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The generation of propagating Bessel beams is typically limited to optical frequencies with bulky
experimental setups. Recent works have demonstrated Bessel beam generation at microwave and
millimeter-wave frequencies utilizing low-profile, planar, leaky-wave antennae. These studies have
assumed a single leaky mode in the antenna. In this work, the rigorous analysis of a planar Bessel
beam launcher supporting multiple modes is presented. By employing the mode-matching technique,
a complete electromagnetic solution of the structure, its supported modes, and radiated fields is
obtained. Additionally, a coupled system of two planar Bessel launchers is analyzed, and it is shown
that the system can both transmit and receive Bessel beams. The energy transfer characteristics
of the coupled system are analyzed, and the system’s power transfer capabilities discussed. An
analysis of the coupled system’s even and odd modes of operation show that efficient power transfer
is possible, and that an odd mode is preferred, since it yields higher field confinement and power
transfer efficiency.

I. INTRODUCTION

Ideal Bessel beams are field solutions to Maxwell’s
equations which do not undergo diffractive spreading [1].
A Bessel beam can be considered as the superposition
of plane waves with propagation constants lying on a
cone. They have self-healing capabilities, which allow
the field to re-form behind scatterers, and can be tai-
lored to have narrow beam-widths. These extraordinary
traits suggest valuable application in the field of near-
field probing, medical imaging, and wireless power trans-
fer. However, these idealized beams possessing an infi-
nite non-diffracting range require infinite energy. In ad-
dition, practical Bessel beam demonstrations have gener-
ally been at optical frequencies [2, 3]. Attempts typically
employ an illuminated axicon, or similar lens, to generate
Bessel beams over a finite range [4, 5].
In recent literature [6, 7], efforts to realize Bessel beam

launchers in the microwave regime have been reported.
The leaky radial-waveguide, proposed in [6] as a launcher,
is planar, low profile, and fed directly with a coaxial ca-
ble. An approximate analysis of the microwave Bessel
beam launcher was performed which considered a single
leaky mode within the radial waveguide (launcher) [6].
The transverse resonance technique was used to derive
the dispersion relation and establish design parameters.
The reported structure demonstrated Bessel beam gen-
eration within a non-diffractive range above the leaky
radial waveguide [7]. The analysis, however, did not con-
sider the presence of other modes, nor were the fields in
free-space above exactly solved. A more thorough field
solution of the launcher, identifying its modal structure,
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lies in the mode-matching technique. Mode-matching
was first proposed as a solution to waveguide discontinu-
ity problems [8, 9], and has been employed in more recent
literature [10–12]. In other recent works, free-space fields
are found using mode-matching techniques by applying
the Hankel transform [13].

In this paper, a mode-matching approach is applied
to the planar Bessel beam launcher (see Fig. 1). The
relevant vector potential is defined, and an Eigenmode
expansion is employed to express the field solution as
a summation of transverse modes. Since the free-space
spectrum above the launcher is continuous, it is expressed
in terms of the Hankel transform. Power orthogonality
relations are employed to preserve continuity of power
flow across the structural boundaries. In this way, the
solution of the modal coefficients is obtained. This ap-
proach allows the relative magnitude of the waveguide
modes to be computed, and provides an explicit solution
for the free-space (radiated) spectrum.

Since an isolated launcher is known to generate Bessel
beams, the analysis is extended to two coupled launch-
ers. In this arrangement, two launchers are separated by
a distance d, and the system’s ability to transmit and

receive Bessel beams is demonstrated. As this system
of coupled launchers is comprised of two coupled res-
onators (launchers), the field response exhibits even and
odd modes of operation about its central plane. The po-
larity of the modal coefficients in the launchers identifies
these even and odd modes of operation. Two-port scat-
tering parameters are retrieved from the analysis of the
coupled launchers. Port impedances are then computed
for a simultaneous complex-conjugate impedance-match.
The performance of the conjugately matched system is
subsequently discussed. The even mode is shown to ra-
diate more, whereas the odd mode demonstrates high
field confinement in free-space and the fields between the
two Bessel launchers appear as within a waveguide. In
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other words, a diffractionless beam exists in free-space.
Much work has been reported on wireless links as well
as power transfer in the reactive near field and far-field
[14–17]. Here, the system operates at distances between
these two ranges; within the radiative near-field. Addi-
tionally, it is shown that the radiative system is highly
coupled, as the input impedance is dependent on the re-
ceiving launcher. This is unusual for a radiative system,
but is the case for the coupled Bessel launchers.

II. SINGLE BESSEL LAUNCHER

In [6, 7], it was shown that an electrically-thin radial
waveguide, covered with a capacitive sheet, can produce
a propagating Bessel beam. A cross-sectional image of
such a structure excited by a coaxial feed is depicted in
Fig. 1. Regions I and II both have a central conductor of
radius a, and an outer conductor of radius b and c, respec-
tively. Region I represents the coaxial feed used to excite
the structure. Region II can be analyzed as an over-sized
coaxial waveguide with a discontinuity at z = −h. Re-
gion III represents free-space, and the boundary between
Region II and III is defined by a sheet impedance, Zsheet,
at z = 0. The sheet impedance specifies the transverse
field ratio, Zsheet = −Eρ/Hφ, and is capacitive. This al-
lows the radial waveguide to support transverse magnetic
with respect to ẑ (TMz) leaky waves. Analysis proceeds
in the following sections with the derivation of the fields
in a coaxial waveguide.
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FIG. 1. A cross-sectional view of a leaky radial waveguide
capable of launching propagating Bessel beams. All bound-
aries, excepting Zsheet, are assumed perfect electric conduc-
tors (PEC).

A. Review of Field Definitions

Here, expressions for the TMz modes supported by
the coaxial waveguides (Regions I and II) of the Bessel
beam launcher are reviewed. The electromagnetic vector
potential in either Region I or II can be expressed in

separable form [18]:

ψ = Z (z)R (ρ)Φ (φ) . (1)

The potentials are defined for a coaxial structure with
cylindrical geometry. Since the structure and excitation
are φ-invariant, further expression of Φ (φ) is suppressed.
The TMz fields are derived from the vector potential (1)
in cylindrical coordinates [18, 19]. The resulting TMz

fields have the form:

Eρ =
1

ωε
kρkz

[

Ae−jkzz −Bejkzz
]

R1 (kρρ, ρ1) , (2)

Hφ = kρ
[

Ae−jkzz +Bejkzz
]

R1 (kρρ, ρ1) , (3)

Ez = − j

ωε
kρ

2
[

Ae−jkzz +Bejkzz
]

R0 (kρρ, ρ1) , (4)

where Eφ = Hρ = Hz = 0. A time harmonic progression
of ejωt is assumed (e−jkz indicates propagation in the +ẑ
direction). The general form of R is defined as

Rν(kρρ, ρ1) =

[

Jν (kρρ)−
J0 (kρρ1)

Y0 (kρρ1)
Yν (kρρ)

]

, (5)

where ρ1 is the outside-rim of the coaxial conductor, and
Jν (kρρ) and Yν (kρρ) are ν-th order Bessel functions of
the 1st and 2nd kind, respectively.

B. Eigenmode Expansion

Next, fields in each region are expressed as a sum-
mation of their eigenmodes. Transverse-electromagnetic
(TEMz) and transverse-magnetic (TMz) fields are con-
sidered in Region I and II of the launcher shown in Fig.
1. TEMz wavenumbers are referred to as ki = ω

√
µ0εi,

where i denotes the region. The TMz wavenumbers are
referred to as kzni

and kρni
for a discrete nth mode in

region i, and are connected by the separation relation:
k2i = k2zni

+k2ρni
, where ki is the wavenumber in region i.

All regions are air filled, so ki = k0, and all wavenumbers
are in units of radians/meter. The electromagnetic fields
are summarized in Table I.
Region I describes the coaxial cable feed. The trans-

verse electromagnetic fields in this region are character-
ized by an input and reflected TEMz mode, and a sum-
mation of reflected TMz modes. They are defined by
(6) and (7). The forward propagating (incident) TEMz

wave is known, and is assigned magnitude 1 for conve-
nience. Region II describes the leaky radial waveguide or
Bessel beam launcher. The transverse electromagnetic
fields in this region are a forward and backward propa-
gating (+/-) TEMz mode and summation of (+/-) TMz

modes, as defined by (8) and (9).
Region III encompasses the free-space beyond the ra-

dial waveguide, and is defined for z > 0 and 0 ≤ ρ <∞.
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TABLE I. Electromagnetic field profiles for all regions in the single launcher shown in Fig. 1.

Region I EI
ρ (ρ, z) =

[

e−jk1(z+h) + A0e
jk1(z+h)

]

eI

TEM +
∞
∑

n1=1

[

−Bn1
ejkzn1

(z+h)
]

eI

TM (6)

HI
φ (ρ, z) =

[

e−jk1(z+h) − A0e
jk1(z+h)

]

hI

TEM +
∞
∑

n1=1

Bn1
ejkzn1

(z+h)hI

TM (7)

Region II EII
ρ (ρ, z) =

(

C0e
−jk2z +D0e

jk2z
)

eII

TEM +
∞
∑

n2=1

(

En2
e−jkzn2

z − Fn2
ejkzn2

z
)

eII

TM (8)

HII
φ (ρ, z) =

(

C0e
−jk2z −D0e

jk2z
)

hII

TEM +
∞
∑

n2=1

(

En2
e−jkzn2

z + Fn2
ejkzn2

z
)

hII

TM (9)

Region III EIII
ρ (ρ, z) =

∞
∫

0

Q (kρ3) e
−jkz3

zeIII

TM∂kρ3 (10)

HIII
φ (ρ, z) =

∞
∫

0

Q (kρ3) e
−jkz3

zhIII

TM∂kρ3 (11)

In free-space, the field is expressed as the inverse Han-
kel transform of the spectrum. The transverse fields in
this region are defined in (10) and (11). Note that the
free-space spectrum is continuous, rather than discrete,
as was the case of the other two regions. Thus, the
wavenumbers are expressed as kρ3

and kz3 , and related
by k20 = k2z3 + k2ρ3

. The transverse field profiles for the
electromagnetic fields defined in Table I are provided in
Table II.

C. Boundary Conditions and Power Orthogonality

Next, boundary conditions are enforced on the tan-
gential Eρ and Hφ field components at the interfaces be-
tween regions. Following the application of boundary
conditions, power orthogonality is applied to simplify ex-
pressions. For two eigenmodes, ēn and h̄m, in the same
region, power orthogonality states that:

∫∫

S̄

[

ēn × h̄∗m
]

· ẑ ∂S̄ = 0, (12)

when n 6= m. S̄ defines the cross section of an interface
[8, 9, 19–21]. Power orthogonality is applied over the
cross-section of the discontinuity to simplify expressions.
For brevity, these lengthy derivations are not included in
the main text, but can be found in the supplementary
material [22].

D. Solution

By exploiting power orthogonality, a system of equa-
tions with unknown modal coefficients A0, Bn1

, C0,
D0, En2

, and Fn2
was written. The free-space spec-

tral coefficient Q(kρ3
) from (10) and (11) was solved in

a closed form, and substituted into the system of equa-
tions. These detailed calculations are provided in the
supplementary material [22]. The system of equations

were arranged in a square matrix, ¯̄M . The mode coef-
ficient vector A and forcing function (excitation) vector

W have the relation:

¯̄MA =W. (13)

The modal coefficient vector can be solved by matrix

inversion: A = ¯̄M−1W . Knowledge of the system di-
mensions and operating frequency allows all modal coef-
ficients to be solved.

E. Numerical Analysis

In order to test the preceding analysis, the geometri-
cal and electrical parameters for the radial waveguides
displayed in Table III were selected. Within Region I,
the transverse wavenumbers (kρn1

) are solved by setting
R0 (kρn1

a, b) = 0,

0 = J0 (kρn1
a)Y0 (kρn1

b)− J0 (kρn1
b)Y0 (kρn1

a) . (14)

The variable n1 = 1, 2, 3 . . . defines the higher order TMz

modes in Region 1. To find the cut-off wavenumbers in
Region II, kρn1

was replaced with kρn2
, and b with c. For

the dimensions given in Table III, the associated TMz

cutoff wavenumbers are given in Table IV.
The operating frequency was chosen to be 10 GHz. The

free-space wavenumber at 10 GHz is k0 = ω
√
µ0ε0 =

209.58. Due to the small dimensions of Region I, only
highly evanescent TMz modes are present around the
design frequency. In other words, the modes are in cutoff.
As a result, the TMz modal coefficients in Region I are
many orders of magnitude less than the TEMz. Since
TMz contributions in Region I are negligible, only the
n1 = 1 mode was used in the calculations, whereas n2 =
20 modes were required in Region II for convergence.

F. Results

In this section, numerical results and a discussion of
the Bessel launcher are presented. The modal coefficient

matrix ¯̄M and excitation vectorW were computed across
the X-band: 8 - 12 GHz. The modal coefficient vector
(A) at each frequency were solved for using (13).
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TABLE II. Transverse field profiles for all regions in the single launcher shown in Fig. 1, and the coupled launchers in Fig. 5.

Region I Region II Region III Region IV Region V
eTEM

1
ρ

1
ρ

n/a 1
ρ

1
ρ

hTEM
1
ρ

√

ε1
µ

1
ρ

√

ε2
µ

n/a 1
ρ

√

ε4
µ

1
ρ

√

ε5
µ

eTM

kρn1
kzn1

ωε1
R1 (kρn1

ρ, b)
kρn2

kzn2

ωε2
R1 (kρn2

ρ, c)
kρ3kz3
ωε3

J1 (kρ3ρ)
kρn4

kzn4

ωε4
R1 (kρn4

ρ, c)
kρn5

kzn5

ωε5
R1 (kρn5

ρ, b)

hTM kρn1
R1 (kρn1

ρ, b) kρn2
R1 (kρn2

ρ, c) kρ3J1 (kρ3ρ) kρn4
R1 (kρn4

ρ, c) kρn5
R1 (kρn5

ρ, b)

1. Input Impedance and Resonance

The single Bessel beam launcher is a 1-port system.
The port is a lossless coaxial port at z = −h: the bound-
ary between Regions I and II. From (6), the reflection
coefficient at this port can be defined as:

Γin(z = −h) =
EI−

ρ

EI+
ρ

≈ A0, (15)

where the + and− superscripts denote forward and back-
ward propagating fields, respectively. Since TMz modes
in Region I are negligible, Γin ≈ A0.
Then, the input impedance was calculated to identify

the frequencies at which the Bessel launcher resonates.
The input impedance is Zin = Z0 (1 + Γin) / (1− Γin),
where Γin is defined by (15), and Z0 is the characteristic
impedance of the coaxial port. Since higher order TMz

modes are considered negligible in Region I, Z0 is the
characteristic impedance of the TEMz mode in Region I:

Z0 =

√

µ

ε

ln b/a

2π
. (16)

Note that Z0 = 45.73 Ω for the conductor dimensions
given for Region I in Table III. The resulting Zin =
Rin + jXin (assuming Z0 terminations) is complex, and
is plotted in Fig. 2. The points of resonance of the struc-
ture are identified by the points where ℜe (Zin) attains
a local maximum.
The mode-matching approach was verified using the

commercial FEM solver COMSOL Multiphysics. The
radial waveguide (with properties in Table III) was em-
bedded in a PEC ground plane. The coaxial port was
excited and the frequency domain reflection coefficient
extracted. The input impedance was calculated and is
plotted in Fig. 2 alongside the results from the mode-
matching approach. From the plots in Fig. 2, the pre-

TABLE III. Properties of the system depicted in Fig. 1.

Dimension Value Descriptor
a 0.653 mm Inner radius of Region I and II
b 1.4 mm Outer radius, Region I
c 85.95 mm Outer radius, Region II
h 1 mm Radial waveguide height
Xs -25j Ω Sheet reactance at 10 GHz

dicted resonances agree with the FEM solver to within
0.1%.

2. The Discrete Waveguide Spectrum

Next, the discrete modes within the waveguide are an-
alyzed to determine points at which a given mode is dom-
inant. The ẑ-directed TMz modal strength in the waveg-
uide is the sum of the (+/-) TMz coefficients: En2

+Fn2
.

Since the Bessel launcher is electrically thin, the total ẑ-
directed electric field En2

+Fn2
is essentially constant for

−h < z < 0. The first seven modes of the Bessel beam
launcher (n2 = 1, 2, . . . , 7) are plotted versus frequency
in Fig. 3 as |En2

+ Fn2
|. A direct comparison between

Fig. 2 and Fig. 3 shows a correlation between peaks of
Zin (resonances) and dominance of a single mode in the
waveguide. The frequencies corresponding to peak val-
ues of ℜe(Zin) and corresponding modal coefficient are
recorded in Table V. The frequencies of peak values oc-
cur within approximately 1% of each other.

3. Free-Space Fields

An important factor to consider in this leaky waveg-
uide design is the non-diffractive range, ddiff , associated
with each waveguide mode [1, 6]. The non-diffractive

TABLE IV. TMz Modes in Region I and II and associated
cut-off wavenumbers and frequencies for the system depicted
in Fig. 1 with dimensions in Table III.

Region I Region II
Mode kρn1

fn1
kρn2

fn2

(n) (rad/m) (GHz) (rad/m) (GHz)
1 4,175.7 199.24 32.3 1.54
2 8,395.4 400.58 69.5 3.32
3 106.7 5.09
4 143.76 6.86
5 180.81 8.63
6 217.82 10.39
7 254.81 12.16
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FIG. 2. Real and imaginary input impedance for the single
Bessel launcher vs. frequency.
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FIG. 3. Magnitudes of the first seven modal coefficients vs.
frequency. The coefficients describe the relative strength of
each mode in the Bessel Launcher.

range is given by

ddiff = c

√

(

k2
kρn2

)2

− 1, (17)

where k2 is the wavenumber in the waveguide. Since the
launchers are air-filled, k2 = k0. The values of ddiff at a
mode’s resonant frequency are listed in Table V.
To analyze the fields in free-space, the spectral coef-

ficient, Q(kρ3
), is computed at the resonant frequencies.

The ẑ-directed free-space fields (EIII
z ) are computed us-

TABLE V. A comparison of point of resonance of Zin, and
point at which a given mode experiences its peak strength
in the waveguide (Region II). In addition, the non-diffracting
region distance (ddiff) is displayed for each resonant frequency.

Mode Wave- Resonant Modal Percent ddiff at
number number frequency peak difference resonance
(n2) (rad/m) (GHz) (GHz) (%) (mm)

4 143.76 8.58 8.67 1.05% 64.59
5 180.8 9.99 10.1 1.1% 50.19
6 217.82 11.48 11.63 1.31% 40.32

FIG. 4. Normalized electric field |Ez| /max (|Ez|) in free-
space plotted at three resonant frequencies. The left column
displays fields plotted using (18). The right column displays
the field plots using a commercial FEM solver, COMSOLMul-
tiphysics. The first, second, and third row display the 4, 5,
and 6-null Bessel patterns, respectively, at their resonant fre-
quencies. The coordinate system in these plots is the same as
that used in Fig. 1. The surface of the launcher extends from
ρ < c at z = 0 (the bottom axis of each plot). Field patterns
have been reflected across ρ = 0 to show the complete image.

ing

EIII
z (ρ, z) = − j

ωε3

∞
∫

0

Q (kρ3
) e−jkz3

zJ0 (kρ3
ρ) k2ρ3

∂kρ3
.

(18)
The free-space fields at the three resonant frequencies
in Table V are computed over 0 ≤ ρ ≤ 150 mm, and
0 < z ≤ 150 mm. The results are compared to the free-
space fields calculated using COMSOL in Fig. 4. A com-
parison of the field plots indicates close agreement be-
tween the mode-matching technique presented here and
the commercial solver.

G. Discussion

The extracted electrical characteristics of the Bessel
beam launcher demonstrate its core operating principles.
The launcher itself supports TMz modes of an over-sized
coaxial metallic geometry excited by an electric field.
The input impedance (Fig. 2) of the launcher shows
that the structure has multiple resonances. A compari-
son with the TMz modal coefficients (Fig. 3) shows that
these resonances are associated with the dominance of a
single mode in the Bessel launcher. Then, as the free-
space field plots show (Fig. 4), the Bessel-function mode
excited in the launcher radiates into free-space. The free-
space Bessel beam is limited to the non-diffractive region.
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FIG. 5. The cross section of two identical Bessel beam launch-
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In brief, at a resonance, the Bessel launcher propagates
the dominant waveguide mode into free-space.

III. TWO COUPLED BESSEL LAUNCHERS

In this section, the formulation from Section II is ex-
tended to consider a system of two coupled Bessel beam
launchers, as shown in Fig. 5. The electromagnetic fields
within the 5 regions of interest are described next.

A. Definition of Fields

The fields are expressed as a summation of their eigen-
modes. Explicit field expressions are summarized in Ta-
ble VI. Note that the fields are referenced to the center-
point between the two launchers. Thus, fields in Re-
gions I, II, and III are rewritten relative to this ref-
erencing point. Region I describes the coaxial cable
feed, and Region II describes the bottom Bessel beam
launcher. Fields in these regions are given by (19)-(22).
Region III describes the free-space between the coupled
radial waveguides, and is defined for − d

2 < z < d
2 and

0 ≤ ρ <∞. In free-space, the transverse fields are given
by (23) and (24). Note that the total spectrum consists
of forward and backward propagating spectral functions,
Q (kρ3

) and P (kρ3
). These functions are defined at the

surface of the bottom and top Bessel beam launcher, re-
spectively.
Region IV describes the top Bessel beam launcher with

fields defined by (25) and (26). Region V describes the
output coaxial cable. The field expressions in (27) and
(28) consider waves incident on and reflected from the
output coaxial cable (output port). The load reflection
coefficient, ΓL = U0/T0 accounts for TEMz reflections
imposed by the load impedance. It is defined as

ΓL =
ZL − Z0

ZL + Z0
, (29)

where Z0 is the characteristic impedance of the TEMz

mode (16). Coefficient ΓTM
L = Wn5

/Sn5
accounts for

TMz reflections. As in Region I, the reflections due to
TMz modes are negligible in Region V and are neglected,
as the modes are in cutoff. Note that the transverse field
profiles for all electromagnetic fields are provided in Table
II.

B. Boundary Conditions and Field Solution

Next, the boundary conditions are enforced on Eρ and
Hφ at the boundaries between regions. Continuity of
power-flow at the boundaries is preserved through power
orthogonality operations. The simplification process is
lengthy, and is provided in the supplementary material
[22].
The coupled Bessel beam launchers are defined by a

system of equations with unknown modal coefficients A0,
Bn, C0, D0, En, Fn, G0, H0, Kn, Ln, T0, Sn, and ΓL,
where ΓL is a function of the load impedance, and can be
arbitrary. These modal coefficients form vector A. In ini-
tial calculations, the load is assumed to be matched to the
characteristic impedance (Z0) of the transmission lines of
Regions I and V. This is referred to as the port-matched
system, as the load is matched to the port impedance. In
the port-matched system, ΓL = 0. The equations are or-

ganized into a matrix ¯̄M , with a forcing vectorW . Then,
each coefficient in vector A is solved by matrix inversion
(13).

C. A Complex Conjugate Loaded System

An important figure of merit for a coupled system is its
transmission efficiency. Efficiency quantifies the amount
of energy that is passed from the source to the load.
Maximum power transfer is achieved with a simultaneous
complex-conjugate impedance-match [23]. In this sec-
tion, the process to derive the optimal load impedance
(ZL,opt) that provides a complex-conjugate impedance-
match is discussed. Since the structure is symmetric, the
optimal source impedance is equal to ZL,opt.
The coupled launchers in Fig. 5 form a 2-port sys-

tem. Port 1 is a lossless coaxial port referenced to the
boundary between Regions I and II. Port 2 is similarly
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TABLE VI. Electromagnetic field profiles for all regions in the coupled launchers shown in Fig. 5.

Region I EI
ρ (ρ, z) =

[

e
−jk1

(

z+ d
2
+h

)

+ A0e
jk1

(

z+ d
2
+h

)]

e
I

TEM
+

∞
∑

n1=1

[

−Bn1
e
jkzn1

(

z+ d
2
+h

)]

e
I

TM
(19)

HI
φ (ρ, z) =

[

e
−jk1

(

z+ d
2
+h

)

− A0e
jk1

(

z+ d
2
+h

)]

h
I

TEM
+

∞
∑

n1=1

Bn1
e
jkzn1

(

z+ d
2
+h

)

h
I

TM
(20)

Region II EII
ρ (ρ, z) =

[

C0e
−jk2

(

z+ d
2

)

+ D0e
jk2

(

z+ d
2

)]

e
II

TEM
+

∞
∑

n2=1

[

En2
e
−jkzn2

(

z+ d
2

)

− Fn2
e
jkzn2

(

z+ d
2

)]

e
II

TM
(21)

HII
φ (ρ, z) =

[

C0e
−jk2

(

z+ d
2

)

− D0e
jk2

(

z+ d
2

)]

h
II

TEM
+

∞
∑

n2=1

[

En2
e
−jkzn2

(

z+ d
2

)

+ Fn2
e
jkzn2

(

z+ d
2

)]

h
II

TM
(22)

Region III EIII
ρ (ρ, z) =

∞
∫

0

[

Q
(

kρ3

)

e
−jkz3

(

z+ d
2

)

− P
(

kρ3

)

e
jkz3

(

z−d
2

)
]

e
III

TM
∂kρ3

(23)

HIII
φ (ρ, z) =

∞
∫

0

[

Q
(

kρ3

)

e
−jkz3

(

z+ d
2

)

+ P
(

kρ3

)

e
jkz3

(

z−d
2

)
]

h
III

TM
∂kρ3

(24)

Region IV EIV
ρ (ρ, z) =

[

G0e
−jk4

(

z−d
2

)

+ H0e
jk4

(

z−d
2

)
]

e
IV

TEM
+

∞
∑

n4=1

[

Kn4
e
−jkzn4

(

z−d
2

)

− Ln4
e
jkzn4

(

z−d
2

)
]

e
IV

TM
(25)

HIV
φ (ρ, z) =

[

G0e
−jk4

(

z−d
2

)

− H0e
jk4

(

z−d
2

)
]

h
IV

TEM
+

∞
∑

n4=1

[

Kn2
e
−jkzn4

(

z−d
2

)

+ Ln4
e
jkzn4

(

z−d
2

)
]

h
IV

TM
(26)

Region Va EV
ρ (ρ, z) =

[

T0e
−jk5

(

z−d
2
−h

)

+ U0e
jk5

(

z−d
2
−h

)
]

e
V

TEM
+

∞
∑

n5=1

[

Sn5
e
−jkzn5

(

z−d
2
−h

)

− Wn5
e
−jkzn5

(

z−d
2
−h

)
]

e
V

TM

= T0

[

e
−jk5

(

z−d
2
−h

)

+ ΓLe
jk5

(

z−d
2
−h

)
]

e
V

TEM
+

∞
∑

n5=1

Sn5

[

e
−jkzn5

(

z−d
2
−h

)

− ΓTM
L e

−jkzn5

(

z−d
2
−h

)
]

e
V

TM
(27)

HV
φ (ρ, z) = T0

[

e
−jk5

(

z−d
2
−h

)

− ΓLe
jk5

(

z−d
2
−h

)
]

h
V

TEM
+

∞
∑

n5=1

Sn5

[

e
−jkzn5

(

z−d
2
−h

)

+ ΓTM
L e

−jkzn5

(

z−d
2
−h

)
]

h
V

TM
(28)

a Coefficient ΓL = U0/T0 represents TEMz reflections imposed by the load impedance, and is defined in (29). Coefficient
ΓTM
L = Wn5

/Sn5
accounts for TMz reflections, and is considered negligible.

defined, and referenced to the boundary between Regions
IV and V. In the port-matched case, there are no reflec-
tions at Port 2. Such an analysis allows the extraction
of the scattering parameters: S11, S12, S21, and S21 [24].
Since A0 ≈ Γin = S11, an expression for the transmission
coefficient (T = S21) can be written as

T =
EV+

ρ

∣

∣

d=d
2
+h

EI+
ρ

∣

∣

d=−( d
2
+h)

≈ T0. (30)

As in Region I, contributions from the TMz modes in
Region V are negligible at the frequencies of interest.
Thus T ≈ T0 = S21. Since the system is symmetric and
passive, S22 = S11 and S12 = S21.
A simultaneous complex-conjugate impedance-match

yields the optimal source and load impedances (ZL,opt)
[25–27]. If Port 2 is terminated in ZL,opt, then this is
referred to as the conjugately-matched system, since the
load is complex-conjugate impedance-matched. The load
also receives maximum power. The derivation of ZL,opt

is discussed under such a condition in the Appendix.

D. Numerical Analysis

Now, the process for analyzing the coupled structure
with a complex-conjugate load impedance can be clearly
defined. For known parameters a, b, c, Zsheet, and h, the
procedure involves the following steps:

1. For a given excitation, W , calculate the port-

matched ¯̄M as a function of frequency (ZL = Z0,
or ΓL = 0).

2. Solve for the modal coefficient vector A using (13).

3. Extract A0 = S11 = S22, and T0 = S21 = S12 from
A.

4. Compute Z-parameters from S-parameters [24].

5. Calculate ZL,opt from (A.1) and (A.2).

6. Calculate ΓL,opt = ΓL from (29), assuming ZL =
ZL,opt.

7. Compute the conjugately-matched ¯̄M ′, using ΓL,opt

from Step 6. Since the input was not modified, the
excitation W is not changed.

8. Solve for the modified coefficient vector A′.

The conjugately-matched system matrix ¯̄M ′ and coeffi-
cient vector A′ now account for a conjugate impedance-
matched load. Modal coefficients for the conjugately-
matched system are denoted with a prime notation, and
are A′

0, B
′
n, C

′
0, D

′
0, E

′
n, F

′
n, G

′
0, H

′
0, K

′
n, L

′
n, T

′
0, S

′
n.

Now that a process for analyzing the structure is de-
fined, the system of coupled launchers was analyzed
across the X band: 8 - 12 GHz. In Region II and IV,
n2 = n4 = 16 modes are required for convergence. As be-
fore, Regions I and V only consider a single TMz mode:
n1 = n5 = 1.

E. Results

The 8-step process detailed in the previous section was
followed to solve for the modified modal coefficient vector
A′. The physical dimensions given in Table III were used
in these calculations.
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FIG. 6. (a) The conjugately-matched power transfer efficiency (ηmax) calculated from COMSOL using (A.3) is plotted as a
colormap, where the height of the colormap is conjugately-matched power transfer efficiency. The non-diffractive range, ddiff ,
of the n2 = n4 = 4, 5, and 6 mode is included in green dash-dot lines. Four distances of interest have been highlighted (d =
30, 40, 50, and 60, mm). At each distance, a ’slice’ of the plot is shown in (b). These slices show the port-matched (|T0|

2 in

blue-dashes) and conjugately-matched (|T ′
0|

2
in a green line) power transfer efficiency over frequency calculated using the mode-

matching method. Efficiency data from COMSOL, η and ηmax, is overlaid in © and ∇, respectively. The plots demonstrate
close agreement between the two approaches.

1. Power Transfer

In the port-matched system, |T0|2 represents the ratio
of the power delivered to the load to the power available
from the source. This quantity is known as the trans-
ducer gain (GT ) of a two port network. Since the port-
matched source and load are matched for zero reflections,
GT = |S21|2 = |T0|2 [23].

Note that in the conjugately-matched system, the load
is modified to present a complex-conjugate match. The
source, however, is not modified. Therefore, the power
delivered to the input of the network and to the load are
defined as

PIN =
1

2Z0

(

1− |A′
0|

2
)

, (31)

PL =
|T ′

0|
2Z0

(

1− |ΓL,opt|2
)

, (32)

respectively. The conjugately-matched load reflection co-
efficient ΓL,opt is given by (29) for ZL = ZL,opt. Satisfy-
ing the condition for maximum power transfer, ΓL,opt =
Γ∗
out (the reflection coefficient looking into port 2). Since

the system is symmetric, Γout = Γin = A′
0, resulting in

A′
0 = Γ∗

L,opt and |A′
0| = |ΓL,opt|. Finally, the ratio of the

power dissipated in the load to the power delivered to

the input of the network is

GP =
PL

PIN

= |T ′
0|

(

1− |ΓL,opt|2
)

(

1− |A′
0|

2
) = |T ′

0| . (33)

This quantity is also known as the power gain (GP =
PL/PIN ) of a two port network [23, 24]. The power
gain is independent of the source impedance. To sum-
marize, the port-matched system efficiency is |T0|2, while
the conjugately-matched system efficiency is |T ′

0|
2
. Note

that the conjugately-matched system efficiency is inde-
pendent of the source impedance.
Next, the system S-parameters were extracted from

COMSOL over 8-12 GHz and for d = 0-70 mm. The
conjugately-matched power transfer efficiency was cal-
culated over this range using (A.3) and is displayed in
Fig. 6a. Using the mode-matching approach (detailed
in Section IIID), the conjugately-matched modal coef-

ficient vector A′ was computed. From it, |T ′
0|2 was ex-

tracted and is plotted against frequency for 4 separate
distances in Fig. 6b. This data is contrasted with |T0|2
(the port -matched case). The results from COMSOL are
also overlaid for comparison. The efficiency calculated
using the mode-matching approach agrees closely with
that computed using COMSOL.
The plots show definite peaks of high power transfer

efficiency within the non-diffractive range (ddiff) of each
Bessel mode. It is also clear that a complex-conjugate
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FIG. 7. Modal coefficients in two coupled Bessel beam launch-
ers at d = (a) 30 mm, (b) 40 mm, (c) 50 mm, and (d) 60 mm.

impedance-match increases power transfer performance.
Next, these traits are further explored in terms of the
discrete modes of the coupled launchers.

2. Discrete Waveguide Spectrum

The coefficients (En2
, Fn2

) describe (+/-) TMz modes
in Region II (first launcher), while coefficients (Kn4

,
Ln4

) describe (+/-) TMz modes in Region IV (sec-
ond launcher). Since the Bessel launchers are electri-
cally thin, the sum of the coefficients represents the ẑ-
directed total electric field strength in each waveguide
over the entire height, h. The quantities |En2

+ Fn2
| and

|Kn4
+ Ln4

| are plotted versus frequency in Fig. 7 at 4
distances of interest.

3. Analysis of a Conjugately-Matched System

Vector A′ provides the conjugately-matched modal co-
efficients: E′

n2
,F ′

n2
,K ′

n4
, and L′

n4
. These modified coef-

ficients are displayed as
∣

∣E′
n2

+ F ′
n2

∣

∣ and
∣

∣K ′
n4

+ L′
n4

∣

∣ in
Fig. 8. These values can be directly compared with Fig.
7, the port-matched system.
Firstly, within the non-diffracting range of each Bessel

beam, ddiff (see Fig 6), the corresponding mode in the
launcher is dominant. Additionally, many modes have
two maxima; an indication that the modes have split.
Mode splitting is a well-known property of coupled res-

0

0.005

0.01

0.015

0.02

0.025
Modes with Optimal Impedance Match

a) d = 30 mm

0

0.005

0.01

0.015

0.02

0.025

0.03

b) d = 40 mm

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

c) d = 50 mm

8 8.5 9 9.5 10 10.5 11 11.5 12
0

0.005

0.01

0.015

0.02

d) d = 60 mm

Frequency [GHz]

A
bs

ol
ut

e 
V

al
ue

s 
of

 M
od

al
 C

oe
ffi

ci
en

ts

 

 

Modes in Region II, |E
n2

 + F
n2

|:

Modes in Region IV, |K
n4

 + L
n4

|:

n
2
 = 3 n

2
 = 4 n

2
 = 5 n

2
 = 6

n
4
 = 3 n

4
 = 4 n

4
 = 5 n

4
 = 6

FIG. 8. Modal coefficients in two coupled Bessel beam launch-
ers at d = (a) 30 mm, (b) 40 mm, (c) 50 mm, and (d) 60 mm.
A conjugately-matched system is assumed.

onators, seen, for example, in near-field magnetic reso-
nant power transfer [16]. In order to distinguish the odd
and even modes, the phase of the ratio of the dominant
modal coefficients in the launchers is calculated:

ϕ =
En2

+ Fn2

Kn4
+ Ln4

, (34)

Relative Phase = tan−1

[ℑm (ϕ)

ℜe (ϕ)

]

. (35)

This relative phase determines whether a given peak rep-
resents an even or odd mode. When the relative phase
≈ 0o, the free-space electric field (EIII

z ) is even about the
xy-plane. Conversely, when the relative phase ≈ 180o,
EIII

z is odd about the xy-plane. This is shown graphi-
cally in Fig. 9 a, b. The polarity of each mode’s peak at
d = 30, 40, 50, and 60 mm is displayed in Table VII.

Another interesting facet arises in the conjugately-
matched system. The peak modal-strength in the re-

ceiving waveguide experiences an increase in magni-
tude over the port-matched system. In other words,
at resonance, a complex-conjugate impedance-match sig-
nificantly strengthens the fields received by the sec-
ondary launcher. Additionally, the frequencies of modal-
peak-enhancement correspond to frequencies of peak-
efficiency. This supports the conclusion that the Bessel
launchers are strongly coupled in the radiative near-field.
Furthermore, energy is transferred through free-space by
the Bessel modes supported by each launcher.
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FIG. 9. On the left, in (a) and (b), are renderings of two coupled Bessel launchers experiencing an (a) odd and (b) even mode.
In (c), the range of Fig. 6 from 9-11 GHz is displayed (the fifth Bessel mode). The green arrows highlight the efficiency maxima
representing the even and odd modes. Plots (d)-(e) demonstrate the even and odd mode free-space EIII

z characteristics at
power transfer efficiency local maxima. The field plots are normalized: |Ez/max(Ez)|, and the colorbar shows the normalized
field value. (*) There is no discernible 5th even-mode at d = 60 mm. Here, the even mode has degraded to a point that it does
not efficiently transfer power.

TABLE VII. Relative phase of modal coefficients (35) for local
maxima in power transfer efficiency.

Port-Matched System Conjugately-Matched System
(ZL = Z0) (ZL = ZL,opt)

Mode f Phase Even/ Mode f Phase Even/
(n) (GHz) (degrees) Odd (n) (GHz) (degrees) Odd

d = 30 mm
4 8.6 −4.8o E 4 8.47 −0.2o E
4 9.23 193o O 4 9.23 191.9o O
5 10.02 −5.2o E 5 9.99 −0.6o E
5 10.64 171.1o O 5 10.66 180.5o O
6 11.56 0.25o E 6 11.56 −0.7o E

d = 40 mm
4 8.47 1.63o E 4 8.41 0.17o E
4 8.86 164.4o O 4 8.88 178.2o O
5 9.96 15.5o E 5 10.04 13.85o E
5 10.27 146.4o O 5 10.37 178.5o O
6 11.46 17.87o E 6 11.47 10.61o E
6 - - O 6 11.93 178o O

d = 50 mm
4 8.25 4.01o E 4 8.23 2.34o E
4 8.69 170.9o O 4 8.71 179.2o O
5 10.15 173.9o O 5 10.22 176.7o O
6 11.65 170.4o O 6 11.8 181.8o O

d = 60 mm
4 8.57 177o O 4 8.56 177.1o O
5 10.05 190.7o O 5 10.1 181.9o O
6 11.54 197.4o O 6 11.59 202.6o O

4. Free Space Fields

Next, the characteristics of the free-space fields at a
mode are discussed. The free-space fields are plotted for

frequencies corresponding to the peaks of |T ′
0|2 in Fig. 6.

At these frequencies, the most power is transferred. Ez

in Region III is given by

EIII
z (ρ, z) = − j

ωε3

∞
∫

0

[

Q (kρ3
) e−jkz3(z+

d
2 )

+ P (kρ3
) ejkz3(z−

d
2 )
]

J0 (kρ3
ρ) k2ρ3

∂kρ3
. (36)

The even and odd n2 = n4 = 5 free-space fields are
plotted in Fig. 9 d, e, for a conjugately-matched system.
Note that as distance increases, the even mode field be-
comes more diffuse, whereas a sharp field pattern persists
for the odd-mode. Additionally, the odd-mode fields are
tightly constrained to the region between the two launch-
ers (ρ < c). Since the structures are lossless, it is clear
from Fig. 6 that the even modes radiate significantly
more power into free-space. This indicates that the odd
mode is a preferred choice for high-Q coupling. In fact,
the fields of an odd-mode appear as those in a waveguide,
but occur in free-space.
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F. Discussion

The coupling performance of two Bessel launchers was
reported. The two launchers demonstrate characteristics
of strongly coupled resonators. The modes of a launcher
in isolation are split into even and odd modes in the
coupled system (Fig. 8). By modifying the analysis
to consider a conjugately-matched system, the receiving
launcher’s field amplitudes were enhanced, resulting in
an increased efficiency (Fig. 6). Though it was shown
that both even and odd modes can transfer power, odd
modes are preferred due to the stronger field confinement
and the resulting higher efficiency.
At close distances (d < ddiff), the even and odd

n2 = n4 = 5 modes demonstrate marked free-space field
enhancement (see Fig. 9). However, the degradation of
the even mode becomes more apparent as d increases.
When d = 60 mm, the even mode fields become more
diffuse as the majority of power is radiated. What is
curious is that even for d > ddiff , the n = 5 odd mode
persists for some distance.
Also of note, despite being a radiative system, the

transmitting and receiving Bessel launchers are highly
coupled. Several electrical parameters of the transmit-
ting radiator depend on the receiving radiator. As the
receiver is perturbed, the input impedance of the trans-
mitter changes, as well as optimal load impedance. In
far-field wireless systems this is not the case since the
coupling coefficient between transmitting and receiving
radiators is low.
The radiation properties behind the even and odd

modes can be explained in terms of equivalent magnetic
currents. The +ẑ electric field near the lower launcher
can be represented by a +φ̂-directed magnetic current. In
an odd mode, the −ẑ fields near the upper launcher are

represented by a −φ̂ magnetic current. In the far-field,
these opposing sources destructively interfere, reducing
radiation losses. However, for an even mode, the electric
field maintains a +ẑ direction between the launchers, re-

inforcing the +φ̂-directed magnetic current and radiating
energy into free-space. This explains why the odd mode
provides higher field confinement and power transfer ef-
ficiency.

IV. CONCLUSION

In this work, a planar Bessel beam launcher at mi-
crowave frequencies was analyzed through Eigenmode ex-
pansion and mode matching analysis. Boundary condi-
tions were enforced on tangential field components and
simplified by power orthogonality relations. The numeri-
cal solution provides a modal breakdown of a coaxial-fed
Bessel beam launcher. It allows the input impedance and
discrete waveguide-modes to be plotted over frequency.
At the frequencies of resonance, the free-space fields were
plotted using the Hankel transform. The analysis showed
that a Bessel beam launcher operating at a resonant fre-

quency has one dominant waveguide mode that propa-
gates into free-space.

Further, the work was extended to analyze a wireless
link employing Bessel beams. A simultaneous complex
conjugate impedance-match was applied to two coupled
launchers. Waveguide mode coefficients were plotted
for each launcher, and the even and odd modes of the
coupled system were identified. Results show that the
conjugately-matched system experiences higher trans-
mission efficiency at the even or odd modes. Also, free-
space field plots showed that the conjugately-matched
system has a high degree of field confinement. In fact,
the field distribution appears as that within a waveguide,
despite operating in free-space. However, as the cou-
pling distance increases, the even modes are no longer
sustainable and radiate into free-space. In contrast, the
conjugately-matched odd modes have a comparatively
high degree of field containment. As a result, the odd
modes couple more efficiently as distance increases be-
tween two coupled Bessel launchers.

Single Bessel beam launchers have several potential ap-
plications. The structure used in this work can be mod-
ified to produce collimated Bessel beams [28]. Using a
layered metasurface, launchers have been used to develop
low-profile high-gain antennas [29]. Using a similar ap-
proach, tractor beams [30] have been realized for micro-
particle manipulation. Further, vector Bessel beams,
such as those reported here, have been shown to be self-
healing [31]. This can result in robust systems whose
main beam remains unperturbed outside the shadow re-
gion of obstacles. Coupled Bessel beam launchers also
have several potential applications. The high degree of
field confinement and coupling indicates applications in
power transfer and covert communication. Addition-
ally, free-space high Q resonators could be used in non-
destructive evaluation [32] to simplify material parameter
extraction [33].
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Appendix: Deriving ZL,opt from S-parameters

The reflected and incident waves of a 2-port system
(such as two coupled Bessel launchers as described in Sec-
tion III) are characterized by a 2×2 S-parameter matrix.
From this S-parameter matrix, the Z-parameters can
be computed [24]. A simultaneous complex-conjugate
impedance-match yields the following expressions for the
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optimal source and load impedances [25–27]:

ℜe [ZL] =

√

ℜe2 [Z22]−
ℑm2

[

Z12
2
]

4ℜe2 [Z11]
− ℜe [Z22]

ℜe [Z11]
ℜe

[

Z12
2
]

,

(A.1)

ℑm [ZL] =
ℑm

[

Z12
2
]

2ℜe [Z11]
−ℑm [Z22] , (A.2)

where (A.1) and (A.2) are the real and imaginary parts
of the optimal port impedance: ZL,opt = ℜe [ZL] +
jℑm [ZL].
If Port 2 is terminated in ZL,opt, then the load also

receives maximum power. From (A.1) and (A.2), the
conjugately-matched power transfer efficiency can be cal-
culated. It is defined as the ratio of the power delivered
to the load (PL) to the power available from the source
(PAV S) [27]:

ηmax =
PL

PAV S

=
|Z21|2

2ℜe [Z11] (ℜe [Z22] + ℜe [ZL,opt])−ℜe [Z2
21]
. (A.3)
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