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Abstract

An imaging method based on object motion with structured light illumination and far-field

measurement data that results in far-subwavelength image information is proposed. Simulations

with realistic noisy data show that this approach will lead to the ability to distinguish object

features on the nanometer scale using visible light, without the need for fluorophores. The principle

is that far-field measurements with controlled motion in a spatially varying incident field add

information about nanometer-scale dimensions and material properties.
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I. INTRODUCTION

For a very long time it has been accepted that the resolution of any far-field imaging

system is fundamentally limited by the wavelength of the radiation and the refractive index of

the optics used. For a large numerical aperture lens, this results in a resolution proportional

to λ0/(2n), where λ0 is the free space wavelength and n is the refractive index. The restriction

of the maximum achievable resolution to about one half of a wavelength, known as the (Abbe)

diffraction limit [1], has driven the use of shorter wavelengths for lithography and optical

data storage, as well as optics with larger background refractive index (immersion optics)

in order to obtain improved resolution. However, in applications there are practical limits

to how short the wavelength can become, motivating efforts to circumvent the link between

wavelength and resolution.

The mathematical picture for the diffraction limit comes from a plane wave field expan-

sion in the near-field and the removal of the evanescent fields, which are below the noise

floor of a detector in the far-field where most optical systems operate. Use of near-field

scanning methods allow measurement of the evanescent fields, but such approaches may not

be practical in applications. Structured illumination and the Moiré effect provide a means

to determine object information in the far-field with an improvement in resolution of up to

a factor of two [2, 3]. Also, quantum imaging using a Hanbury Brown-Twiss scheme allows

the Abbe limit to be overcome when imaging equi-distant sources [4, 5].

Subwavelength spatial resolution has been achieved using fluorescence microscopy [6–8].

In stimulated emission depletion (STED) microscopy, a patterned beam (such as a donut

shape) is scanned along with the excitation beam, and all photoexcited fluorophores are

driven to a dark state except those near the center of the point spread function. The

spatial resolution is thus defined by the depleting beam, and a lateral resolution of λ0/45

and a longitudinal resolution of about three times this have been shown [7, 9, 10]. This

approach was limited by the need for reversible photophysical behavior of the fluorophore. In

photoactivated localization microscopy (PALM) [8], and in stochastic optical reconstruction

microscopy (STORM) [11], a subset of molecules are activated, and it is assumed that the

distance between any two of these emitters is greater than λ0/(2n). The emitter can then

be localized to a precision limited by the determination of the emission peak in space at

the detector. Three-dimensional imaging has been facilitated by design of the point spread
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function of the imaging system [12, 13]. While used with great success, these forms of

microscopy are limited by the need to introduce (sometimes specific) fluorescent molecules

or nanoparticles, a situation that may not always be possible in practice.

Another approach to increase resolution is to modify the lens design so that informa-

tion about the subwavelength features, contained in the evanescent fields, is retained. The

ideal negative refractive index lens can in principle retain all evanescent field information

[14, 15], but without magnification. However, loss and mismatched material parameters

have a dramatic impact on the evanescent field transfer function and hence the attainable

resolution [16–18]. While a recent operating arrangement of the material parameters offers

promise [19], foreseeable offset distances remain small. Layered materials having alternating

regions of metal and dielectric, can yield a homogenized material response with hyperbolic

dispersion that allows the transfer of TM-polarized evanescent fields across the material [20–

23]. The evanescent fields of course decay quickly either side of the material, again limiting

the offset distance. By introducing curvature into the lens, subwavelength features can be

imaged to the far-field [24, 25], and a design space exists for applications [26, 27]. A TM

surface standing wave at a metal-insulator interface (a surface plasmon standing wave) has

been proposed for enhanced resolution with structured illumination [28]. Use of structured

illumination in a hyperbolic material, with a resolution related to the spatial variation of

the illumination field, has also been suggested [29]. Both of these approaches rely on the

object being in close proximity to the surface/material.

We present a new approach for retrieving subwavelength object information that does

not use special lens materials and requires neither the introduction of a fluorophore nor the

assumption of spatially disparate elements - separated by more than λ0/(2n). By employing

a structured incident field and then performing a set of far-field measurements using detector

arrays as a function of scanned object position, we show using simulated noisy data that

λ0/100 resolution can readily be achieved with substantial detector noise. This is possible

because of the additional information on the object’s location in a structured field that varies

on the wavelength scale, achievable in an experiment with an available source, positioner

and photodetector. Unlike near-field scanning methods that access small collection volumes

and are restricted to surface information, our approach of scanning the object position with

far-field measurements allows scattered light from the whole object to be measured at each

of the object positions.
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II. ILLUSTRATING CONCEPT

We consider a 2D simulation geometry where two small square scatterers (with dielectric

constant ǫr = 1.5) are moved around in a free space background, as shown in Fig. 1(a).

The numerical finite element method (FEM - COMSOL) simulation used an incident field

wavelength of λ = 1 µm, but the problem is scalable, and all data as a function of spatial

coordinates are presented in terms of wavelength. The size of the free space background is

6λ by 6λ, and it is surrounded by 2λ-thick perfectly matched layers (PML) on all sides to

simulate unbounded space. The square scatterers are of dimension 0.05λ, and their edge-

to-edge separation is denoted by D, as shown in Fig. 1(b). The two scatterers with fixed

relative positions are scanned in both the x̂- and ŷ-directions with a step size of 0.1λ over

a region of λ by λ (denoted by the blue square in the center of Fig. 1(a)).

We use two illumination schemes. The first (PW) is a single plane wave with E in

the ẑ-direction and incident from the left, hence propagating in the x̂-direction (assuming

exp (−iωt) dependence) as

E =
√
2eikxẑ, (1)

where k = 2π/λ. The second scheme (SI for structured illumination) is the superposition of

two plane waves, both having E in the ẑ-direction, one propagating in the x̂-direction and

the other in the ŷ-direction, giving

E = (eikx + eiky)ẑ. (2)

Two detector arrays, s1 and s2, are used to measure power in the transmission direction

and are shown as the red dotted lines in Fig. 1(a). Both s1 and s2 are 0.5 λ from the PML

boundaries, and the length of each is 5 λ.

For the PW case, we use s2 to measure the time-averaged Poynting vector in the x̂-

direction, Sx. For a single plane wave described by (1), Sx = 1/η, where η is the (free space)

wave impedance. The total power detected by s2 without the object is PPW = 5λ/η. For the

SI case, s1 is also used to measure the time-averaged Poynting vector in the ŷ-direction, Sy.

From (2), Sx = Sy = [1 + cos (kx− ky)]/(2η). Therefore, the total power into s1 and s2 is

PSI = 5λ/η, identical to the PW case when there is no object present. This arrangement of

equal detected powers for both cases provides a basis for comparison.

In the FEM simulations, a mesh was generated at each scanned object position that

had a maximum size of 0.02λ, and the minimum mesh size was 0.001λ. There were at
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least 8 layers of mesh elements between the two scatterers. When the maximum mesh was

reduced to 0.01λ, the change in the Poynting vector information was 6 orders of magnitude

smaller. Our investigation of numerical precision led us to conclude that the field solution

and simulated detected power data are sufficiently accurate for our purpose.

III. DETECTOR NOISE MODEL

We choose a signal-to-noise ratio (SNR) of 40 dB to establish error bars in 2D simulations

of power density, and a simple argument for a 3D experiment provides a basis. The detector

signal-to-noise ratio is SNR = 〈I〉2/σ2
I , where 〈I〉 is the average photodetector current

and σ2
I is the variance. We assume that at each detector the additive (current) noise is

a zero-mean Gaussian random variable whose standard deviation is proportional to the

detected time-averaged Poynting vector. The noise equivalent power (NEP W/
√
Hz) is

the optical signal power needed to make the electrical SNR=1 in a B = 1 Hz bandwidth.

Writing σ2

I = 2e〈In〉B for detector integration time T = (2B)−1, with 〈In〉 the average noise
current (so In = I gives Poisson-based shot noise) and e the magnitude of the electron

charge, 〈I〉 = κ NEP = σI =
√

2e〈In〉, where κ (A/W) is the photodetector responsivity.

Consider the thermal noise limit, and a dark current count rate of R electrons/s, resulting

in NEP = (e/κ)
√
2R. We define a Poynting vector SNR = Sd/σs, where Sd is the Poynting

vector magnitude (mean) at the detector and σs is the standard deviation, a reflection of

the detector noise. Setting σs = NEP/Ae, with Ae the effective detector aperture, gives

a measure of detector noise. A typical NEP range for commercially available avalanche

photodiodes (APDs) and photomultiplier tubes is 10−18−10−17 W/
√
Hz, and 10−22 W/

√
Hz

has been achieved for single-photon-counting detection with an APD operated at 78 K [30].

A convenient laser source and detector size suggests the 40 dB SNR value we employ in our

2D simulations is conservative.

IV. RESULTS

In Fig. 2, we plot Sx information measured along s2 (Fig. 1(a)) for both the PW and SI

cases when the (two ǫr = 1.5) scatterers are at reference position (0, 0) for three different

values of separation, D. In Figs. 2(b) and (d), we show differences between the detector

5



measurements for the three scatterer separations, using the D = 0.02 λ case as a reference.

Because of the relatively weak scatter, the measured data in Figs. 2(a) and (c) for the PW

and SI cases, respectively, is very close to that for the incident field alone. Figures 2(b) and

(d) show error bars determined from a 40 dB SNR, resulting in σs = Sd/SNR = 10−4Sd.

The end-to-end length of the error bars is equal to twice the standard deviation of the noise

process. As expected, the 0.01λ change in D cannot be resolved by detectors having a 40 dB

SNR.

We use (∆x,∆y) to represent the shift from the central, reference position of the two

scatterers, (0, 0). As the scatterers are scanned while preserving the geometry, the time-

averaged Poynting vector measured at the detectors is compared with the Poynting vector

data with the object at the reference position. Consider then the function

f(∆x,∆y;D) =

∫

[S(x, y; ∆x,∆y,D)− S(x, y; 0, 0, D)] · ds, (3)

which is the integral of the change in detected power due to motion over a surface (line in

our case) defined by s with a fixed scatterer separation, D. For the PW case, s includes

only s2, while for SI, s contains both s1 (ds = ŷdxdz → ŷdx) and s2 (ds = x̂dydz → x̂dy).

When noise is incorporated into the data, f → fn in (3), so that it becomes

fn(∆x,∆y;D) =

∫

[Sn(x, y; ∆x,∆y,D)− Sn(x, y; 0, 0, D)] · ds, (4)

where Sn is the Poynting vector data with noise added. Because the ranges of f and fn are

much greater than the small differences induced by the far-subwavelength change in D, we

introduce

g(∆x,∆y;D) = fn(∆x,∆y;D)− f(∆x,∆y;D0), (5)

which reflects the change in D and in the detector data due to the motion of scatterers.

Figure 3 shows g(∆x,∆y;D) when the scatterers are scanned along the bottom (∆y =

−0.5λ) and left (∆x = −0.5λ) boundaries, referring to Fig. 1, for D0 = 0.02λ and both

the PW and SI cases. The error bars in Fig. 3 were obtained by adding noise to the

Poynting vector 100 times and calculating the standard deviation of the resulting fn and g.

In Figs. 3(a) and (b), we see that the 0.01λ change in D is barely resolvable in g(∆x,∆y;D)

with a single incident plane wave and a 40 dB SNR. However, Figs. 3(c) and (d) show that

the 0.01λ change in D can be easily resolved for the SI case. This resolution enhancement

is due to the additional information encoded into the far-field scattered field (represented
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in the change in Sx and Sy) by the interaction between the scatterers and the structured

illumination.

Based on the sensitivity that has now been established, we propose a method to determine

the far-subwavelength distance between two scatterers as well as their dielectric constants.

We use the notation f(∆x,∆y;D, ǫr) with an unknown dielectric constant for the scatterers.

An experiment will yield fn(∆x,∆y;D, ǫr) from far-field power measurements. Determina-

tion of the correct values of D and ǫr, denoted by D∗ and ǫ∗r , from the forward calculation of

f(∆x,∆y;D, ǫr) for possible values of D and ǫr is achieved by minimizing the cost function

(D∗, ǫ∗r)=argmin

{D, ǫr}

∑

∆x,∆y

|fn(∆x,∆y;D,ǫr)− f(∆x,∆y;D,ǫr)|. (6)

Figure 4 shows results from (6) for a hypothetical experiment with D∗ = 0.02λ and ǫ∗r = 1.5

for the PW (Fig. 4(a)) and SI (Fig. 4(b)) cases. The scatterers were scanned over a region

of 0.5λ by 0.5λ to save computation time. Note that the minimum cost is with the correct

separation and dielectric constant, despite the rather large SNR of 40 dB. We plot the cost at

the correct ǫr as a function of D for the PW and SI cases in Figs. 4(c) and (d), respectively,

in order to show the influence of detector noise in relation to the cost function features

- as (barely noticeable) error bars. The error bars in Figs. 4(c) and (d) were obtained

numerically by randomly choosing noisy Poynting vector data and calculating the resulting

standard deviation in the cost function. Notice that there is less sensitivity in the cost to

variations in D for the PW case relative to that with SI. This is in agreement with the data

presented in Figs. 3(a) and (b) (PW) relative to Figs. 3(c) and (d) (SI). Figure 5 shows

results from another hypothetical experiment with D∗ = 0 (a single scatterer) and ǫ∗r = 2.5,

with 40 dB SNR error bars determined numerically. The method clearly works with D∗ = 0,

meaning that it is possible to distinguish one large scatterer from two smaller scatterers.

We also demonstrate that it is possible to determine differing dielectric constants within

an object. Assuming that the dielectric constants of the two scatterers can be any value

among 1.2, 1.4, 1.6, 1.8, and 2, the calculated cost functions in Fig. 6(a) show that the cost

is minimized at the correct values, ǫ∗r1 = 1.4 and ǫ∗r2 = 1.6. Figures 6(b) and (c) give the

cost evaluated as a function of each variable, along with the relatively small uncertainty

error bars associated with detector noise. Note that this example shows sensitivity to weak

scatter and to small differences in the dielectric constant.
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V. DISCUSSION AND APPLICATIONS

Far-field detector data as a function of scanned, known object position in a spatially

varying field provides information about far-subwavelength object features. The principle is

that a non-deformable object is positioned at a set of points with step size small relative to

the optical wavelength. The object should be scanned through at least one wavelength in

each relevant dimension. Physically, the scattered field dipole moment varies with position in

the structured incident field, and this gives rise to the variation in detected data. Information

is added because of the known object positions, and knowledge of a reference result, without

the object or with the object at a particular location. That location does not need to

be known precisely, but the scan steps from this reference position must be known. For

our example in Fig. 1, this scan involves translating the object (with fixed arrangement,

including particle orientation and separation) over a Cartesian grid within the blue region

(λ on a side). The evidence presented is for classification, whereby a decision can be made

which of a set of possible results for different objects best fits the measurement. This

corresponds to use of prior measurement information or a prediction. We show an ability to

determine small changes (in geometry). This is equivalent to sensitivity to the differential

change in geometry. While the object we considered was small relative to the wavelength,

there should in principle be no restriction on the object size, although there will be practical

limits dictated by the instrument. From a practical perspective, the size of the object may

impact the detected signal (and hence the detector shot noise).

Our results in Figs. 3, 4, and 5 show that far-field measurements of power as a function

of object position in a structured field provide information about feature size on the scale

of 0.01λ. To the contrary, and as is well known, Fig. 2 shows that this information is

not available with a stationary object. The reason for this resolution enhancement is that

improved sensitivity results from spatial diversity, both in terms of known object location

and known multiple detector locations. This increases the SNR, for a fixed detector noise

(or integration time), and does so for structured (Figs. 3(c) and (d)) over unstructured

(Figs. 3(a) and (b)) illumination. Notice that both the mean and the error in estimating

the mean (the noise or error bars) are smaller in Figs. 3(c) and (d) relative to Figs. 3(a) and

(b). Also, simply moving the objects in a plane wave field with fixed detectors (Figs. 3(a)

and (b)) provides some improvement over that possible with fixed object position (Fig. 2).
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This occurred for two reasons, one being the benefit of motion with fixed illumination and

detectors, and the other the fact that the data in Fig. 3 is integrated over detector position,

through the definition of g in (5), which increases the SNR.

The computational domain and the detector location (Fig. 1) involved a convenient trade-

off for the simulations. We wanted to ensure measurements in the far-field, so that the

evanescent fields were negligible, but preserve a reasonably small computational domain to

achieve a manageable and simple and highly accurate set of simulations. The propagating

waves are detected, so in principle the detectors could be at any distance from the objects.

There will of course be practical limits. However, as the detector plane moves away from

the object, the size of the measurement surface needs to be increased to capture equivalent

information, but the sample density could be reduced. In reality, a lens or a fiber-based

collection system would be used in implementation.

Our approach requires scanning the object, so enhanced spatial resolution comes at this

price. However, near-field scanning optical microscopy also requires the sample to be moved,

but in addition the aperture may interfere with the light scattered by the object, and that

method suffers from substantial light attenuation through the tapered fiber. Our approach

allows far-field light collection, is simpler and offers higher signal level. Scanning an object

in a field is reminiscent of ptychography experiments, where image information has been

enhanced primarily by achieving a synthetic aperture effect with a diffuser to broaden the

spatial frequency content of the illuminating probe [31]. However, our goal of achieving

subwavelength image information and approach differ significantly from this.

Consider now how an experiment could be conducted and how the feature identifica-

tion, for example, the distance between two objects of assumed size and material, could be

determined. Measurement with an array of detectors allows fn(∆x,∆y), the noisy data cor-

responding to (3), to be determined. The reference result is with the object at the position

∆x = 0,∆y = 0. This leads directly to the type of data we presented in normalized form

in Fig. 3. The structured field could in principle have any character. Three or more laser

beams would provide suitable illumination for three-dimensional imaging. The structured

illumination could be periodic, as we considered, or of some other form, such as speckle [32].

The issue is how to use this data to determine the spacing between the two elements of the

object, D. Simplistically, this could be achieved by making the same set of measurements

with known and different D. Comparison with the unknown object data would allow se-
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lection of the best candidate. A more sophisticated approach is to determine the nature

of the structured field using measurements without the object, and then form a model for

the scattered field due to the object. This is what we did in the numerical studies. In this

way, predicted measurements could be compared with the actual data to determine D. This

latter approach relates to the more general computational imaging problem.

Precise spatial scanning of the object is possible with piezoelectric stages that are rou-

tinely used in atomic force microscopy. Given wavelength-scale structure in the field, and

the possible stage motion and detector noise, it appears that a spatial resolution on the

order of 1 nm might be achievable with visible light. Scanning with a piezoelectric stage

and making measurements at each position can be effective in nanostructured solid-state

material applications. However, imaging dynamic systems such as live biological cells will

be more challenging. In principle, all that is needed is to scan faster. However, the number

of positions needed may preclude the use of a piezoelectric stage for adjustment of the the

object position. It may be possible to modify the imaging concept we present along the

following lines. A mechanical wave could move a biological cell system, and perhaps by

careful calibration it might be possible to determine the change in position of the sample.

For instance, an acoustic pressure wave applied in three orthogonal directions might allow

this, assuming that the time-gating applied to the optical measurement is fast relative to

this motion (or that this can be de-convolved). Another approach could be to use an optical

beam to apply a force to move the sample. Motion of cells could be achieved directly with a

laser. For example, a laser beam has been shown to deform the surface of water due to the

optical force [33]. While current optical tweezer technology uses beads and relatively high

power laser beams [34, 35], possibly an issue for biological cells, there may be compromise

ground that is suitable for live cells.

We considered the questions of determining whether there were one or two objects, the

far-subwavelength distance between the objects, and their dielectric constant. For instance,

a question might be to determine the separation between two objects. This type of classi-

fication method amounts to a set of constraints that simplifies an imaging problem to one

of classification. More general computational imaging would involve a cost function imag-

ing method [36]. In principle, the image domain could be tiled as pixels (voxels in three

dimensions), with the material properties in each voxel constant. This would be equivalent

to a discrete, finite difference, basis set, and that grid could be 0.01 λ, for example. The
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cost function approach would minimize the difference between the measured data, with the

object at a series of positions, and the results from calculations that seek to predict the mea-

surement. In this way, complete images with high resolution could in principle be achieved.

It may be useful to consider other spatial basis sets, and also variable domain resolution,

as in multigrid, which can not only speed optimization-based solutions but also help with

the quality [37]. The question of what resolution may be possible is a practical issue that

will depend on variables such as positioning accuracy, detector noise, computational effort,

and object contrast. There are therefore a set of experimental and computational aspects

to explore with regard to general imaging utility.

The Abbe resolution limit essentially describes a spot size based on loss of evanescent

field information. A key measure in resolution is the distance between two points in the

object that can be resolved, and Rayleigh presented a criterion [38]. Resolution can be

enhanced by deceasing the wavelength, but this is not always convenient and has practical

limits. Entangled photons provide a means to increase resolution to λ/(2N), forN entangled

photons, i.e., according to the the total energy of the photons in mixed state [39], but requires

an appropriate detection method. Constraints imposed in sensing or forming images have

important consequences with regard to resolution. With a photon correlation of order N

equal to the number of uniformly separated sources, a resolution proportional to λ/(N −
1) has been shown [5]. Furthermore, by enforcing the size of an aperture in an iterative

(’sparsity-based’) reconstruction scheme, a resolution beyond the measured spatial frequency

information has been shown [40]. In Fig. 2, we show that the noise and data set preclude

distinguishing the three different stationary objects, two small objects having center-to-

center (phase center) separations of 0.06− 0.08 λ. This indicates constraints such as those

used in the sparsity-based image reconstruction scheme will not be effective [40]. Ultimately,

while Heisenberg uncertainty poses fundamental limits on measurement accuracy, practical

issues limit measurements. Noise could be reduced with squeezed states [41], but reaching

the resolution we suggest through detection method noise reduction will certainly be a

challenge. Improvements in accuracy have been reviewed [42], and our approach provides

another dimension. The key point of our work is that translating the object in a structured

field adds information, as is clear from the data in Fig. 3, making the identification of

the small object separation (center-to-center and edge-to-edge) and the dielectric constant

(Figs. 4 and 5) possible.
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Consider the situation of 0.01 λ resolution, that we suggest is readily achievable, and a

plane wave decomposition of the scattered field from a stationary sample in the free space

region where detection occurs. At the closest points in the scan arrangement of Fig. 1, the

detectors are about 2 wavelengths from the objects. The wave expansion for a detector

plane at some position along the x-axis involves a spatial variation exp(ikxx) and a Fourier

variable ky. The two-dimensional wave equation dictates kx = k
√

1− (ky/k)
2, with k the

free space wave number, preserving the notation used in (1) and (2). Propagating waves

that can be detected in the far-field have ky/k < 1, and the remainder of the spectrum,

with ky/k > 1, describes the evanescent fields. Resolving 0.01 λ amounts to a transverse

spatial frequency for the evanescent field of ky/k = 100, giving kx ≈ i100k. The field decay

of this spatial frequency after 2λ is then exp(ikx2λ) ≈ exp(−400π). The data in Fig. 2

show that such resolution information is not available with a stationary object and far-field

measurements. The point of this paper is to indicate that with far-field measurements as

a function of position in a spatially varying field, resolution at this length scale (0.01 λ)

becomes possible.

A simple one-dimensional situation is a slab moving in an incident field composed of

two counter-propagating plane waves, where the goal may be to find the slab thickness

and dielectric constant. By moving the slab through a structured field, the scattered field

dipole moment within the object is changing in a specific manner that contributes to the

information content at the detectors. Using measured data as a function of scan position,

a cost function could be formed that relates a model (the predicted measurement with a

specific set of variables assumed - the slab thickness and dielectric constant) to the measured

data, as a function of scan position. In this way, the free variables could be determined using

an inversion method.

Finally, we propose an immediate application of our imaging method. The determination

of the presence of defects in the semiconductor industry is challenging. In this situation,

the object might consist of multiple material layers, each quite well characterized. The key

question with wafer inspection is whether there is a defect or a set of defects or not. In

this situation, obtaining prior measurements data or predicting the measurement with a

forward model can be reasonably straight forward. The ability to find such a defect is a

function of the contrast and the thickness, in relation to the detector noise. In a practical

situation, the depth and lateral position of a three-dimensional defect could be determined
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by scanning the water in a structured field. Our indication of the level of information

available about nanostructured materials from such a measurement suggests that this is an

important application domain.

VI. CONCLUSION

The role of this paper is to introduce a new far-field far-subwavelength imaging modality,

based on motion in a structured incident field, and to motivate experimental work along

these lines. The proposed measurement scheme involves the precise motion of the object

through a spatially varying field and the collection of far-field data at a detector array as

a function of object position. Our work has shown that useful information about the ob-

ject becomes available that can allow the identification of far-subwavelength length scale

information, specifically, the geometry and material properties, that would otherwise be im-

possible to determine because of detector noise. The sensitivity of the measurement data

to subwavelength scale object features is related to the structure of the incident field. The

object could be a nanoparticle or collection of nanoparticles, a solid state material to be

characterized, as one might consider in a more restrictive sense in ellipsometry or semicon-

ductor wafer inspection, or a cell or biomolecule. In the case of a live cell, a suitably fast

spatial scanning method would be required. In all of these applications, determining struc-

tural and material properties on the nanometer scale using light of a specified wavelength is

a critical need.
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(a) (b)

FIG. 1. (a) The square 6λ simulation geometry consists of two square scatterers (ǫr = 1.5) scanned

in 0.1λ steps in 2D. The range of motion is represented by the blue square (1λ× 1λ) at the center

of the free space background. The red dotted lines denote the locations of the detectors (0.5 λ

from the PML boundaries and about 2 λ from the objects at the closest points). (b) The central

scanned region is drawn to explicitly show the dimension and arrangement of the scatterers. These

figures are not drawn to scale.
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FIG. 2. Time-averaged Poynting vector in the x̂-direction, measured at s2 for D = 0.01λ, 0.02λ,

and 0.03λ, for the two ǫr = 1.5 objects fixed at the center of the domain, (0, 0). The spatial

coordinates refer to the geometry in Fig. 1. The PW case is shown in (a) and (b), and the SI case

is shown in (c) and (d). To clearly show the error bars, corresponding to SNR=40 dB, the data

plotted in (b) and (d) is for Sx − Sx,D=0.02λ.

19



−0.5 0 0.5

−2

0

2

4
x 10

−5

∆x/λ (∆y = −0.5λ)

g(
∆
x
,∆

y
;D

)

 

 
D = 0.01λ
D = 0.02λ
D = 0.03λ

−0.5 0 0.5

−2

0

2

4
x 10

−5

∆y/λ (∆x = −0.5λ)

g(
∆
x
,∆

y
;D

)

 

 
D = 0.01λ
D = 0.02λ
D = 0.03λ

(a) (b)

−0.5 0 0.5

−5

0

5

10
x 10

−5

∆x/λ (∆y = −0.5λ)

g(
∆
x
,∆

y
;D

)

 

 
D = 0.01λ
D = 0.02λ
D = 0.03λ

−0.5 0 0.5

−5

0

5

10
x 10

−5

∆y/λ (∆x = −0.5λ)

g(
∆
x
,∆

y
;D

)

 

 
D = 0.01λ
D = 0.02λ
D = 0.03λ

(c) (d)

FIG. 3. Numerical values of g(∆x,∆y;D) (see (5)) for the reference separation D0 = 0.02λ when

the (two ǫr = 1.5) scatterers are scanned along the (a) bottom and (b) left boundaries (the central

region in Fig. 1(a)) for the PW case, and (c) and (d) for the SI situation, all with a SNR = 40 dB

(producing the error bars, which were determined numerically with 100 Poynting vector data sets).
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FIG. 4. Cost functions for a simulated experiment with D∗ = 0.02λ and ǫ∗r = 1.5. (a) and (b) are

the decimal logarithm of the cost function for the PW and SI cases, respectively. (c) and (d) are

plots of the costs for the correct value of ǫr for the PW and SI cases, respectively. The error bars

give the standard deviation (estimated by performing the measurement 100 times with random

data) assuming a SNR = 40 dB in the Poynting vector data.
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FIG. 5. Cost functions for a simulated experiment with D∗ = 0 (a single object) and ǫ∗r = 2.5. The

meaning of all sub-figures is the same as Fig. 4.
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FIG. 6. Cost functions for a simulated experiment using structured illumination with the dielectric

constants of the two scatters, ǫr1 and ǫr2, as unknowns. (a) The discrete cost function, showing a

minimum at the correct values, ǫ∗r1 = 1.4 and ǫ∗r2 = 1.6. (b) Cost as a function of ǫr1 when ǫr2 = ǫ∗r2

with error bars due to detector noise. (c) Cost as a function of ǫr2 when ǫr1 = ǫ∗r1 with the error

bars.
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