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Abstract

The behavior of a nanoparticle in solution depends strongly on the particle’s physical and chemi-

cal characteristics, most notably the particle size and surface properties. Accurately characterizing

these properties is critical for quality control in a wide variety of industries. To understand a

complex and polydisperse nanoparticle suspension, however, ensemble averaging is not sufficient

and there is great need for direct measurements of size and surface properties at the individual

nanoparticle level. In this work, we present an analysis technique for simultaneous characterization

of particle-surface interactions and size using near-field light scattering and verify it using Brownian

dynamics simulations. Using a nanophotonic waveguide, single particles can be stably held near

the waveguide’s surface by strongly localized optical forces. By tracking the dynamic 3D motion

of the particle under the influence of these forces using an optical microscope, it is possible to ex-

tract the particle-surface interaction forces, as well as estimate the size and refractive index of the

nanoparticle. Due to the strong light scattering signal, this method is viable for high-throughput

characterization of particles as small as 100 nm in only a few seconds each.
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I. INTRODUCTION

Nanoparticles have attracted significant interest in recent years due to a host of unique

electronic, optical, and chemical properties [1–6]. These properties are governed largely by

surface effects and are highly dependent on the particles size and surface area [7–10]. In

many applications, the diameter of the particles used can have a dramatic effect on the

particle’s functionalityfor instance, whether the particles effectively screen out UV radia-

tion [11], exhibit dangerous cytotoxicity in the body [7], or reliably pass through cell walls

to enable targeted therapeutics [12]. It is critical therefore to determine the nanoparticle

size distribution to ensure the safety and effectiveness of these engineered suspensions. This

is especially difficult for heterogeneous suspensions where traditional sizing methods such as

dynamic light scattering will average out a lot of the inherent polydispersity and can lead

to misleading conclusions [13].

To address this, a number of new experimental techniques developed that focus on build-

ing up size distributions by measuring individual nanoparticles rather than a population

averaged value [13]. These techniques, including single-particle tracking [14], have been used

successfully to size a variety of metallic, dielectric, and biological nanoparticles [4, 15–18].

While single-particle size analysis is essential for understanding nanoparticle behavior, it

does not tell the complete story. The interactions between nanoparticles and interfaces, for

example, are highly dependent on the particles surface properties which can be difficult to

predict from first principles [8, 12, 19]. There are techniques which have been developed to

directly measure the interactions of particles with surfaces, including a technique we have

developed called Nanophotonic Force Microscopy (NFM) [20, 21]. This method offers very

high resolution information on particle-surface interaction forces, but no information on the

size of each particle.

For many applications, one would expect coupling between a particle’s size and surface

propertiesfor instance, when evaluating the long-term stability of a particle with an en-

gineered surface coating [12]. In these situations, it would be highly desirable to have a

technique capable of measuring both the size and surface properties of the same individual

nanoparticle simultaneously. In this work, we develop a new single-particle tracking tech-

nique which is compatible with our previous nanophotonic force microscopy technique for

force spectroscopy.
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Single-particle tracking analysis relies on scattered light from particles which are freely

diffusing in bulk solution. This allows for particle sizing, but not probing the forces on the

particles in solution. Conversely, in NFM, the particles are held close to the surface by

optical forces to allow for surface interaction measurements, and the particles are not freely

diffusing. Using analytic theory and Brownian dynamics simulations, we will show that is

still possible to extract the radius of a trapped nanoparticle by analyzing the particle’s 3D

motion on very short time scales with a high-speed camera. We will also demonstrate how

the applied optical forces can be used to differentiate particles of the same size by their

refractive index. Using simulations, we show that reasonable sizing accuracies (<10% error)

can be achieved with a low-cost industrial camera and with as little as one second of video

data per particle. This method is fully compatible with our previous NFM technique and

both analyses can be run on the same video.

A. Single-particle Tracking Analysis

Prior to introducing our new methodology, we will review the method of diffusive sizing

by single-particle tracking analysis (SPT). SPT is an optical analysis technique which works

by tracking the Brownian motion of individual nanoparticles using light scattering [13].

Briefly, a laser is focused into a flow cell containing the nanoparticle suspension using a

glass prism. The laser light scatters off the nanoparticles in the solution, and the scattered

light from each particle is collected above the flow cell onto a CCD detector. The position

of each particle in each frame can be determined with subpixel resolution using a particle

localization algorithm. The motion of the particle can then be tracked frame-by-frame as the

particle undergoes Brownian motion in order to find the mean-squared displacement [14]. For

free (2D) diffusion, the mean-squared displacement is linearly proportional to the particle’s

hydrodynamic diffusion coefficient, D, by

MSD(r, t) = 2D∆t (1)

where ∆t is the elapsed time since the start of tracking. Using the Stokes-Einstein

relation [22], this diffusion coefficient can be related to the particle’s radius:
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D =
kBT

6πηR
(2)

B. Nanophotonic Force Microscopy

The NFM technique works by pulling nanoparticles towards a waveguide surface using

an attractive optical gradient force [20, 21]. The attractive optical gradient force is counter-

balanced by surface forces (such as repulsive electrostatic forces, hydrophobic interactions,

and steric hindrances) and the particle undergoes confined Brownian motion around a stable

equilibrium height. Within the evanescent field of the waveguide, the optical intensity de-

cays exponentially with height. As the particle fluctuates in height, it will scatter less light

when farther from the surface and more light when nearer to the surface. Since the decay

constant of the light intensity is known, the changes in intensity can be transformed into

changes in height. If the light scattered by the particle is recorded over time, an equilibrium

distribution of the heights can be found, and the potential well of the particle-surface inter-

action can be calculated using Boltzmann statistics. After the optical gradient component to

the potential well is subtracted, a force-distance curve resulting from the surface force alone

can be found. A schematic overview of this experimental procedure is shown in Fig. 1a-b.

Readers interested in further details are referred to our previous publications [20, 21].

II. 3D NFM THEORY

Here, we describe a hybrid technique which combines NFM with a modified single-particle

sizing method that accounts for the applied optical forces and surface effects. For this

method, a nanoparticle is trapped within the evanescent field of the optical waveguide

(Fig. 1a). The particle’s position is then tracked in 3D space motion along the z-axis is

determined by integrating the scattered intensity (as in NFM) and motion in the x-y plane

is determined by subpixel localization (as in SPT). The z motion can be used to find the

force-distance curve, and the x-y motion can be used to find the particle size using a modified

single-particle tracking analysis. This x-y motion is more complicated than the free diffusion

case due to two major factors: (1) the influence of optical forces on the diffusive motion

and (2) an anisotropic hindering of the diffusion coefficient near the surface. If these two
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effects can be accounted for, however, it is possible to use these complications to determine

not only the particle size but also the refractive index. We will address the modifications

necessary for both of these effects now.

A. Diffusion with optical forces

To combine the two measurement techniques, we must first consider the functional form

of the optical forces resulting from the optical waveguide. A Rayleigh particle in the non-

uniform evanescent field will experience four distinct forces: (a) an optical scattering force,

proportional to the intensity of the light field and the particle’s dielectric constant, (b) an

optical absorption force due to momentum transfer by absorbing the incident light, (c) an

attractive optical gradient force proportional to the gradient in intensity, and (d) a size- and

height-dependent hydrodynamic drag force [23]. The magnitude of these forces is given by

Fscat =
8π3I0α

2εm
3cλ4

(3a)

Fabs =
2πεmI0
cλ

Im(α) (3b)

Fgrad =
2π∇I0α

c
(3c)

Fdrag = 6πηRU0 (3d)

where I0 is the optical intensity at the particle’s position, and α is the optical polariz-

ability, given by

α = 4π

(
εp − εm
εp + 2εm

)
R3 (4)

where εp and εm are the permittivities of the particle and the medium, respectively [23].

A diagram of the relevant optical forces along all three dimensions, as well as the coordi-

nate system used for the rest of the discussion, is shown in Fig. 1a. Although the optical force

field is three-dimensional, it is useful to consider the projections along dimension separately

for clarity.

Along the x-direction, the particle is propelled at terminal velocity by the balance of the

optical scattering force and the Stokes drag force [24]. This motion is not used for sizing the

particle, but it does rapidly push particles in a line through the field of view of the camera.
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FIG. 1. Overview of the 3D Nanophotonic Force Microscopy (3D NFM) technique. a) Free body

diagram of the optical and non-optical forces which act on the nanoparticle captured in the evanes-

cent field of a 1D nanophotonic waveguide. As the particle moves within the exponentially-decaying

field, it scatters light which is detected by an industrial CMOS camera above. The inset coordinate

system will be used for the rest of this work. b) In the z direction (perpendicular to the waveg-

uide surface), the particle fluctuates in a potential well created by attractive optical and repulsive

surface forces. The magnitude of the surface forces can be found by tracking the height-dependent

scattering intensity over time, finding the combined potential well, and subtracting the optical

contribution. c) Along the y direction, the particle fluctuates stochastically in a harmonic poten-

tial due to confined Brownian motion. The x-y position of the particle is found by localizing the

centroid of the light scattering pattern, and the y position is tracked over time. The motion over

short time intervals is used to extract a diffusion coefficient and eventually the particle size.

The optical gradient force along the z-direction can be used to balance the repulsive

surface forces, exactly the same as in 1D NFM. The histogram of sampled heights can then

be used to find the force-distance curve of the particle-surface interaction (Fig. 1b).

In additional to the downward optical gradient force used for the NFM measurement,

however, there is also a component of the optical gradient force in-plane which points towards

the center of the waveguide. Along the y-axis, this gradient force acts as a harmonic optical

restoring force which is counterbalanced by Brownian fluctuations. The probability density

function of the nanoparticle position over time is governed by the Smoluchowski equation

for a harmonic biasing force [25]:
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∂

∂t
P (y, t|y0, t0) = D

(
∂2

∂y2
+
ktrap
kBT

∂

∂y
y

)
P (y, t|y0, t0) (5)

where D is the diffusion coefficient and ktrap is the spring constant of the effective har-

monic potential.

Following the results of Lindner et al. for tethered Brownian motion [25], the solution to

this partial differential equation is a Gaussian function with a variance that grows over time

and depends on both ktrap and D:

σ2(∆t) =
kBT

ktrap

[
1− exp

(
−2(ktrapD)∆t

kBT

)]
(6)

Both ktrap and D will vary with the size of the particle. ktrap also depends on additional

parameters, such as the optical intensity and the refractive index of the nanoparticle ma-

terial. Since these parameters are not always known a priori, it is desirable for sizing to

decouple these effects and find only the diffusion coefficient. This can be accomplished by

observing the particle motion for very short time lags where the particle has not yet been

significantly influenced by the restoring force. Taking a first-order Taylor approximation of

Eq. 6, we find that

σ2(∆t) ≈ kBT

ktrap

[
2ktrapD∆t

kBT

]
≈ 2D∆t (7)

for short time lags. In this limit, the variance of the displacement is linearly proportional

to the lag between measurements. With a sufficiently fast frame rate, therefore, it is possible

to determine an effective diffusion coefficient by fitting a line through the first three frame

lags and finding the slope (Fig. 1c).

B. Brownian dynamics simulations

In conventional single-particle tracking analysis, the particle undergoes free Brownian

motion in two dimensions [22]. Under these conditions, the accuracy of the reconstruction

does not depend on the position sampling rate and an accurate diffusion coefficient can be

found by tracking a single particle for relatively long times at a relatively low frame rate

(e.g. recording for 60 s with a 30 FPS CCD detector) [15]. As seen in Eq. 6, however, there

is an explicit time dependence when the particle is held within the evanescent field. If the
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sampling rate is too low, the observed dynamics will be a combination of motion due to

diffusion and motion due to the optical restoring force which would be difficult to decouple.

As a result, our modified 3D NFM technique must operate at significantly higher frame rates

than the traditional configuration allows.

To evaluate the viability of SPT for nanoparticle sizing with optical forces, we performed

a series of 1D Brownian dynamics simulations at a sampling rate of 5000 FPS. This frame

rate is achievable with many industrial CMOS cameras which is critical for a low-cost,

high-throughput analysis method [26].

A representative Brownian dynamics simulation of an R=150 nm particle is shown in

Fig. 2. Fig. 2a shows a one second generated Brownian trajectory of motion within the

harmonic potential along the y axis, sampled at 5000 FPS. Starting from each frame, the

displacement of the particle after n=1,2,3 frames are calculated. These displacements will

be normally distributed, and the variance of that distribution can be plotted as a function of

time lag, as suggested by Eq. 6. As seen in Fig. 2b and c, the chosen sampling rate of 5000

FPS is fast enough that the variance grows linearly in time, corresponding to the diffusive

regime. A line is then fit to the first three points of the variance curve, the slope of which

is twice the effective diffusion coefficient.

For this representative particle, we extract a diffusion coefficient of 0.69 µm2/s from a

ground truth value of 0.73 µm2/s for a 5.5 % deviation. This error could be reduced by

increasing the frame rate further or taking data for a longer interval, but 5000 FPS for one

second gives a conservative estimate of what is possible in a realistic experiment. Note that

if the frame lag is too long (e.g., even 5-10 ms), a linear fit to the remaining data in Fig. 2b

will greatly underestimate the diffusion coefficient and the analysis technique will not be

reliable.

C. Diffusion near the surface

Due to the close proximity of the nanoparticle to the waveguide surface, the inverse

relationship between R and D predicted by the Stokes-Einstein relation does not hold [27–

29]. Instead, it is well-known that the diffusion coefficient very near to a wall is hindered by

hydrodynamic effects, and the effective diffusion coefficient of the particle is both anisotropic

and height-dependent. Along the y direction, this hindered diffusion coefficient is given by
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FIG. 2. Brownian dynamics simulation to demonstrate the hydrodynamic diffusion analysis tech-

nique. a) The 1D Brownian trajectory of a nanoparticle with radius 150 nm in the harmonic

potential 20 nm above the optical waveguide. To approximate a reasonable experimental imple-

mentation, the particle is sampled at 5000 FPS for one second. b) The variance of the particle

motion as a function of time lags between frames. In the short time lag limit, the motion can

be approximated as purely diffusive and the variance will be linear in time. c) A linear fit to the

first three time lags (i.e., the displacement after 1 frame, 2 frames, and 3 frames) to determine an

effective diffusion coefficient.

Faxen’s law:

βy(z) = 1− 9

16

(
1 +

z

R

)−1

+
1

8

(
1 +

z

R

)−3

− 45

256

(
1 +

z

R

)−4

− 1

16

(
1 +

z

R

)−5

(8)

Dy(z) = βy(z)Dbulk (9)

where z is the height of the bottom of the particle above the surface, R is the radius

of the particle, and Dbulk is the ordinary Stokes-Einstein diffusion coefficient far from the

wall [27]. This function is plotted as a function of height for three particle sizes in Fig. 3a.
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This relationship has been verified experimentally using a variety of measurement tech-

niques [27–29]. In general, the hindered diffusion coefficient is a nonlinear function of the

height of the particle above the waveguide surface as well as the particle’s radius. For a

particle of an unknown radius at an unknown height, therefore, it is not possible to uniquely

determine the size directly from the diffusion coefficient. If the distance from the bottom of

the particle to the waveguide is known, however, this expression can replace Stokes-Einstein

to relate the effective diffusion coefficient directly to the particle’s radius, achieving the same

simplicity as the free diffusion analysis used in SPT.

Fig. 3b shows the diffusion coefficient as a function of size as predicted by Faxen’s law. For

a given height (defined as the distance between the bottom of the particle and the waveguide

surface), the measured diffusion coefficient is sufficient to extract the particle radius. If the

height is completely unknown, however, there is not a one-to-one relationship; a 50 nm

particle at the surface, for example, will diffuse similarly to a 150 nm that is 100 nm away.

In Fig. 3c, Brownian dynamics simulations were performed to confirm that nanoparticles

with radii from 50 to 300 nm are distinguishable from their measured diffusion coefficients.

For each size, 100 particles were simulated for one second each using the predicted diffusion

coefficient at a fixed height of 20 nm, and the diffusion coefficients were extracted using the

method outlined in Fig. 2. As seen from the simulation results, the stochastic nature of the

Brownian dynamics simulations adds some uncertainty to the measured diffusion coefficient;

nevertheless, one second of data at 5000 FPS is sufficient to recover the input diffusion

coefficients and separate the particles by radius.

D. Manipulating the particle height

In the previous analysis, it was shown that the particle size can be determined from the

measured diffusion coefficient as long as the height above the surface is known. While vari-

ations in height are relatively easy to determine, absolute height is more difficult. Although

the amount of light scattered by the particle varies exponentially with height, the absolute

height above the surface cannot be calculated without knowing the optical intensity at the

waveguide surface. In total internal reflection microscopy, this is often accomplished by

increasing the salt concentration irreversibly sticking the particles to the surface at the end

of an experiment [28]. This is not compatible with high throughput analysis, as it would
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FIG. 3. Particle size estimation incorporating hindered diffusion theory. a) The hindered diffusion

coefficient for nanoparticles of a given size above the surface, according to Faxen’s law. The degree

of hindering depends on both the size of the particle and height above the surface. b) If the height

above the surface is known, the particle radius can be uniquely determined from the measured

diffusion coefficient. c) Measured diffusion coefficients for N=100 simulated particles at each size

using the short time lag diffusion method outlined in Fig. 2. The equilibrium height is 20 nm above

the waveguide surface. d) The error in measured radius for particles which are considered to be

on the surface but are actually at a height h above the surface. As the height above the surface

increases to 20 nm, the radius is systematically underestimated, but by less than 50 nm. N=10

particles per size. Error bars represent one standard deviation. h=0 is defined as direct contact

between the waveguide surface and the bottom of the nanoparticle.

contaminate the surface of the chip and prevent further particles from being analyzed.

For our waveguide-based light scattering technique, however, the equilibrium height above

the surface is not fixed, but depends on the balance of optical and surface forces. The

magnitude of the optical force can be tuned by varying the input optical power in the

waveguide. By increasing the input power enough, a nanoparticle in the evanescent field of
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the waveguide can be driven into contact or near-contact with the waveguide surface. In

this regime where h/R → 0 , the hindered diffusion coefficient parallel to the waveguide

converges towards a common value of 0.324 for all values of R. Incorporating Eq. 9, this

yields a simple inverse relationship between the measured diffusion coefficient from the linear

fit and the particle’s radius

R ≈ 0.324

(
kBT

6πηDmeasured

)
(10)

For an appropriately tuned optical power, it is possible to estimate the size of each

particle as well as measure the particle-surface interaction potential very near to the wall.

The systematic error in the calculated radius will depend on how close the nanoparticle can

be brought to the wall without sticking irreversibly. Fig. 3d shows a size analysis of simulated

particles of different nominal sizes. For each size, the approximation that the particle is very

near to the surface is used, and the actual height above the surface is increased to test the

error in the final value as a result of that assumption. As the height above the surface

increases, the size of the particle is systematically underestimated, but remains within 50

nm of the nominal radius for a gap height of 20 nm. The effect of this systematic bias is

most significant for the smallest particles, but can be diminished by increasing the optical

power to shift the equilibrium height closer to the surface.

E. Refining the size estimate

For applications where only coarse binning by size is needed, the approximation in Eq. 10

may be sufficient. For higher precision, however, additional techniques may be employed.

From the exponential decay of the evanescent field, we know that the ratio of the scattered

intensity at any two points can be used to find the distance between them:

∆z = −d ∗ ln
(
I(z2)

I(z1)

)
(11)

The small but measurable changes in height about an equilibrium position zeq form the

basis of the NFM force spectroscopy technique [21]. If the optical power into the waveguide

is cycled periodically, however, the particle will jump between multiple equilibrium posi-

tions, zeq,1, zeq,2, . . . zeq,n. Due to hindered diffusion, the effective diffusion coefficient for the
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particle at each height will depend nonlinearly on the height and particle size. By sequen-

tially recording the motion of a single particle about N equilibrium positions, therefore, it

is possible to derive a nonlinear system of equations

Dmeasured,i = βy,iDbulk =

[
1− 9

16

(
1 +

zi
R

)−1

+
1

8

(
1 +

zi
R

)−3

− 45

256

(
1 +

zi
R

)−4

− 1

16

(
1 +

zi
R

)−5
]

6πηR

kBT
(12)

zj = zi + ∆zij (13)

The difference between the equilibrium heights ∆zij can be found from the ratio of the

power normalized intensities by

∆zij = −d ∗ ln
(
I(zi)/〈Pi〉
I(zj)/〈Pj〉

)
(14)

where Pi is the optical input power for the ith equilibrium height. Although this system

of equations does not have a generalized analytic solution, the radius and heights can still be

found numerically with a nonlinear optimization scheme to improve the accuracy of the initial

guess for R based on the coarser model. Ideally, many heights would be used to maximize

the fitting accuracy, but the accuracy of both the diffusion and force information at each

height will decrease if the observation time is too low. Using the waveguide architecture from

our previous work, we found that particles were observable for an average of 3-5 seconds

each and require 3000 frames for accurate statistics [20]. Coupled with the sampling rate

of 5000 FPS, this would allow for at least 5 powers to be sampled with the minimum 3000

frames at each height. Fig. 4a and 4b show the results of a simulation where a single 150

nm and 300 nm particle are sampled at 5 different heights for one second each, respectively.

For the 300 nm particle, the closest gap distance between the particle and the surface was

set to 25 nm. A minimum gap height of 29 nm and a measured radius of 317 nm were

obtained from a nonlinear least squares fit to the five effective diffusion coefficients for a

5% error in the estimated size. If the camera frame rate were higher, more powers could

be sampled that meet the 3000 frame threshold and the accuracy of this size estimation

could be further improved. NFM analysis of the multiple powers data would also yield a

separate potential well centered around each height. The resulting potential wells could

then be stitched together to give a fuller picture of the surface forces up to 150 nm above

the waveguide surface.
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FIG. 4. Refining the particle size estimate. Representative simulation of (a) an R=150 nm particle

and (b) an R=300 nm particle measured at 5 different heights for one second each. Using the

measured diffusion coefficients and the relative displacements between the heights, the radius and

the absolute height are estimated through a nonlinear least squares fit. The relative error in the

size estimate decreases for larger particles, as the hindered diffusion coefficient is less sensitive to

small fluctuations in height.

F. Optical and material characterization

Using the diffusive analysis technique from the previous section, it is possible to determine

the hydrodynamic size of individual nanoparticles because the dynamics of the particle at

sufficiently short time lags do not depend on the magnitude of the optical forces. For

unknown samples, the optical properties of the particles, e.g. the refractive index, do not

need to be known a priori in order to determine the size. Nevertheless, the optical properties

of the particles are often critically important and can, for instance, help to differentiate

subpopulations which are similar in size but composed of different materials. Taking Eq. 6

and looking only in the long time limit, we find that the variance depends only on the trap

stiffness

σ2(∆t→∞) =
kBT

ktrap
(15)

matching the predictions of the equipartition theorem. This trap stiffness can then be

compared with the analytic expression for the optical gradient force along the y-axis:
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Fgrad,y =

(
2π

c
∇I

)
α = ktrapy (16)

where is the optical polarizability of the particle, as defined in Eq. 4. The polarizability

of a single nanoparticle can then be found either by calculating the pre-factor in Eq. 16, or

by normalization between multiple particles [30]

ktrap,j
ktrap,i

=
σ2
y,i

σ2
y,j

=
αj

αi

(17)

Since R can be found through the non-optical diffusive characterization from the previous

section, this allows direct comparison of the refractive indices of the particles. This is

especially useful for distinguishing metallic and dielectric nanoparticles of similar sizes, as

the difference in optical polarizability can be several orders of magnitude [31].

Fig. 5 shows a representative simulation which demonstrates the decoupling of size and

optical properties for particles with two different polarizabilities. For this demonstration,

two particles are simulated at the same height, one with a polarizability α and one with a

polarizability 4α. Fig. 5a shows the histogram of particle positions in the long-time limit

after the particle has reached equilibrium due to the optical gradient forces. In this regime,

the measured variance in the particle position is inversely proportional to the polarizability

and independent of the diffusion coefficient, as predicted by Eq. 17. In Fig. 5b, the same

two simulated particles are analyzed for only the short time lags, as in Fig. 2. In this limit,

the extracted diffusion coefficients are comparable despite the stark difference in polariz-

ability. By analyzing the same raw particle trajectory in the two regimes, it is possible to

independently measure both ktrap and D. For a heterogeneous sample, this can be used to

distinguish subpopulations of particles that are similar in size but not in refractive index.

This could be useful in screening out unwanted contaminants in the solution, such as dust

particles or oil droplets, which could otherwise affect the size distribution accuracy.

III. EXPERIMENTAL VERIFICATION

To demonstrate that the proposed sizing method is indeed viable for high-throughput

industrial use, we performed an experiment using a low-cost industrial CMOS camera

(aCA2000-165um, Basler AG) and a commercially-available optofluidic waveguide chip
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FIG. 5. Separation of particles with different optical polarizabilities. a) Determination of the trap

stiffness through long-time equilibrium data of two simulated particles sampled at 5000 FPS for

one second. The optical trap stiffness (proportional to the variance) is 4 times larger for the red

particle than the blue one. b) Hydrodynamic sizing analysis for the same two particles using short

time lag diffusion. Although the difference in polarizability is clear from the long-time data, the

short-time diffusion is independent of the magnitude of the optical force and the measured diffusion

(and radius) is similar for both particles.

(Optofluidics, Inc.). For this experiment, we optically trapped an R=150 nm NIST trace-

able polystyrene bead over the surface of an optical waveguide and recorded the scattered

light intensity using a 20x objective on an optical microscope at 3000 frames per second.

The radius of 150 nm was selected to match as closely as possible the simulations in Fig. 2.

The position of the trapped particle was then tracked in two dimensions using the MOSAIC

ParticleTracker plugin for ImageJ [32].

Fig. 6a shows a still image of the light scattered by the particle during the experiment.The

red circle shows the position of the particle as determined by the spot tracking algorithm.

Fig. 6b shows the trajectory of the particle over 3 seconds (or, equivalently, 9000 frames).

The motion of the particle along the two tracked dimensions agrees well with the predictions

of both the analytic theory and the Brownian dynamics simulations. Along the x-direction,

the particle is pushed at a terminal velocity by the balance of the optical scattering force

(Eq. 3a) and the Stokes drag (Eq. 3d), as expected. Along the y-direction, the particle fluc-

tuates about the center of the waveguide, consistent with the Brownian dynamics trajectory

generated in Fig. 2a. The variance of the displacement was then calculated as a function
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FIG. 6. Dynamic analysis of a trapped R=150 nm polystyrene bead. a) A still image of the scat-

tered light signal from the trapped particle. The red circle shows the particle location determined

by the spot tracking algorithm. b) The 2D trajectory of the particle, captured at 3000 FPS for

3 seconds. The x and y axes are as defined in Fig. 1. b) The variance of the particle motion

along the y axis as a function of time lag, averaged over the full 3 second trajectory. The effective

diffusion coefficient is calculated from a linear fit to the first three points, following the analysis of

the simulations in Fig. 2.

of the time lag between frames and a linear fit was performed to the first three frame lags

(∆t = 1/3000, 2/3000, 3/3000). Using Eq. 7, we can then calculate an effective diffusion

coefficient of 0.52 µm2/s (Fig. 6c).

If we assume the optical power is sufficiently high that the particle is just above the

waveguide surface, we can now apply the result of Eq. 10 to estimate the particle size. For

this experiment, this approximation works very well and a more refined estimate is not

necessary; a measured diffusion coefficient of 0.52 µm2/s corresponds to a particle with

radius of 151 nm, less than a 1% deviation from the value of 150 nm quoted by NIST.

For this particle, a full three seconds of data was used to determine the size. The Brow-

nian diffusion along the y-direction is inherently stochastic; as such, there will always be

variance in the measured diffusion coefficient, and this variance will depend strongly on the

number of frames captured. It is worth investigating, therefore, how well the analysis tech-
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FIG. 7. Convergence of the measured radius over time. a) The diffusion coefficient is determined

by analyzing a subsection of the tracked particle trajectory to determine the length of time required

for an accurate value. For short trajectories, the diffusion coefficient is significantly overestimated,

but rapidly approaches a final constant value for tracks longer than 1 second. b) The radius

calculated from the measured diffusion coefficient using Eq. 10. The measured radius shows very

good agreement with the nominal radius quoted by the manufacturer (R=150 nm, shown with the

dotted line) for times greater than 1 second.

nique works for shorter trajectories. In Fig. 7, we calculate the effective diffusion and radius

of the particle for subsets of the full three second video to see the influence of the video

length on the final accuracy. For very short trajectories, we see a significant overestimation

of the diffusion coefficient (or equivalently, underestimation of the radius.) After one second

of data, however, the measured radius is within 10% of the nominal value. For a coarser

estimate of size, therefore, it may be possible to characterize a particle in just one second,

or 3000 frames of video data. In our previous work, we demonstrated that 3000 frames

of data is also sufficient to obtain accurate interaction force measurements, meaning that

simultanous measurements of force and size could be achievable in one second with reason-

able accuracy. In practice, most dielectric particles remain within the field of view for 3-5

seconds allowing for better convergence and more accurate results [20]. For a concentrated

particle solution under ideal conditions, this allows for potential single-particle analysis of

around one thousand particles an hour.

For the experimental data here, we have considered only the accuracy of measuring a

single particle. For very polydisperse samples, however, the reality is slightly more com-
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plicated. As discussed previously, the optical gradient force is size dependent (R3); at a

given optical power, larger particles will be held more easily than smaller ones. This in

general would lead to a bias in the measured particle distribution, where large particles are

overrepresented and small particles are underrepresented.

In the absence of surface forces, this bias can be quantified straightforwardly; a 400 nm

particle, for instance, experiences an attractive optical force which is roughly 70% that of a

450 nm particle. The bias is more complicated near the waveguide surface, however, because

both the optical gradient forces and the repulsive surface forces increase as the height above

the surface decreases. At a higher optical power, both the larger and smaller particles can

be stably held, but will be held at different equilibrium heights. In a high-salt environment

with a Debye length of 20 nm, for example, a 7 nm difference in equilibrium height is enough

to compensate for the same 30% decrease in optical force strength. Since this effect depends

on the magnitude and height-dependence of the surface forces (which are unknown a priori),

it cannot be easily estimated from first principles. Because there is simultaneous analysis

along multiple axes, however, it should be possible to combine force and size data after

an experiment to estimate the degree of bias in the measurement and make appropriate

corrections. It would also be possible to directly measure particles at different heights using

the multiple powers analysis shown in Fig. 4. We hope to investigate this effect in the future

by performing experiments with known polydisperse samples, but that is outside the scope

of the current work.

While techniques exist to measure both the size and particle-surface interaction potentials

of nanoscale particles, there are no existing techniques which can do both simultaneously

at high throughput. In this work, we have described an extension to our previous force

spectroscopy method which uses the dynamics of a particle within an evanescent field to

probe its size, forces, and optical properties. Using a combination of analytic theory and

Brownian dynamics simulations, we have outlined the procedure for applying this technique

and have investigated the particle sizing accuracy for single particle trajectories. We have

also demonstrated the viability of the analysis technique using experimental data gathered

under practically realizable conditions, finding very good agreement with the simulated

results with only 3 seconds of video data. We believe this technique could be used to process

hundreds of particles per hour using a commercial CMOS camera, making it especially viable

for rapid quality control of nanoparticle suspensions.
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