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Abstract 
 

 Electron spins in solids have a central role in many current and future spin-

based devices, ranging from sensitive sensors to quantum computers (QC).  Many of 

these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D 

array) with controlled and well-characterized spin-spin interactions.  While being 

essential for device operation, these interactions can also result in undesirable effects, 

such as decoherence.  Arguably, the most important pure quantum interaction that 

causes decoherence is known as the "flip-flop" process, where two interacting spins 

interchange their quantum state.  Currently, for electron spins, the rate of this process 

can only be estimated theoretically, or measured indirectly, under limiting 

assumptions and approximations, via spin relaxation data.  This work experimentally 

demonstrates for the first time how the flip-flop rate can be directly and accurately 

measured by examining spin diffusion processes in the solid state for physically fixed 

spins.  Under such terms, diffusion can occur only through this flip-flop-mediated 

quantum state exchange and not via actual spatial motion.  Our approach was 

implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies 

(NV) in diamond, both of which are significantly relevant to quantum sensors and 

information processing.  However, while the results for the former sample are 

conclusive and reveal a flip-flop rate of ~12.3 Hz, for the latter sample only an upper 

limit of ~0.2 Hz for this rate could be estimated.  
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I. Introduction 

Spin-based quantum devices, such as magnetic field sensors [1,2] and 

quantum computers (QC) [3] are potentially very useful, but they are also prone to 

errors and subject to limitations due to unavoidable interactions with neighboring 

spins and the surrounding environment.  Such interactions may affect the purity and 

stability of a given quantum state for any electron spin in the device.  Evidently, it is 

important to characterize these interactions and their effects on spin coherence for a 

variety of materials and spin arrangements (e.g. a 2D array of spins [4-8]).  If we 

examine a typical system of electron spins in solids, we can identify several potential 

pure spin-related mechanisms for decoherence that can be measured by electron spin 

resonance (ESR) spectroscopy, as described in Figure 1.   

 

Figure 1:  Electron spin decoherence mechanisms in a solid-state sample.  (a) Static 

field inhomogeneity leads to spatial variations in the sample’s Zeeman frequencies, 

resulting in an extra-broadening of the inhomogeneous ESR spectrum of the order of 

21/ DCT .  (b) Instantaneous diffusion decoherence effects can be seen in a Hahn spin 

echo experiment (see item g), where the second  pulse flips not only the observed 

spin but also the neighboring random-state spins.  This results in a stochastic change 

of the local magnetic fields felt by the observed spin and leads to “instantaneous” 

changes in its precession frequency, thus resulting in less efficient echo refocusing 
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and shorter observed phase-memory time with an excess rate characterized by 21/ IDT .  

(c) AC magnetic field noise due to flip-flops of nearby dipolar nuclear spin pairs 

acting on the observed electronic spin in the form of fluctuating fields, and resulting 

in enhanced relaxation rates of the order of 21/ ACT .  Using isotopically-pure samples 

with no magnetic nuclei reduces this decoherence effect.  (d) Indirect electron spin 

flip-flops involve a mutual change in the quantum state of dipolar electron pairs 

neighboring the observed spin, which thus produce fluctuating magnetic fields 

shifting the observed frequency in a time-dependent manner (also denoted as spectral 

diffusion), with a rate given by 21/ IDFFT  .  (e+f) The direct flip-flop process, also 

known as spin diffusion, contributes to overall relaxation by a rate given by 21/ DFFT , 

and involves the direct exchange of polarization between the observed spin and its 

neighbor.  This may occur between two observable spins (e), or one observable and 

another, unobserved spin (f).   The term “observable” relates here to a spin that is 

excited by the microwave pulses in the spin-detection sequence.  Only the former case 

is of relevance to decoherence [9]. 
 

In order to properly design and optimize a specific spin-based quantum device 

or a sensor, it is highly important that the coherence properties of the electron spins 

are well-understood and characterized for each and every mechanism independently.  

At present, the rate of this process can only be estimated theoretically [10-14], or 

measured indirectly, under limiting assumptions and approximations, via spin 

relaxation data [15].  The problem is that in most, if not all, settings, it is not possible 

to obtain a direct independent measurement of each and every decoherence 

mechanism separately.  This is because coherence time is often evaluated as a single 

collective parameter, based on the ESR signal decay time profile as measured by spin-

echo (Fig. 1g), or a Carr-Purcell-Meiboom-Gill (CPMG) sequence [16,17], which 

eliminates only the static field inhomogeneity contribution to the decoherence and 

maintains all other contributions.  Previous efforts to try and disentangle the various 

decoherence mechanisms out of the spin-echo decay data relied on the use of several 
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sets of samples, measured under several sets of experimental conditions.  A good 

example of such an effort was carried out recently by S. A. Lyon’s team, which 

looked into the details of the coherence time of P-doped Si [15].  The contribution 

from instantaneous diffusion to decoherence was estimated by plotting the inverse 

relaxation time (1/T2) as a function of the second pulse rotation angle, θ  ( 2sin ( / 2)θ  

to be more exact), and extrapolating to θ→0.  This leads to what is referred to as the 

“intrinsic” T2 of the system, 2
INTT , without the artificial effects of static field 

inhomogeneity and microwave (MW) pulses.  The contribution of the AC magnetic 

field noise due to nuclear spin random flips to the electron decoherence was evaluated 

by comparing the relaxation times of different samples with different 29Si 

concentrations (as theoretically described in [18]) at different temperatures.  The 

contribution from direct and indirect flip-flops was estimated using a combination of 

measurements with different rotation angles, θ, carried out either in homogenous or 

inhomogeneous static fields (which can suppress some of the flips-flops, at least along 

the gradient direction).  This later procedure has to make some significant simplifying 

assumptions in order to finally extract the direct flip-flop contribution to decoherence 

( 21/ DFFT ).  Namely, it must assume a simple exponential dependence of the echo 

amplitude on 2 2 2, ,DFF IDFF IDT T T to extract them all from the relaxation data curve (for 

example, with an exponential rate of 2
2

2 2 2 2

1 1 1 1sin ( / 2) ID DFF IDFFT T T T
θ

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
, see ref 

[15]).  This may be an oversimplification (theory predicts a much more complex 

decay behavior [9]), and may potentially work only if all relaxation rates are of 

comparable magnitude.  Unfortunately, in most samples of relevance to QC, such as 

P-doped Si or NV centers in diamonds, the direct flip-flop rate (and its contribution to 

decoherence) is very small compared to other mechanisms described above, and is 
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also almost inseparable from the indirect flip-flop effects.  Moreover, additional 

experimental issues, such as the electromagnet’s random magnetic field noise and 

imperfections and inhomogeneity of the excitation MW pulses, add to the 

experimental complexity.  Thus, the process of disentangling the direct flip-flop rate 

based on echo measurements’ decay data may be prone to significant errors and not 

satisfactory, especially when longer and longer decoherence times are involved. 

In the present work we demonstrate a new approach to selectively extracting 

and measuring the flip-flop rate of electron spins in solids, without the effort of 

disentangling contributions from other decoherence mechanisms.  This is achieved by 

directly measuring the spin diffusion process of physically fixed spins, where the 

wave function of the spins diffuses only through this flip-flop-mediated quantum state 

exchange and not via actual spatial motion.  Consequently, this spin diffusion data 

immediately provides the flip-flop rate.  Our approach was implemented on two types 

of samples: phosphorus-doped 28Si and nitrogen vacancies (NV) in diamonds, both of 

significant relevance to quantum sensors and information processing [3,19,20].  

However, while the results for the former sample are conclusive, latter sample yielded 

only an estimate of the upper limit of the flip-flop rate.  

   

II. Theory of spin flip-flop and spin diffusion  

A.  Spin Diffusion and the flip-flop rate: The concept of the spin self-diffusion 

coefficient, Ds, was introduced a long time ago by Bloembergen, who linked it to the 

flip-flop rate, W, in his seminal paper [10].  This direct link between W and Ds leads 

to the possibility of providing accurate measurements of W by measuring Ds.  We can 

describe this relation in quantitative terms using the approach of Bloembergen [10] 

and those who followed his work.  We assume that the S=1/2 spins in the sample are 
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located on a cubic lattice with equal spacing a, and have an equal nearest neighbor 

flip-flop rate W=Wij between spins i and j.  We denote the polarization p(x,t)=P+(x,t) - 

P-(x,t), where P+(-)(x,t) is the probability of finding at x and at time t, a |+1/2> (|-1/2>) 

state.  Thus, based on the definition of W, it is possible to write that: 

( , ) { ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )}

p x t W P x a t P x t P x t P x a t
t

P x a t P x t P x t P x a t

+ − + −

+ − + −

−∂ = + − −
∂

+ − − +
 

(1) 

Using the relation P+(x,t) + P-(x,t)=1 and neglecting terms that are quadratic in p, 

results in the well-known diffusion equation: 

2
2

2

( , )       ;   s s
p x t pD D Wa

t x
−∂ ∂= =

∂ ∂
 

(2) 

Therefore, by measuring Ds we obtain direct knowledge about the flip-flop rate, 

assuming that the interspin distance, a, is known.   

In cases where the interspin distance is not constant, as in most electron spin 

samples of interest, it is possible to make use of numerical derivation of the spin 

diffusion phenomenon as mediated by flip-flop processes.  In the next section we will 

outline the details of such numerical simulation, carried out in conjunction with our 

measurement protocol, which takes into account possible deviations from the average 

distance a, and considers the interactions from all neighboring spins and also the 

orientation of the static magnetic field with respect to the spins. 

 

B. Theoretical approach to calculating W:  Most of the theory for calculating W 

was developed in the context of condensed-phase nuclear magnetic resonance (NMR), 

where the dipolar interaction between the spins is the dominant transverse relaxation 

process (T2).  While this is not the case for the electron spins in our samples, it is 

worthwhile to briefly describe the existing theory, as we shall make use of its results 
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as a rough estimation of the expected experimental outcomes.   

We consider first a system of identical spins in a solid that interact via the 

dipole interaction.  Such system can be described using the Hamiltonian [10,13]: 

z dH H H= +  (3) 

with the Zeeman interaction 

0z k k
k

H Bγ=∑ S  

and the dipolar term: 

(4) 

0
3 2

, ;

3( )( )
4

j k j ij k ij
d j k

j k j k jk jk

H
r r
γ γμ

π<

⎡ ⎤⋅ ⋅
= ⋅ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑

S r S r
S S

h
 

(5) 

where rjk is the distance between spins j and k, Sj is the angular momentum operator 

of spin j, in ħ units, and γj is the gyromagnetic ratio of spin j.  The dipolar interaction 

can be divided to several complementary terms: 

0
3 ( )

4
j k

d
jk

H A B C D E F
r
γ γμ

π
= + + + + +

h
 

(6) 

where each of the terms is involved in a different change of the spins’ ms quantum 

number.  The only relevant term that induces the flip-flop process is the one where the 

total quantum number ms of the two interacting spins does not change (zero quantum 

transition): 

21 ( )(1 3cos )
4 j k j k jkB S S S S θ+ − − += − + −  

(7) 

where jS + , jS −  are the raising and lowering spin operators of spin j, respectively, and 

θjk is the angle between rjk and the direction of B0.  Based on this description, the flip-

flop rate, Wjk, can in essence be calculated from first principles, assuming that the 

dipole interaction is a small perturbation to the Hamiltonian [10,12-14]: 



 9

2 22
0

3

3cos 1
4 2

(0)
2

j k jk
k

jk
jk jW

r
f

γ γ
π

π θμ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣
=

⎦⎣ ⎦

h
 

(8) 

However, such calculations are limited by nature since they require a priori data about 

the zero-quantum transition normalized spectral line shape function on the two-spin 

system, fjk(ω).  This line shape may be much different than the one measured for the 

conventional single-quantum transition spectrum, as it is much less affected by the 

decoherence mechanisms listed above (e.g., static field spatial inhomogeneities and 

temporal instabilities), and calculating it would require many details about the spatial 

and spectral distribution of fluctuating lattice motions and magnetic fields in the solid, 

which are difficult to obtain.  Under the assumption that f has the same line shape as 

the one measured for the single-quantum transitions (assumed here to be Gaussian) 

and that the line shape broadening mechanism is mainly due to the dipolar interaction 

between the spins, it is possible to obtain this approximate formula for the exchange 

rate between like-spins randomly distributed in the solid [10]: 

2

2
30 INTW

T
π≈ , 

(9) 

with the notation of 2
INTT as referred to in the main text.  However, as noted above, 

this formula is very approximate, especially for weakly- interacting spins (where line 

shape broadening is certainly due not only to the dipolar interaction), and thus can 

serve only as a rough order-of-magnitude estimation.  Thus, while many theoretical 

papers can be found on the subject (mainly in the context of NMR) that are based on a 

perturbative approach, or make use of a more rigorous density matrix formulation 

[21], or even rest on classical numerical simulation [22], in practical terms it is 

necessary to resort to experiments to obtain W, and as noted above, deriving W from 

the decoherence rate is very problematic. 
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III. Measurements of spin diffusion  

The spin diffusion considered in this work is certainly related to, but should 

not be mistaken with, real-space diffusion, which can be more easily measured.  For 

example, real space diffusion of proton spins can be accurately measured by 

employing NMR in the presence of a static or pulsed magnetic field gradient.  In a 

sample with diffusing species, e.g., molecules in liquids, this leads to a significant 

reduction in the echo signal’s magnitude, which can be directly linked to the diffusion 

coefficient of the spins [17] [23-25].  Measuring the diffusion of the spins' wave 

function resulting from the flip-flop mechanism, when the spins are physically fixed 

in a solid, is far less common.  However, there are some unique examples of just such 

measurements, but only in the field of condensed-phase NMR, where spin-spin 

interactions (dipolar- or exchange-based) are relatively large with respect to the spin 

lattice relaxation times that are relatively very long [26-29].  In the case of electron 

spins, the measurement of self-diffusion, both in real space and certainly for 

physically fixed spins, is far less common.  The reason for that lies in the technical 

difficulties that arise due to the short relaxation times of the electron spins, which in 

turn pose extreme challenges on the required magnitude and duration of the applied 

magnetic field gradients.   
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Figure 2:  Description of various electron- and electron spin-diffusion processes and 

related experiments.  (a) The electron spins are in thermal polarization and physically 

self-diffuse in a liquid (in the case of paramagnetic molecules), or in a solid (in the 

case of conduction electrons).  (b) In spintronics, electron spins are injected to a 

conductor or a semiconductor through a spin “filter” resulting in a polarized electron 

spin current with a polarization level that decays during the “diffusion length” of the 

spins.  (c) The electron (and not necessarily electron spin) diffusion can be measured 

by generating a local electron population and observing their physical diffusion.  (d) 

Spin diffusion in physically fixed spins mediated by flip-flops, as measured in the 

present experiments. 

In order to better clarify the exact nature of our present measurements in 

comparison to other related electron- and electron spin-diffusion experiments, we 

provide the following discussion with reference to Fig. 2.  Physical real-space 

diffusion (Fig. 2a) was measured in the past in the unique case of conduction 

electrons in solids, thanks to their relatively large diffusion coefficient of Ds > 10-6 

m2/s [30].  More recently, a much more advanced setup using a unique set including a 

miniature resonator and gradient coils, driven by powerful and fast gradient drivers, 
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was employed to measure physical electron spin diffusion in liquids, with Ds as low 

as 10-10 m2/s [31-33].  Other works, from the field of spintronics, refer to “spin 

diffusion length (or time)” (Fig. 2b), as the distance (or time) over which a non-

equilibrium flow of spin population can propagate prior to decaying to thermal 

equilibrium polarization [34].  Data on this process can be measured by advanced 

methods, such as muon spin rotation and Kerr-rotation microscopy [35] [36].  

Additional experiments of relevance observe the physical diffusion of the electrons or 

electron-hole pairs, without specifically considering their spin properties (Fig. 2c) 

[37,38].   As noted above, contrary to the processes described in Fig.2 a-c, our present 

work considers the spin diffusion of physically fixed electron spins in solids (Fig. 2d).  

While this process is undistinguishable from that occurring in physically free spins 

(Fig. 2a), the former process can be safely neglected in insulating samples or other 

similar samples where electrons are not mobile.  Up until now, no experiment has 

attempted or shown a capability to measure the diffusion of the electron spins' wave 

function in solids (due to flip-flops), which is expected to be of the order of 10-15-10-

13 m2/s (see below).   Here we provide for the first time an account of such an 

experiment, which assesses the electron spins' self-diffusion coefficient and uses this 

measurement to provide directly the flip-flop rate for spins in P-doped single crystal 

of 28Si and attempts the same for NV centers in diamonds.  Both of these samples are 

of significant relevance to quantum sensors and information processing [19,20].    

The assessment of Ds in our work is carried out employing the pulsed gradient 

spin echo sequence (PGSE) shown in Fig. 3.  The magnitude of the echo signal 

acquired via this sequence is given by [39]: 

( )2 1

2 2 2
( 2 ) 2 2 1 1exp 2 / / ( / 3)g
t sE A T T D gτ τ τ τ γ δ δ= + = − − − Δ −  (10) 
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Let us first investigate, in quantitative terms, what would be the experimental 

requirements needed to measure Ds for a typical sample, such as P-doped 28Si.  The 

order of magnitude of the flip-flop rate can be grossly estimated, to be (see eq. (9)) 

2

2
30 INTW

T
π≈  [10,12].  This means that for a sample with ~1014 P atoms in 1 cm3, 

where at ~4 K the value of 2
INTT was measured to be ~600 ms [15], W~0.03 s-1.   The 

mean distance between like-electron spins (those that have the same quantum state for 

their neighboring nuclei), is a~270 nm, which gives an estimated Ds of ~2.2×10-15 

m2/s (eq. (2)).  Similar arguments lead to Ds~3.1×10-15 m2/s for P concentrations of 

~10-15, based on 2
INTT data provided in [15], while for P concentrations of ~1016 

atoms/cm3 we can expect Ds~10-14 m2/s.  These Ds values are extremely small and 

thus pose severe experimental challenges to measure them.  More specifically, in 

order to be able to measure such diffusion effects, the term in the argument of the 

exponent in eq. (10) involving Ds must be comparable to the terms with T2 and T1.  As 

noted above, in recent years we have developed a methodology to measure the 

physical diffusion of electron spins in liquids.  This capability relies on the use of a 

miniature resonator to acquire strong ESR signals from a very small sample, around 

which we place miniature gradient coils that make it possible to produce powerful 

magnetic field gradients with a very short duration, as required by the PGSE sequence 

for electrons.  Our latest achievements in this area allow us to obtain gradients of up 

to ~500 T/m with pulse duration of ~1μs [40].  Thus, even for a sample with ~1014 P 

atoms in 1 cm3, it is possible, for example, to employ the sequence in Fig. 3 with 

values of τ1 up to ~T1/2~50ms (at 7K [15,41]), and τ2 of ~5 μs (to enable enough time 

to place in the gradient pulse - see Fig. 3).  This implies that the factor 

2 2 2 ( / 3)sD gγ δ δΔ − can reach a value of ~0.8, while  2 2 1 12 / / ~ 0.5T Tτ τ+ , meaning 
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that the expected echo decay due to spin diffusion should be considerable and 

measurable under such conditions.  Similar arguments support also the experimental 

capability of measuring the diffusion of samples with higher P-atom concentrations at 

similar cryogenic temperatures. 

 

Figure 3: (a) ESR pulse sequence for directly measuring the flip-flop rate through spin 

diffusion.  The image depicts both the conventional induction-detection scheme as well as the 

optically-detected scheme (with an additional π/2 MW pulse, shown in semi-transparent 

mode, and the green laser irradiation before and after the sequence).  (b+c) Spin evolution can 

be described as follows: a π/2 excitation pulse creates magnetization along the -x-axis of the 

laboratory frame (the static field B0 is along the z-axis).  A short magnetic field gradient pulse 

creates variation in the Larmor precession frequencies.  The result of this pulse is that the 

position of the spins along the field gradient is encoded in their phase.  During the evolution 

time, spins can undergo a flip-flop and thus distort the nicely-ordered phase-encoded pattern 

(plate c - center).  The two π/2 pulses applied during evolution just make sure that the phases 

are encoded along the z-axis and thus stored for a period of T1, typically much longer than T2, 

to facilitate a relatively long evolution time.  At the end of the evolution period the spins are 

decoded with an identical short magnetic field gradient pulse.  If no diffusion occurred during 

the evolution period (plate b), the stimulated echo magnitude is maximal (affected only by T1 
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and T2 processes), while with flip-flop-mediated diffusion (plate c), refocusing is not 

complete and the echo signal is smaller.  For optical detection, the MW sequence is preceded 

by a laser pulse that pumps the spin population of the NV triplet to its ms=0 state, and an 

additional MW pulse is applied to convert coherences to populations that affect the magnitude 

of the detected fluorescence signal [42]. 

 

IV.  Experimental Details 

A.  Samples:   Two types of samples were employed in this study: a. Phosphorus-

doped 28Si (28Si:P) single crystal (28Si purity of more than 99.9%) with a 

concentration of  1016 P atoms per cubic centimeter [43].  The doped isotopically-

enriched thin layer of 10-μm thickness is grown on a high-resistivity p-type silicon 

substrate (Fig. 4a).  At the measured temperature of 10 K it is well known that such 

sample behaves as an insulator with the electron spins fixed about the phosphorous 

nucleus [44-46].  b. A synthetically-grown diamond single crystal, type-IIa, with a 

[111] face (purchased from Element Six, Germany), irradiated with 10 MeV electrons 

with a dose of 1018 cm-2, resulting in NV concentrations of ~1014 spins/cm3 (based on 

continuous-wave electron spin resonance measurements).  These NVs are immobile at 

room temperature and the sample itself is highly insulated, precluding any real 

physical space electron motion.  The diamond sample’s dimensions are 3×3×0.34 mm 

(see Fig. 4b). 
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Figure 4: The experimental setup for measuring the 28Si:P sample (a) and the diamond sample 

(b).  

 

B. Experimental system: The experiments were carried out employing our home-

made pulsed ESR microimaging spectrometer as the main instrument console [47].  

For the measurements of the 28Si:P sample we employed our cryogenic Q-band 

imaging probe head with a ring dielectric resonator (Fig. 4a), which is also equipped 

with cryogenic low noise amplifier for improved sensitivity [40,48].  The sample was 

placed with its plane perpendicular to the static field, B0, and the pulsed field 

gradients had a predominant dB0/dz component (Fig. 4a).  The measurements of the 

diamond sample were carried out using our optically-detected magnetic resonance 

imaging (ODMRI) setup [49], but with a specially-designed dielectric resonator for 

~6.7 GHz, which can accommodate both the diamond sample and the gradient coils 

(Fig. 4b), for enhanced gradient efficiency (vs. our setup in [49], where the gradient 

coils are outside rather than inside a ~10.6 GHz resonator).  The sample was placed 

with its [111] orientation along B0 to enable efficient optical pumping of the NV spins’ 

levels.   The gradient pulses were generated by our home-made half sine pulse drivers 

[33].  In the present experiments we applied a gradient of 150 T/m for a duration δ of 

1.1 μs for the 28Si:P sample, while for the diamond sample, gradients of 305 T/m were 

applied with a duration of δ=550 ns.  The duration τ2 was 25 μs for the 28Si:P 

measurements and 8.3 μs for the NV sample.  A 16-step phase cycling scheme was 

used to cancel all unwanted FID and echo signals [50]. 

 

V. Results and discussion  
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A. Numerical simulation of the echo magnitude decay due to spin diffusion: The 

echo intensity measured with gradients, Eg, normalized to the echo intensity without 

gradients, E0, when using the pulse sequence shown in Fig. 3, can be directly linked to 

W via a numerical simulation that follows all the stages of the PGSE pulse sequence.  

The simulation takes a large number of electron spins (typically ~10,000) and places 

them randomly in a 3D space, with a mean distance that corresponds to their bulk 

concentration.  Following this, the simulation applies a pulsed magnetic field gradient 

that creates a corresponding spatially-dependent phase profile for the spins in the 

sample along the z-axis (parallel to the applied static field, B0).  The spins are then 

given the opportunity to evolve during the evolution time with small time steps Δt 

(typically 100 μs).  In terms of the simulation, this means that at each time step a 

given spin has a chance to flip-flop with other spins.  The flip-flop process between 

spins j and k, during a given short time step, is simulated as a random stochastic 

Markovian event with a probability of 2 2 2 6(3cos 1) /ex jk jkt K rθΔ × − , (based on eq. (8), 

with 0

4
(0)

8e jkx j kfK μ γ γ
π

π ⎡ ⎤≡ ⎢ ⎥⎣ ⎦
h ).  Following the evolution time, the spins are then 

subjected to another gradient pulse that unwinds the phase profile generated by the 

first pulse.  If no significant spin diffusion occurred via flip-flops, the complex sum 

magnitude of all the spins in the sample should amount to their number.  However, if 

many flip-flop events occurred, the complex sum becomes lower than the maximal 

value, as measured by our PGSE sequence.  The only adjustable parameter in this 

numerical simulation is Kex to fit the Eg/E0 measured plot.  

B. Spin diffusion in the 28Si:P sample.  ESR measurements with the pulse 

sequence shown in Fig. 3 were carried out at 8 K.  The stimulated echo signal was 

recorded with and without the pulsed field gradients in an interleaved manner at a 
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repetition rate of 10 Hz with evolution time ranging from 7 ms up to 60 ms (T1 at this 

temperature was found to be ~30 ms).  Measurements at each time point were 

averaged for a period of 1-5 minutes (longer averaging times for the longer evolution 

time where the echo signal is smaller).  The echo signal with the pulsed field gradient, 

Eg, was normalized with respect to the echo signal without the phase gradients, E0.  

Figure 5a shows the measured Eg/E0 signal as a function of the evolution time.  The 

figure also shows the theoretical fit, based on eq. (10), normalized to E0, i.e., 

( )0 2 2 2/ exp ( / 3)g
sE E D gγ δ δ= − Δ − , with a single fit parameter Ds=3.37×10-14 m2/s, 

which translates through eq. (2) to an exchange rate of  W~15.9 Hz (using a~46 nm 

for P concentrations of 1016/cm3).  An additional fit is obtained by numerical 

simulation of the spin diffusion phenomenon, which is more accurate than simply 

using eq. (2) (see above), leading directly to a value of 6 31.2 10 [ / ]ex zK H nm= × , 

which for a distance of 46 nm and θjk =π/2 gives W~12.3 Hz.  The value of Kex also 

provides information about the normalized zero quantum spectrum of the two-spin 

system (see eq. (8)), to give 5(0) 3.8 10jkf −= ×  (for spin distance of 46 nm). 

C. Spin diffusion in the diamond sample: Similar stimulated echo measurements 

with and without the gradient pulses were carried out at room temperature on the 

diamond sample with the NV defects, but with the modified optically-detected 

magnetic resonance (ODMR) PGSE sequence having 2 additional laser and one MW 

pulses (Fig. 3).  As before, Fig. 5b shows the normalized echo signal Eg/E0 as a 

function of the evolution time.  However, due to the relatively short T1 (~5 ms) of the 

diamond sample at room temperature, we were limited to an evolution time of ~9 ms.  

In addition, it is evident that the error in these measurements is more prominent than 

in the first sample and it is immediately noticeable that the normalized echo value 

starts from ~0.5 rather than from 1, even for a short evolution time.  These issues are 
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mainly due to three reasons: the relatively short T2 of the diamond sample  

(~10 μs) compared to that of the 28Si:P (~200 μs), its relatively large size (~300 μm) 

compared to the thin (10 μm) enricher layer of the Si sample, and the inherent 

problematics of the unique ODMR detection protocol.   

Let us explain what are the implications of each of these three issues.  Pulsed 

magnetic field gradients are never optimal and residual small currents can persist in 

the gradient coils well after the pulse is applied.  As noted above, since the gradient 

pulses can be applied only during the transverse evolution period, their duration 

should be comparable to, or better yet, much shorter than T2.  In the latter case, 

placing the gradient pulse at the beginning of the evolution period leaves enough time 

for the residual current to decay, during τ2, which evidently cannot be much longer 

than T2.  In the 28Si:P sample, due to its long T2, we could employ a τ2 of 25 μs , 

leaving more than enough time for the residual current to decay, while for the NV 

sample, with τ2 of only 8.3 μs, some residual current apparently still remained.  This 

residual current can shift the frequency of the echo signal and also broaden it.  The 

shifting, and especially the broadening, effects greatly depend on the dimensions of 

the sample along the gradient axis.   Here, also, the NV sample is inferior to the 

28Si:P , which is much thinner and thus much less prone to these artifacts.  Finally, the 

ODMR detection protocol, with its need for an additional MW pulse to detect the 

echo signal, creates another problem.  ODMR essentially collects the transverse 

magnetization echo signal at a single time point; therefore, any broadening or 

frequency shifts reduce the magnitude of the signal, without any simple apparent way 

of restoring it.  This is in contrast to the conventional induction-detection approach 

with quadrature detection, which collects the entire echo time evolution in a single 

acquisition.  With induction detection it is possible to immediately identify frequency 
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changes and broadening effects that simply move and broaden the peak signal in the 

frequency spectrum domain.  Thus, when such effects occur, they can be mostly 

reversed, and the undistorted total echo signal can be recovered by simply looking at 

the integral of the signal, rather than at its maximum spectral value.   

The above explanations and discussion make it clear why, at the high level of 

gradient pulses we employed, the normalized echo Eg/E0 value shown in Fig. 5b 

already drops to a level of ~0.5, even for very short evolution time.  This is obviously 

not because of spin diffusion but rather due to the abovementioned reasons, which 

limit the level of echo reconstruction that can be achieved with this sample in our 

present setup.  Furthermore, as a result of the relatively short maximum evolution 

window and the large signal variability, we could not observe a definite decay in the 

normalized echo signal.  Nevertheless, while the signal and the corresponding results 

are far from optimal, it is still possible to draw some (albeit limited) physical 

conclusions based on it.  For that purpose, we superimpose on the experimental data 

three theoretical decay curves.  The first two are similar to those shown in Fig. 5a, 

based on fitting the experimental data to the predictions of eq. (10) and to the 

numerical simulation.  With these two fits we obtained a Ds value of ~1×10-14 m2/s 

(fitting to eq. (10)), and a Kex value of  6 3
z~ 2 10 H /nm× , corresponding to W~0.2 Hz 

(based on the numerical simulation results).  The drop in the signal due to the effects 

of the residual current was accounted for by simply normalizing the simulation value 

to 0.47 instead of 1.  Due to the quality of the data, these fitted values represent just a 

rough order of magnitude that provides an upper limit to the real physical values.  To 

make this point clearer, a third theoretical plot was added, which represents the 

prediction of eq. (10) but with a Ds value of ~1×10-13 m2/s.  This additional curve 

clearly shows that under our experimental conditions, for such Ds value, the signal 
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decay is expected to be much more pronounced, to a level that would have been 

measurable already during the 9-ms time slot.  Thus, it can be concluded that the 

W~0.2 Hz is indeed a rough order-of-magnitude upper limit to the flip-flop rate in this 

sample that can be estimated from our current experimental data. 

 

Figure 5: (a) The ratio between the stimulated echo signal with pulse gradients, Eg, and the 

signal without pulse gradients, E0, for the 28Si:P sample.  The fit to eq. (10) is shown by the 

red line, and the numerical simulation results are shown by the green line. (b) The same as 

panel (a), but showing the measured and theoretical results for the sample of the NV centers 

in diamonds.  An additional theoretical curve, assuming a 10-fold larger spin diffusion 

coefficient value, is shown in magenta color (see text for more explanations). 

 

The experimental results as a whole show the possibility to accurately measure 

the flip-flop rate of like-electron spins, as long as this rate is not much smaller than 

1/T1.  This condition was obeyed in the case of the 28Si:P sample, but for the diamond 

sample this was not the case, and thus we could only obtain an upper limit for W.  Our 

results can be compared to theory, based on eq. (9), using the measured value for the 

intrinsic 2 ~ 1.05 msINTT  at 8 K for our 28Si:P sample to obtain W~79.5 Hz.  In the 

case of the diamond sample, 2 ~ 90 sINTT μ , leading to W~928 Hz.  These two 

theoretical rates are much faster than the measurements obtained by us.  However, 

this is clearly due to the limitations of the simplified theory, because such fast rates 
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are incompatible with our observations.  In terms of comparison to other experimental 

results, as noted above, such type of measurements has not been carried out to-date 

for electrons.  The closest ones which are of relevance are the measurements carried 

out on a 28Si:P sample with P concentrations of 1014 spins/cm3 at 1.8 K, the findings 

of which were 2 ~ 0.8 sDFFT [15],  corresponding to 21/ ~ 1.25 HzDFFW T= [10].   The 

spin concentration in that case was 100 times lower than in our experiment, which 

suggests that W should also be much smaller (due to the dependence of the dipolar 

interaction on interspin distance).  However, there should also be some temperature 

dependence affecting the entire process (via the spectral line width) and thus, it is 

hard to conclude whether our results are in agreement with such relaxation-time-based 

measurement or not.   

 

VI. Summary and Outlook  

It can be concluded that the approach provided here for direct measurements 

of the flip-flop rate circumvents the difficulties associated with the extraction of this 

parameter using spin decoherence measurements.  The acquisition of this rate is made 

possible thanks to advanced experimental capabilities in ESR that rely on high 

sensitivity measurements executed with fast and powerful pulsed field gradients.  

These can be applied to a variety of samples, and should be an important 

characterization tool for various structures (vectors, and 2D and 3D arrays) of spins, 

aiming at a variety of quantum-sensing and information-processing applications.  

Moreover, on a more basic level, these measurements open a window to address the 

issue of zero quantum spectral information (e.g. line width) in very weak electron-

spin-coupled samples.   
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