine learning as a tool to generate
procedures for designing quantum gates. We explain the
map from quantum-control problem to the learning prob-
lem in the second part of this section, and then show that
generating a successful procedure via the learning algo-
rithm becomes a feasibility problem for which optimiza-
tion algorithms can be employed. We discuss some ex-
isting optimization algorithms that we employed to find
feasible procedures, discuss how these algorithms remain
inadequate to yield the required fidelity, and then intro-
duce the enhanced version of differential evolution algo-
rithm.

A. quantum-gate design as control problem

In the context of optimal control theory, the main task
of quantum control is to investigate how to steer quan-
tum dynamics towards a specific quantum state or oper-
ation [33]. The emergence of new quantum technologies
have realized new applications for quantum control in
various fields, such as femtosecond lasers [47, 48], nu-
clear magnetic resonance and other resonators [49–53],
laser-driven molecular reactions [54, 55], and quantum
gate synthesis for quantum computing [56]. In partic-
ular, we employ quantum control scheme to design fast
and high-fidelity three-qubit gates.

As we explained earlier, a chain of three capacitively
coupled transmons constitute the physical model for the
three-qubit gates. This physical system evolves according
to Eq. (4) and our goal is to steer the evolution toward
the target three-qubit gate operation. In order to turn

the problem into a quantum-control problem, we need
to clarify what the control parameters are. In our con-
trol scheme, control parameters are the qubit frequencies
which can be tuned via external pulses. The task of find-
ing the optimal shape for the external pulses can be per-
formed via quantum control schemes. Machine learning
can be employed as a quantum control tool to perform
this task.

B. Supervised machine learning: a quantum
control tool

The task of machine learning [57] is to develop algo-
rithms which can learn from system behaviour and pre-
dict the future behaviour of the system based on their
past evolution. Machine learning algorithms have already
been applied to various problems in quantum information
science, such as phase estimation [9], asymptotic state es-
timation [58], and discriminating quantum measurement
trajectories and improving readout [59]. One can classify
the machine learning algorithms in three distinct cate-
gories namely, supervised learnings, unsupervised learn-
ings and reinforcement learnings [57]. Our focus is on
supervised machine learning algorithm as a quantum con-
trol tool.

A supervised learning task [60] is to infer a function
(hypothesis) from the labeled data (training set). The
training data comprises an input vector accompanied by
its corresponding output vector. A supervised learning
algorithm trains the hypothesis on the training data to
construct an inferred hypothesis. This inferred hypothe-
sis can be further used to label novel data. Examples of
supervised learning problems are regression or classifica-
tion problems [61, 62]. The idea of supervised learning
can be generalized to develop quantum control schemes
that deliver successful procedures for quantum-gate de-
sign. In what follows, we describe the procedure for
turning a gate-design problem into a supervised machine
learning problem.

A quantum logic gate is a map between an input and
an output state. One can always represent the action of
any quantum logical gate on the basis elements in terms
of a truth table. There is a one-to-one correspondence be-
tween the input and output elements in this truth table,
as the quantum logic gates are themselves reversible. In
the context of supervised learning problem, we consider
the truth table as the training set. Loosely speaking,
we train our hypothesis on the truth table data as the
training set.

Having clarified that the truth table represents the
training set, we now discuss what the hypothesis is. In
the context of quantum-gate design, the hypothesis is the
external pulses. Therefore, we train the parameters of the
external pulses on the truth table data to shape the exter-
nal pulses such that the system evolution approximates
the target gate. If the hypothesis is learnt successfully,
it generates a procedure which determines the shape and
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strength of the external pulses. Thus far, we have ex-
plained the training set and hypothesis in the context of
quantum-gate design. However, we still need to know
how to measure the success of our learning procedure as
well as the explicit form of the hypothesis (external field),
which we elaborate in the next two subsections.

C. Control pulses as learning parameters

In an avoided-crossing-based gate, the energy levels of
the artificial atoms are varied using the external pulses to
steer the dynamics of the system toward the desired oper-
ation. Our learning algorithm uses these external pulses
as the learning parameters. Although the quantum con-
trol approach can generate any type of pulses for εk(t),
we only consider two types of pulses: piecewise-constant
and piecewise-error-function.

In the case of piecewise-constant function we discretize
each transmon frequency, εk(t), with k ∈{1,2,3} and ex-
press it as sum of N orthogonal constant functions over
the interval [0, Θ]. Each εk then can be shown as

εk :=


εk1
εk2
...

εkN

 (15)

with each εkl the magnitude of the kth pulse at the lth

time step. The time bins are chosen to be equally spaced
over the interval Θ and is therefore, given by

∆t =
Θ

N − 1
. (16)

The pulse generators for superconducting devices can
generate the piecewise-constant functions. However, such
rectangular-shaped pulses get distorted by the Gaussian
filters that bridge the control circuitry with the trans-
mons. More realistic pulse shapes that can take such
distortions into account should therefore, be considered.

In order to consider the distortion on the rectangu-
lar pulses, we connect each control parameter in (15) by
including following error-function coefficient [29] in

εk(t) =
εkl + εkl+1

2
+
εkl+1

− εkl
2

erf

[
5

∆t

(
t− tl + tl+1

2

)]
(17)

for tl ≤ t ≤ tl+1, tl being the lth time step. The
resultant smooth pulse expressed in (17) accounts for
the first-order distortion caused by Gaussian filters. In
Sec. VIII C 3 we explain how one can implement an adap-
tive control loop to suppress the higher-order noise.

In general, designing smooth pulses are computa-
tionally more expensive than computing for piecewise-
constant functions. We therefore, choose less expensive

piecewise-constant functions to analyze the gate fidelity
against various parameters but could incorporate other
shapes if the extra computational cost is warranted. We
justify this choice by showing that the gate fidelity does
not depend on the type of the pulse, but depends on the
number of learning parameters.

D. Confidence or fitness functional

The standard method to measure the performance of a
supervised learning algorithm is to define a confidence for
the learnt hypothesis. The confidence is the ratio of the
number of training data that are learnt successfully to the
total number of training data. If the learning task is to
generate a procedure for designing a quantum gate, one
can define this confidence, F , by the distance between
target and approximated unitary operators:

F = ‖PU(Θ)P† − Utarget‖ (18)

with ‖•‖ the operator norm so F is the trace distance [63]
between the target and actual evolution operators pro-
jected to the computational subspace.

Our machine learning algorithm uses an explicit form
of (18), where

F =
1

8

∣∣∣Tr
(
U†target Ucb(Θ)

)∣∣∣ . (19)

Note that F = 1 if Ucb(Θ) corresponds to the target
three-qubit gate Utarget (Toffoli, Fredkin or CXX) and
0 ≤ F < 1 otherwise.

In the context of quantum-gate design, the confidence
functional F is called the intrinsic fidelity which refers to
the fidelity between the unitary evolution of the closed
quantum system of (1) and the target operation when
the decoherence noise is ignored. We follow the stan-
dard practice of gate design by first considering a closed
quantum system and generating a successful procedure
for the learning task, and then evaluate the performance
of generated procedure in the presence of noise. We call
the confidence of our learnt hypothesis in the presence of
noise as average state fidelity F̄ [8], which is

F̄ :=
1

8

∑
k

√∣∣〈ψk| ρfinal
k |ψk〉

∣∣, (20)

where ρfinal
k is the final density matrix of the system and

|ψk〉 is the kth basis state in the computational subspace.

E. Machine Learning and optimization algorithms

For a gate-design problem, one can turn the problem
of finding a successful procedure into a feasibility prob-
lem by setting the fidelity between the obtained unitary
operation and the target gate to a fixed value that is ac-
ceptable by fault-tolerant quantum computing. All pro-
cedures that result in the error within the threshold value
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are called feasible (successful) procedures. Various opti-
mization algorithms can be employed to tackle this fea-
sibility problem.

Greedy algorithms [35, 36, 64] are at the heart of the
machine-learning techniques. Given a quantum control
system with no physical constraints, finding a feasible
procedure is a trivial task for greedy algorithms [65].
However, we have already shown [38] that reducing either
gate operation time Θ or number of control parameters
raises the difficult of the quantum-control problem. One
might need to try different optimization algorithms to
generate procedures for designing quantum gates under
constraints of operation time and experimental resource.

We have examined the existing quantum control
schemes including the quasi-newton [66–70] and Nelder-
Mead [71] algorithms (greedy) as well as DE [39] and Par-
ticle Swarm Optimization [72] algorithms (non-greedy).
We observed that all these schemes fail to generate a fi-
delity better than 99.5% (summarized in Table V), with
the best fidelity obtained by DE. We thus enhance DE
by introducing modifications into its standard version to
enable feasible procedures that lead to intrinsic fidelity
beyond 99.99%. We first give the details of the stan-
dard version of DE, and then discuss our machine learn-
ing approach, which is called the Subspace-Selective Self-
Adaptive Differential Evolution (SuSSADE).

F. Differential Evolution

Differential evolution is an evolutionary algorithm
(EA). Similar to other EAs, DE is inspired by biological
evolution. The robustness and effectiveness of DE have
already been studied by researchers in various fields such
as machine learning [57], optimization [73], and image
classification [74].

DE is a population-based search heuristic algorithm.
Each member of the initial population breeds with the
three random members of the same generation to gen-
erate a “daughter”. The fittest of the original member
and daughter survive to the next generation. Three dis-
tinct operations exist: mutation, crossover and selection.
These operations form the mathematical structure of DE.
We now explain each of these operations in details.

For each initial population member Di with i ∈
{1, . . . , P} and P the population size, the mutation op-
eration generates a trail vector Mi as follow:

Mi = Dri1
+ µ

(
Dri2

−Dri3

)
, (21)

where

{ri1 , ri2 , ri3} ∈ {1, . . . , P} (22)

are discrete random numbers and mutation rate µ is a
random number uniformly sampled from [0,1]. The mu-
tation rate determines the step-size on the control land-
scape. A higher value of µ means that DE tends to ex-
plore the un-searched region of the landscape than ex-
ploiting the current knowledge about the landscape.

For each initial population member Ci and trial vector
Mi, the crossover operation generates a target vector Ci,
such that

Ci(j) =

{
Mi(j) if rij < ξ

Di(j) otherwise,
(23)

where j is the index denoting the dimension of each pop-
ulation member. In our quantum scheme, the maximum
value of j is equal to the number of control parameters
K. rij is a uniform random number sampled from [0,1]. ξ
is the crossover rate of the algorithm. A higher ξ means
that DE exploits the current knowledge about the quan-
tum control landscape without spending too much time
in searching the unexplored area of the landscape.

The last operation of DE is the selection operation,
where we construct

D′i :=

{
Ci if f(Ci) > f(Di)

Di otherwise,
(24)

with f(Ci) being any fitness function, which is the fi-
delity function (19) in our case. In an iterative process,
the resultant new population at generation G replaces
population in the previous generation G − 1, and DE
continues with the new generation. The iterative pro-
cess aborts when either the threshold fidelity reaches or
a predefined number of generations is attained.

Similar to other EAs, a DE algorithm faces two ob-
stacles when applied to problems with a large number
of dimensions. First, finding the optimal algorithmic-
parameters i.e., µ and ξ, which lead to the best per-
formance of DE is computationally expensive. Second,
DE converges slowly to the promising region of the land-
scape where an optimal solution exists. We address these
two weakness of DE by proposing the enhanced version,
called Subspace-Selective Self-Adaptive DE (SuSSADE).

G. Subspace-Selective Self-Adaptive Differential
Evolution

There are two approaches to find the optimal
algorithmic-parameters for DE. One can run DE with
many initial guesses to find the optimal parameters.
This method is computationally expensive as it needs
many trial runs of DE. This method also does not pro-
pose a general solution to the problem of finding the
algorithmic-parameters because a new set of trial runs
is needed if the learning problem is changed.

An alternative approach is to self-adaptively [75]
change the parameters at each generation G as follows:

µi,G+1 =

{
µl + r1.µu if r2 < κ1

µi,G otherwise
(25)

and

ξi,G+1 =

{
r3 if r4 < κ2

ξi,G otherwise,
(26)
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where

rj , j ∈ {1, 2, 3, 4} (27)

are random numbers uniformly sampled from (0,1], and
µl, µu, κ1 and κ2 are assigned to fixed values of 0.1, 0.1,
0.1 and 0.9, respectively, Using a self-adaptive version of
DE improved the obtained fidelity up to 0.993, but the
result is still sub-threshold because of the high dimen-
sionality of the learning problem. Therefore, the next
step is to enhance the self-adaptive DE using coopera-
tive coevolution (CC) approach [76].

CC decomposes a high-dimensional problem into
problems over several subspaces and evolve each sub-
component of the original high-dimensional problems us-
ing a choice of EA. CC then cooperatively combines the
solution of each sub-component to form the final solu-
tion. There are several methods to decompose the high-
dimensional problem into smaller sub-components [76–
79]. The easiest method is to decompose aK-dimensional
problem into K one-dimensional problems and evolve
each component using EA.

This approach has drawbacks originating from ignoring
the interdependencies between variables. One alternative
method is to split the problem dimension in two halves
and evolve each half over the course of learning process.
However, should the K be high, the K/2 is also high,
and therefore, the problem of a large number of dimen-
sions is not addressed properly. Here we take a different
approach in decomposing the high-dimensional problem.
Our approach is inspired by Differential Evolution with
Cooperative Coevolution (DECC-II) [80]. We first give
a short description on DECC-II and then explain the en-
hanced version of DE.

DECC-II decomposes a K-dimensional problem into
m-dimensional subspaces and run the learning algorithm
on a subspace for a fixed number of cycles s while keeping
the other subspaces unchanged. DECC-II combines the
CC with Self-Adaptive DE with Neighborhood Search
(NSDE) to address both the issues: the slow-convergence
of DE and finding the optimal algorithmic parameters.

Using DECC-II in its original form did not improve the
fidelity and the run-time and convergence of DE still re-
mained slow in our case, as evaluating the fitness function
is computationally expensive. We also found our result
to be influenced by the choice of s and m and finding
the optimal values of these parameters needed additional
computational resources and trial runs, and even with
this overhead the threshold fidelity was not achieved.

Inspired by the DECC-II algorithms, we set s = 1 and
choose the dimension of subspace based on a random
projection over the m-dimensional subspace with m ∈{1,
2, 3, 4, 5}. Now, there is no need to look for the optimal
values of s and m to perform the optimization. This
new strategy, however, makes the convergence slower, as
in each generation, only a small part of the candidate
solutions are being selected for the optimization.

In order to enhance the convergence, our algorithm
randomly switches breeding between the subspace and

the whole space according to the value of an input
switch parameter S ∈ [0, 1], such that a uniformly dis-
tributed random number rj ∈ [0, 1] at generation j re-
stricts breeding to the subspace, if rj < S, and breeds
in the whole space otherwise. As our algorithm selects
an m-dimensional subspace at each generation and self-
adaptively evolves the mutation and crossover rates, we
call it Subspace-Selective Self-Adaptive DE (SuSSADE).
For our purpose, we observe that choosing m = 1 suf-
fices, which signifies that the selected subspace is trivial.
We refer to this one-dimensional extreme case as 1DSuS-
SADE.

V. NOISE MODEL

In order to incorporate decoherence into our system’s
evolution, we model each transmon as a harmonic os-
cillator suffering from the environmental effect [81]. The
decoherence of each harmonic oscillator is represented by
two damping rates: amplitude and phase damping with
the corresponding amplitude relaxation time T1 and de-
phasing time T2. In order to make the noise model sim-
pler, we assume T=T1=T2, which is a valid assumption
for transmons with tunable frequency [29].

Equation (4) expresses the system evolution in the ab-
sence of decoherence. In the presence of noise we model
the system evolution by the time-dependent density ma-
trix which is decomposed in terms of the sum of Kraus
matrices as Lk [82]

ρ(t) =

n∑
k=0

Lk(t)ρ(0)L†k(t), (28)

with Kraus matrices satisfying the completeness relation

n∑
k=0

L†kLk = 1 (29)

at each time step. We first discuss the construction of
the Kraus matrices for each transmon.

Constructing the Kraus matrix representation for a
system comprising three capacitively coupled transmons,
will then be straightforward by performing all the possi-
ble tensor products of three transmons. We also assume
that the decoherence only affect each individual trans-
mon separately.

A. Amplitude damping

The Kraus matrix representation of amplitude damp-
ing of a single qubit (treated as a truncated harmonic
oscillator) coupled to the environment can be modeled
as multimode oscillators [81]. One can easily generalize
this approach to represent the Kraus representation of
amplitude damping of a single transmon (modeled as a
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four-modal harmonic oscillator) coupled to environment
modeled as multimode oscillators, where

Al(t) =

3∑
j=l

√(
j

l

)(
e−

t
T1

) j−l
2

(
1− e−

t
T1

) l
2 |j − l〉 〈j| (30)

with l ∈{0, 1, 2, 3} labeling the Kraus matrices and
exp(−t/T ) represents the amplitude damping factor,
which decays exponentially with the timescale T1.

B. Phase damping

We express the Kraus matrix representation of the
phase damping of a single transmon (with four energy
levels) coupled to the environment [81] as

Al(t) =

3∑
j=0

exp

{
− j

2t

2T2

}√
(j2t/T2)l

l!
|j〉 〈j| (31)

with l ∈ {1, 2, 3, 4}. Al is a Kraus matrix, and T2 indi-
cates the timescale for dephasing. In both equations (30)
and (31), we need to put an upper bound on the Kraus-
Matrix index l to enable numerical simulation of deco-
herence.

Such an upper bound would violate the completeness
relation (29). However, if the evolution time of the quan-
tum system t is much smaller than the coherence time T ,
the higher-order terms in (30) and (31) damp exponen-
tially with respect to the t/T . As in our case t � T ,
we only consider l up to three for both amplitude and
phase damping, and discard the higher-order terms in
our numerical calculation as they have negligible effects.

VI. THREE-QUBIT LOGICAL GATES

In this section we give the details of the Toffoli, Fredkin
and CXX gates. We discuss the circuit model of each
gate as well as give the truth tables showing how the
basis states transform under the actions of these gates.

A. Toffoli gate

A Toffoli gate is a three-qubit gate that applies a Pauli
X operation on the third qubit if the quantum state of
the first two control qubits are |11〉, and does nothing
otherwise. A Toffoli gate is also called a Controlled-
Controlled-NOT (CCX) gate, which is equivalent to
a Controlled-Controlled-Z (CCZ) gate up to a local
Hadamard transformation on the target qubit [8].

CCZ gate is a three qubit gate that applies a Pauli-Z
operator on the third qubit if the quantum state of the
first two qubits are |11〉 and, otherwise leaves the state

Input Output

C1 C2 T C1 C2 T

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉
|0〉 |0〉 |1〉 |0〉 |0〉 |1〉
|0〉 |1〉 |0〉 |0〉 |1〉 |0〉
|0〉 |1〉 |1〉 |0〉 |1〉 |1〉
|1〉 |0〉 |0〉 |1〉 |0〉 |0〉
|1〉 |0〉 |1〉 |1〉 |0〉 |1〉
|1〉 |1〉 |0〉 |1〉 |1〉 |0〉
|1〉 |1〉 |1〉 |1〉 |1〉 -|1〉

TABLE I. The truth table for CCZ gate. C1 and C2 denote
the control qubits and T represents the target qubit.

FIG. 3. The quantum circuit representation of Fredkin
(Controlled-Swap) gate. The horizontal solid back line is the
circuit wire, • denotes the control qubit and the big cross sign
shows the SWAP gate which acts on the target qubits (second
and third qubits).

of the third qubit unchanged. In order to design the Tof-
foli gate, we only show how to implement the CCZ gate,
since the Hadamard gates are trivial for superconducting
circuits [3, 83].

In our supervised learning method, the truth table of
the CCZ gate represents the training set. One can define
the truth table of the CCZ gate based on its action on
the three-qubit basis states (See Table I).

So far, the design of a high-fidelity Toffoli gate has
been investigated in several physical systems with the
achieved fidelities limited to 81% in a post-selected pho-
tonics circuit [84], 71% in an ion trap system [10], 68.5%
in a three-qubit circuit QED [11] and 78% in a four-qubit
circuit QED [7]. We recently proposed a quantum control
approach to design a high-fidelity (>99.9%) Toffoli gate
for a system comprising three nearest-neighbor-coupled
transmons [8].
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Input Output

C T1 T2 C T1 T2

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉
|0〉 |0〉 |1〉 |0〉 |0〉 |1〉
|0〉 |1〉 |0〉 |0〉 |1〉 |0〉
|0〉 |1〉 |1〉 |0〉 |1〉 |1〉
|1〉 |0〉 |0〉 |1〉 |0〉 |0〉
|1〉 |0〉 |1〉 |1〉 |1〉 |0〉
|1〉 |1〉 |0〉 |1〉 |0〉 |1〉
|1〉 |1〉 |1〉 |1〉 |1〉 |1〉

TABLE II. The truth table representation of Fredkin gate. C
denotes the control qubit and T1 and T2 represent the target
qubit. The column under the Output and Input columns
show the state of the three qubits before and after applying
the Fredkin gate.

B. Fredkin gate

A Fredkin gate (See Fig. 3) is a three-qubit gate that
applies a SWAP operation between the second and the
third qubits, if the state of the first qubit is |1〉, and leaves
the state of the qubits unchanged otherwise. A Fredkin
gate is an excitation-number-preserving operation, where
the output state has the same number of excitations as
that for the input states. It is also a self-inverse opera-
tion, which means that applying two consecutive Fredkin
gates generates the Identity operation. The Fredkin gate
is universal for reversible classical computation, as it can
be used to construct any other reversible classical logic
gates [85].

The truth table of Fredkin gate is shown in Table II.
In this representation C denotes the control qubit and T1

and T2 represent the target qubits. This truth table pro-
vides the training set for Fredkin for supervised learning.

Proposals to implement the Fredkin gate are mainly
restricted to the context of linear and nonlinear optical
systems, and there has been no proposals yet for a single-
shot Fredkin gate with superconducting circuits. Here
we employ the quantum control scheme to design a fast
single-shot high-fidelity Fredkin gate for a system com-
prising three nearest-neighbor-coupled superconducting
transmon systems.

C. CXX

CXX is a three-qubit gate that applies Pauli-X opera-
tions on the second and third qubits when the first qubit
is |1〉, and leaves the state of the qubits unaltered oth-
erwise. CXX gate is equivalent to Controlled-Z-Z (CZZ)
gate up to local Hadamard operations on both the second
and the third qubits:

CXX = [1⊗H ⊗H] CZZ [1⊗H ⊗H] . (32)

Input Output

C T1 T2 C T1 T2

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉
|0〉 |0〉 |1〉 |0〉 |0〉 |1〉
|0〉 |1〉 |0〉 |0〉 |1〉 |0〉
|0〉 |1〉 |1〉 |0〉 |1〉 |1〉
|1〉 |0〉 |0〉 |1〉 |0〉 |0〉
|1〉 |0〉 |1〉 |1〉 |0〉 -|1〉
|1〉 |1〉 |0〉 |1〉 -|1〉 |0〉
|1〉 |1〉 |1〉 |1〉 |1〉 |1〉

TABLE III. The truth table representation of CZZ gate. C
denotes the control qubit and T1 and T2 represent the target
qubits. The columns under the Output and Input show the
states of the three qubits before and after applying CZZ.

ZH	   H	  

H	   H	  Z

FIG. 4. The quantum circuit representation of the CXX
gate (left), which is equivalent to the CZZ gate up to local
Hadamard gates (right). The horizontal solid black lines are
circuit wires, • represents the control qubit and

⊕
denotes

the Pauli-X operator acting on the target qubit. The boxes
with Z and H denote the Pauli-Z and Hadamard operations,
respectively.

The CZZ gate is a three-qubit gate that applies a Pauli-Z
operation on the second and the third qubits, if and only
if, the first qubit is |1〉. In order to design the CXX gate,
we also assume that the implementation of fast and high-
fidelity Hadamard gates are trivial for superconducting
circuits [3, 83]; hence we employ the quantum control
scheme to design the high-fidelity CZZ gate.

CZZ gate can easily be constructed by consecutive op-
erations of two CZ gates. A high-fidelity CZ gate has al-
ready been proposed with the gate time about 26 ns [29].
Therefore, a high-fidelity CZZ gate decomposed into two
consecutive CZ gates can be readily designed with a gate
operation time no longer than 52 ns. However, a CZZ
gate with a shorter operation time is more useful for
quantum error correction, which motivates us to employ
the quantum control scheme for this problem.

The truth table representation of a CZZ gate is shown
in Table III. In this table, C denotes the control qubit
and T1 and T2 represent the target qubits. We use the
truth table data as the training set to train the qubit
frequencies (our hypothesis).
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VII. RESULTS

In this section, we first review the results for designing
a high-fidelity single-shot Toffoli gate from Ref. [8], and
then present our analysis of performance of the Toffoli
gate against the effect of random noise on the learning
parameters (not given in Ref. [8]). Next we present the
results for designing single-shot high-fidelity Fredkin and
CXX gates. For each of these gates, we first give the
optimal piecewise-constant and piecewise-error-function
pulses that steer the system evolution towards the thresh-
old fidelity. We then investigate the dependence of intrin-
sic fidelities on the coupling strength between transmons.

We test robustness of our optimal pulses for Fredkin
and CXX gates by applying uniformly distributed ran-
dom noise on each of the learning parameters and then
calculating the intrinsic fidelity in the presence of such
noise. Finally, we give the result for the average state
fidelities in the presence of decoherence induced noise.

A. Toffoli

A set of piecewise-constant and piecewise-error-
function pulses are obtained via the SuSSADE algorithm
for a single-shot high-fidelity Toffoli gate, which operates
over 26 ns (See Fig. 1 in [8]) and has the same number
of learning parameters for both pulses. The resultant fi-
delity for the Toffoli gate is higher than 0.999, even in
the presence of decoherence (See Fig. 3 in Ref. [8]).

We have also explored the dependence of the intrinsic
fidelity over the time of the system evolution by fixing
the coupling strength g to various values and running
the SuSSADE for the less-computationally-expensive
piecewise-constant pulses. The control pulses are dis-
cretized into equally-spaced time intervals of 1 ns, which
give rise to learning problems with different learning pa-
rameters. For each value of g we have also shown the
dependence of intrinsic fidelity over the gate operation
time (See Fig. 2A in Ref. [8]).

We study the robustness of the designed pulse against
the random noise on the learning parameters. In order to
test the robustness we choose a sample optimal pulse for
the Toffoli and add random values (δε×rand(-1,1)) to the
learning parameters at each time-bin, with δε varies from
0 to 3000 KHz. We then use the distorted pulse to cal-
culate the intrinsic fidelity for each value of δε. Figure 5
shows the change in intrinsic fidelity originated from such
random noise on learning parameters.

B. Fredkin

We employ SuSSADE to design a high-fidelity Fred-
kin gate for a system comprising three nearest-neighbor-
coupled superconducting transmons. The system Hamil-
tonian evolves over 26 ns under the piecewise-constant

0 1 2 3

x 10
−3

0.9992

0.9995

0.9997

0.9999

1

�"1,2,3 (GHz)

F

FIG. 5. (color online) Intrinsic fidelity of the Toffoli gate F
as a function of δε for the CCZ gate. The vertical red dotted-
line denotes the threshold, such that F > 0.9999 on the left
of the dotted line.

pulse (See Fig. 6A), where the final evolution approxi-
mates a Fredkin gate with an intrinsic fidelity of F =
0.9999. We also show a more realistic piecewise-error-
function pulse in Fig. 6B. The learning algorithm uses
the same number of learning parameters to shape the
transmon frequencies through the learning procedure.

In order to show that the efficacy of the quantum con-
trol approach does not depend on the type of the gate, we
conduct the same analyses on the Fredkin gate as we did
for Toffoli. In Fig. 7A we analyze the change in intrinsic
fidelity with the gate operation time for different values of
coupling strengths. In Fig. 7B we fix the intrinsic fidelity
at F = 0.999 and compute the relation between coupling
strength and the inverse of the gate operation time, where
the points on the curve show the actual numerical data,
and the solid line is the cubic-fitted interpolation plot.

Figure 8 shows the evolution of the system under the
decoherence. We set g = 30 MHz and evolve the system
towards the Fredkin gate with an intrinsic fidelity higher
than F = 0.9999. Then we apply the noise model on
each transmon to analyze how the fidelity changes over
the coherence time, T , of each transmon. Under our
noise model each transmon goes under amplitude- and
phase-damping, and we assume T = T1 = T2 for tunable
transmons.

Figure 9 shows the effect of random noise on the learn-
ing parameters of the Fredkin gate. We choose the opti-
mal pulse shown in Fig.6 and apply random noise up to
3000 KHz on the learning parameters. We then use the
distorted pulse to investigate the change in the intrinsic
fidelity as a function of the applied random noise.
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FIG. 6. (color online) Optimal pulses for designing Fred-
kin gate with the resultant fidelity better than 0.999 and
the gate operation time of 26 ns. System frequencies, εi,
are varied from -2.5 to 2.5 GHz, which are within the ex-
perimental requirements of transmon implementation. The
black dots denote the learning parameters for SuSSADE. A)
The piecewise-constant pulses for each transmon frequency.
B) The piecewise-error-function pulses for each transmon fre-
quency.

C. Controlled-Z-Z (CZZ)

Fig. 10A shows the piecewise-constant pulse generat-
ing a high-fidelity CZZ gate in 31 ns with an intrinsic
fidelity higher than 0.9999. We have 31 learning parame-
ters for each pulse (93 in total) to design the pulse shapes
for the transmon frequencies. Under the piecewise-error-
function pulse (shown in Fig. 10B), the system evolution
approximate CZZ gate with a fidelity higher than 0.9999
in the same gate operation time as the piecewise-constant
pulse. In designing the optimal pulses in Fig. 10 we set
g = 30 MHz.

We perform the same analysis on the dependence of
intrinsic fidelity on the gate operation time, as we did
for Toffoli and Fredkin gates. The analysis is performed
for various values of coupling strengths and is shown in
Fig. 11A. The discrete points on the plot show the ac-
tual data and the curves are the cubic-fit to the data.
Fig. 11B represents the relation between the inverse of
the gate operation time and coupling strength. The dis-
crete points on the plot show the actual numerical data
and the solid line is the linear fit to data.

Figure 12 shows the decoherence induced noise for the
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FIG. 7. (color online) A) The dependence of intrinsic fidelity
of the Fredkin gate on the evolution time τ of the system for
various values of g. The discretized values show the actual
numerical data with 4, �, ◦, 3 corresponding to the values
of g to be 20, 30, 40, 50 MHz, respectively. A cubic interpola-
tion fits the curves to the data. B) The relation between the
inverse of the gate operation time and coupling strength be-
tween transmons where the dots denote the actual numerical
results for various values of g ∈ {20, 30, 40, 50}. A linear-fit
interpolates the points to the actual data.

CZZ gate. We plot fidelity vs transmon coherence time.
The actual discrete points are connected via a linear in-
terpolation. Similar to the Toffoli and Fredkin gates,
the decoherence appears in terms of the amplitude- and
phase-damping on the transmons. Here the coupling
strength is g = 30 MHz.

We follow the same procedure as for the Toffoli and
Fredkin gates to test the robustness of our designed pulse
for the CZZ gate. We employ the optimal pulse in Fig. 10
and apply random noise on each learning parameter. Fig-
ure 13 shows the effect of such random noise on the in-
trinsic fidelity of the CZZ gate which operates in 31 ns.
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FIG. 8. (color online) Fidelity vs coherence time for the
Fredkin gate. The dots denote the actual numerical data and
the red solid line shows a cubic-fit interpolation on the actual
data.
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FIG. 9. Intrinsic fidelity F vs random noise applied to the
optimal pulse of the Fredkin gate. The vertical red dotted-
line denotes the threshold, such that on the left side of the
line F > 0.9999.

VIII. DISCUSSION

Gates Θ(ns) F T (µs) F
Toffoli 26 0.9999 30 0.9992

Fredkin 26 0.9999 30 0.9991

CXX 31 0.9999 30 0.9990

TABLE IV. Comparison of fidelities among various three-
qubit gates for g = 30 MHz. Θ, F , T and F are total gate
time (in nanoseconds), intrinsic fidelity (defined by Eq. (19)),
coherence time (in microseconds) and average state fidelity
respectively.

We employed a one-dimensional system comprising
three coupled superconducting artificial atoms to design
single-shot high-fidelity three-qubit gates, such as Tof-
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FIG. 10. (color online) Optimal pulses for designing CZZ
gate with the resultant fidelity better than 0.999 and the gate
operation time of 31 ns. System frequencies, εi, vary from -2.5
to 2.5 GHz which are within the experimental constraints of
transmon implementation. The black dots denote the learning
parameter for SuSSADE. A) The piecewise-constant pulses
for each transmon frequency. B) The piecewise-error-function
pulses for each transmon frequency.
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FIG. 11. (color online) A) The dependence of the intrinsic
fidelity of the CZZ gate on the evolution time τ of the system
for various values of g. The discretized values show the actual
numerical data with 3, 4, ◦, and � corresponding to the
values of g to be 20, 30, 40, 50 MHz, respectively. A cubic
interpolation fits the curves to the data. B) The relation
between the inverse of the gate operation time and coupling
strength between transmons where the dots denote the actual
numerical results for various values of g ∈ {20, 30, 40, 50}. A
linear-fit interpolates the points to the actual data.

foli, Fredkin and CXX. Our results include the optimal
pulses for each three-qubit gate, analysis of dependence
of the intrinsic fidelity on the physical model parame-
ters, and analysis of performance of these gates under
decoherence induced noise. Table IV shows a compari-
son among the numerical simulation of optimal Toffoli,
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FIG. 12. (color online) Fidelity vs coherence time for the
CZZ gate. The dots denote the actual numerical data and the
blue solid line shows a cubic-fit interpolation on the actual
data.
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FIG. 13. Intrinsic fidelity F vs δε for the CZZ gate. The
vertical red dotted-line denotes the threshold, such that on
the left side of this line F > 0.9999.

Fredkin and CXX gates for the same coupling strength
g = 30 MHz. The results indicate that the efficacy of
SuSSADE is independent of the desired quantum opera-
tions. In this section, we discuss the results for all three
gates. We first elaborate on our choice of the control
pulses. Then we discuss the dependence of fidelities for
three-qubit gates on the physical model parameters, dis-
cuss about the effects of noise, and finally compare the
SuSSADE scheme against alternative approaches.

A. Control pulses

To formulate the problem of designing the high-fidelity
quantum gates into a learning algorithm we represent the
qubit frequency in terms of external control functions
(hypothesis). The choice of the control function is ubiq-
uitous and we only choose two pulse profiles, piecewise-

constant and error-piecewise-constant, which are relevant
for superconducting control electronics. The learning al-
gorithm shapes the external pulses to obtain high-fidelity
quantum gates. Each of these control pulses has its own
advantage and drawback in terms of the computational
resource and practical implementation.

The piecewise-constant control function are computa-
tionally less expensive, and on average, a single run of the
learning procedure using the square pulse takes an order
of magnitude less run-time in contrast to the piecewise-
error-function pulses. Piecewise-constant pulses are easy
to generate using the current superconducting control
electronics. However, the Gaussian filters connecting the
control electronics and the physical qubits cause distor-
tion on the square pulses. Transmons thus receive a dis-
torted pulse. A smooth pulse must, therefore, be gener-
ated to account for the first order of distortion numeri-
cally.

The piecewise-error-function connects the control pa-
rameters smoothly such that the function approximates
the realistic control pulses for transmon system. In this
way we overcome the problem of infinite bandwidth of
the square pulses as well as the first order distortion. We
have numerically shown that (See [8] and Figs. 6 and 10)
the learning procedure does not depend on the shape of
the control pulse but rather depends on the number of
learning parameters.

For designing each high-fidelity three-qubit gate, we
used the same number of learning parameters either for
the piecewise-constant or piecewise-error-function pulses.
For Toffoli and Fredkin gate, we used 3× 26 parameters
to design the gates, which operate on 26 ns using ei-
ther piecewise-constant or piecewise-error-function pulses
(See [8] and Fig. 6). The number of learning parameter
to design a CZZ gate (Fig. 10), which operates over 31 ns,
is 31 ×3 for both piecewise-constant and piecewise-error-
function pulses.

B. Intrinsic fidelity

In [8] and Figs. 7A, and 11A, we plot the intrinsic fi-
delity as a function of the gate operation time for various
values of g ∈ {20, 30, 40, 50}MHz. Keeping the value of g
fixed, the fidelity is a monotonically increasing function
of the gate operation time. This is consistent with the
notion that increasing the evolution time of the system
increases the fidelity between the unitary evolution and
the target gate [8]. As the coupling strengths become
stronger, the gate operation time to reach to a thresh-
old fidelity becomes shorter. This is consistent with the
idea of avoided-crossing-based gates (13). For smaller
values of g, the gate operation time becomes longer, and
fixing the time-bin to 1 ns, the number of learning pa-
rameters increase. Our learning algorithm still delivers
the high-fidelity gates despite the increase of the learning
parameters.

In [8] and Figs. 7B, and 11B, we have shown that a
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linear relation between the inverse of the gate operation
time and coupling strength exists. Providing a theoret-
ical framework to explain this relation is a challenging
task for three-qubit gates. However, from our discussion
for avoided-crossing-based CZ gate (Sec. III A), one can
intuitively expect a linear relation between the coupling
strength and the gate operation time for a fixed intrin-
sic fidelity, even for three-qubit avoided-crossing-based
gates. This linear relation also emphasizes the efficacy
of the learning algorithm to discover the correct relation
between the coupling strength and gate operation time.

C. Noise

In this section, we explain the effect of noise on the
system evolution of each three-qubit gate in three parts.
In the first part, we discuss the effect of random noise on
the system and discuss the robustness of our procedure.
In the second part, we explain the effects of decoherence
induced noise, which are caused by the environment. In
the last part of this section, we discuss how the higher
orders of noise on the generated procedure can be sup-
pressed.

1. Robustness

We test the robustness of our procedure for designing
the three-qubit gates by applying random noise on the
learning parameters. Our analysis shows that the devised
procedures to design Toffoli, Fredkin and CZZ gates are
robust against the external random noise (Figs. 5, 9, 13),
if the magnitude of the random noise is lower than 800,
600 and 1500 KHz respectively, which are within the
limit of current state-of-the-art superconducting control-
electronics [86].

2. decoherence induced noise

The amplitude-damping and dephasing rates (T−1
1

and T−1
2 ) determine the decoherence rate of our three-

transmon system. Assuming T = T1 = T2 for all the tun-
able transmon devices, we can plot F̄ versus the coher-
ence time of the transmons (See Ref.[8] and Figs. 8, 12).
For a gate operation time much faster than the coher-
ence time of the transmons, i.e., T � Θ, if the intrinsic
fidelity is much smaller than the fidelity, with this re-
duction caused by decoherence induced errors, we can
approximate

F̄ ∼ 1− Θ

T
. (33)

Equation (33) matches our numerical simulation of deco-
herence in [8] and Figs. 8 12.

When the coherence time of transmon is significantly
higher than the gate operation time i.e., T � Θ, the error

from the intrinsic fidelity is the main source of noise. Un-
der this condition, the intrinsic fidelity must be so high,
such that the resultant gate fidelity meets the thresh-
old fidelity for fault-tolerant quantum computing. With
the long coherence time (20 ∼ 60µs) of the state-or-the-
art superconducting artificial atoms accompanied with
the machine learning approach that delivers a gate with
F̄ > 0.999, our proposal enables the implementation of
high-fidelity three-qubit gates under current experimen-
tal conditions.

3. Distortion of control pulses

The learning algorithm can shape any type of exter-
nal pluses to design high-fidelity three-qubit gates. We
employed the piecewise-error-function pulse to resolve
the infinite bandwidth problem of the square pulses and
to account for the first-order distortion on the pulse.
However, higher order distortions can change the opti-
mal shape of the designed pulse and can lead to a sub-
threshold fidelity. For example, we ignored the weak de-
pendence of g and η on the transmon frequency.

This frequency dependence of physical parameters can
introduce small perturbations into the system Hamil-
tonian, thereby distorting the optimal pulses. One vi-
able option to suppress the higher degree of distortions
on the learning parameters is closed-loop learning con-
trol [87, 88], which can be used in conjunction with our
control scheme.

D. Comparison against alternative approaches

Method Fbest

Quasi-Newton 0.9912

Simplex 0.9221

DE 0.9931

SuSSADE 0.9999

TABLE V. Comparison against alternative approaches of de-
signing Toffoli gates for g = 30 MHz and Θ = 26 ns.

Table V shows a comparison among various approaches
of generating the optimal pulse shapes for the three-qubit
Toffoli gate. Fbest denotes the best intrinsic fidelity, de-
fined by Eq. (19), obtained for the corresponding method.
Note that we have compared SuSSADE against both the
greedy optimization algorithms (Quasi-Newton and Sim-
plex) as well as against the global optimization algo-
rithms (DE). The comparison data shown in Table V
indicates the efficacy of SuSSADE over the alternative
approaches.
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IX. CONCLUSION

In conclusion, we have transformed a problem of de-
signing three-qubit gates into a quantum-control prob-
lem. The control problem is then mapped into a super-
vised machine learning algorithm. In the context of su-
pervised machine learning, we used the truth-table data
for each quantum gate as the training data. The trans-
mon frequencies represent the hypothesis. The super-
vised learning algorithm then trains the qubit frequencies
on the truth table data to generate procedures for de-
signing high-fidelity three-qubit gates. Our approach to
defining a gate-design problem as a supervised machine
learning can inspire the application of other supervised
machine learning methods, such as Support Vector Ma-
chine [89] and Neural Network [90] for designing quantum
gates which acts on more than three qubits.

We have already introduced the quantum control
scheme, named Subspace-Selective Self-Adaptive Differ-
ential Evolution (SuSSADE), in designing high-fidelity
Toffoli gate [8]. Here, we employ the SuSSADE algo-
rithm to generate procedures for other three-qubit gates,
such as Fredkin and CXX gates. The two three-qubit
gates considered here operate as fast as the two-qubit
entangling CZ gate under the same experimental con-
straints. The robust performance of these gates against
decoherence induced as well as random errors signifies the
efficacy and robustness of the SuSSADE scheme for op-
timizing promising superconducting architectures. The

system considered here comprises three nearest-neighbor-
coupled transmons that can serve as a module for any 1D
or 2D architecture, and, in fact, our three-qubit gates can
be realized in such multi-qubit systems, if the undesired
couplings are switched off. Our results here establish the
efficacy of SuSSADE as a machine learning approach to
designing high-fidelity quantum operations.
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[12] V. M. Stojanović, A. Fedorov, A. Wallraff, and
C. Bruder, “Quantum-control approach to realizing a
Toffoli gate in circuit qed,” Phys. Rev. B 85, 054504
(2012).

[13] G. J. Milburn, “Quantum optical fredkin gate,” Phys.
Rev. Lett. 62, 2124–2127 (1989).

[14] Joseph Shamir, H. John Caulfield, William Micelli, and
Robert J. Seymour, “Optical computing and the fredkin
gates,” Appl. Opt. 25, 1604–1607 (1986).

[15] Joydip Ghosh, Austin G. Fowler, and Michael R. Geller,
“Surface code with decoherence: An analysis of three
superconducting architectures,” Phys. Rev. A 86, 062318
(2012).

[16] Asher Peres, “Reversible logic and quantum computers,”
Phys. Rev. A 32, 3266–3276 (1985).

http://dx.doi.org/ 10.1103/PhysRevA.57.127
http://stacks.iop.org/1367-2630/18/i=1/a=012002
http://dx.doi.org/ 10.1103/PhysRevLett.103.110501
http://dx.doi.org/ 10.1103/PhysRevLett.103.110501
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/ 10.1103/PhysRevLett.93.130502
http://dx.doi.org/10.1103/PhysRevLett.81.2152
http://dx.doi.org/10.1103/PhysRevLett.81.2152
http://dx.doi.org/10.1038/nature10786
http://dx.doi.org/ 10.1103/PhysRevLett.114.200502
http://dx.doi.org/ 10.1103/PhysRevLett.104.063603
http://dx.doi.org/ 10.1103/PhysRevLett.104.063603
http://dx.doi.org/10.1103/PhysRevLett.102.040501
http://dx.doi.org/10.1038/nature10713
http://dx.doi.org/10.1103/PhysRevB.85.054504
http://dx.doi.org/10.1103/PhysRevB.85.054504
http://dx.doi.org/10.1103/PhysRevLett.62.2124
http://dx.doi.org/10.1103/PhysRevLett.62.2124
http://dx.doi.org/10.1364/AO.25.001604
http://dx.doi.org/10.1103/PhysRevA.86.062318
http://dx.doi.org/10.1103/PhysRevA.86.062318
http://dx.doi.org/10.1103/PhysRevA.32.3266


17

[17] Dorit Aharonov, “A simple proof that toffoli and
hadamard are quantum universal,” in IN QUANT-
PH/0301040 (2003).

[18] Y. Shi, “Both Toffoli and controlled-NOT need little help
to do universal quantum computing,” Quantum Info.
Comput. 3, 84–92 (2003).

[19] Tycho Sleator and Harald Weinfurter, “Realizable uni-
versal quantum logic gates,” Phys. Rev. Lett. 74, 4087–
4090 (1995).

[20] Yaakov S Weinstein, “Syndrome measurement strategies
for the [[7,1,3]] code,” Quantum Inf. Process. 14, 1841–
1854 (2015).

[21] A. M. Steane, “Error correcting codes in quantum the-
ory,” Phys. Rev. Lett. 77, 793–797 (1996).

[22] H. F. Chau and F. Wilczek, “Simple realization of the
fredkin gate using a series of two-body operators,” Phys.
Rev. Lett. 75, 748–750 (1995).

[23] John A. Smolin and David P. DiVincenzo, “Five two-bit
quantum gates are sufficient to implement the quantum
fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).

[24] Vivek V. Shende and Igor L. Markov, “On the cnot-
cost of toffoli gates,” Quantum Info. Comput. 9, 461–486
(2009).

[25] M.R. Geller, E.J. Pritchett, A.T. Sornborger, and F.K.
Wilhelm, “Quantum computing with superconductors i:
Architectures,” in Manipulating Quantum Coherence in
Solid State Systems, NATO Science Series II: Mathemat-
ics, Physics and Chemistry, Vol. 244, edited by MichaelE.
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