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Abstract

We examine electric power generation from Earth’s rotation through its own non-rotating mag-

netic field (that component of the field symmetric about Earth’s rotation axis). There is a simple

general proof that this is impossible. However, we identify a loophole in that proof and show

that voltage could be continuously generated in a low-magnetic-Reynolds number conductor rotat-

ing with Earth, provided magnetically permeable material were used to ensure curl(v ×B0) 6= 0

within the conductor, where B0 derives from the axially symmetric component of Earth’s magnetic

flux density and v is Earth’s rotation velocity at the conductor’s location. We solve the relevant

equations for one laboratory realization, and from this solution predict voltage magnitude and sign

dependence on system dimensions and orientation relative to Earth’s rotation. The effect, which

would be available nearly globally with no intermittency, requires testing and further examination

to see if it could be scaled to practical emission–free power generation.
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I. INTRODUCTION

Barnett showed in 1912 that when an axially symmetric electromagnet rotates about

its north-south axis, its magnetic field does not rotate with the magnet [1], resolving a

controversy [2] that had its origins in Faraday’s interpretation of his rotating disk experiment

[3, 4]. Here, in Section II we first review Faraday’s results and carefully address the definition

of electromotive force (emf) and the historical meaning of saying a magnetic field “rotates

with the magnet.” We then describe the compelling experimental evidence for the non-

rotation of axially symmetric magnetic fields. In Section III, we consider the particular case

of the non-rotation of the axisymmetric component of Earth’s magnetic field. The rotation

of Earth’s surface through that non-rotating component yields a steady v ×B force that one

might hope to use to generate electric power. However, in Section IV we present a simple,

and seemingly general, proof that power generation in this way is impossible.

Nonetheless, in Section V we show that this proof has a loophole, suggesting that con-

tinuous power generation is possible if two unusual conditions are both met. These two

conditions will not simultaneously hold in any typical natural or laboratory circuit, but it is

possible to create them together. The first condition is that the current path must lie within

a magnetically permeable conductor the topology of which is such that ∇× (v ×B) 6= 0 in

its interior, where B is the magnetic flux density and v is the velocity of the conductor. The

second is that this conductor must have a magnetic Reynolds number Rm � 1, which on a

laboratory scale excludes all common metal and mu-metal conductors.

In Sections VI to IX, we fully calculate one realization of such a system: a low-Rm mag-

netically permeable cylindrical shell. Section VI first considers the case when the shell is

stationary (v = 0) with respect to a constant background magnetic field (with zero back-

ground electric field). Then the current density J = 0 and it is straightforward to derive

the corresponding magnetic flux density B0 within the shell. We prove that in general,

∇× (v ×B0) 6= 0, so that if the shell’s composition, dimensions, and velocity can be cho-

sen to yield Rm � 1, the system would fulfill the necessary conditions for emf generation.

In Sections VII through IX, we demonstrate that for this system these conditions are

also sufficient. In Section VII, we show that if the shell is put into motion transverse to

its long axis, B0 can no longer be a solution. We calculate the B that does satisfy the

induction equation within the moving shell when v 6= 0 and Rm � 1, and find that the
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time-dependent part of B goes to zero extremely rapidly. In Section VIII, we find that there

remains a time-independent solution, given by B0 plus a series of perturbation terms scaled

by successive powers of Rm. We use these results in Section IX to derive an expression for

the emf generated in the shell. Section X provides an intuitive discussion of the results of

the previous calculations.

In Section XI, we present a parallel analysis in a frame co-moving with the translating

shell, and demonstrate that there is a net non-zero Poynting vector flux delivering power

into the shell. We show in Section XII that in the frame in which the shell is translating at

v, a magnetic braking term arises in Poynting’s theorem, and the generated electrical power

equals the braking loss from Earth’s rotational kinetic energy.

We make quantitative predictions for this system in Section XIII, including the striking

prediction that the voltage generated should change sign when the cylindrical shell (together

with its attached leads and voltmeter) is rotated by 180◦. Section XIV begins the discussion

of whether such systems might be scaled up to generate useful amounts of electric power.

II. HISTORICAL BACKGROUND AND DEFINITIONS

In December 1831, Faraday experimented with a conducting disk rotating near a magnet

[3, 4]. The disk connected via brushes to a simple galvanometer, with leads running to the

disk’s axle and edge. The galvanometer circuit was stationary in the laboratory. Current

flowed when the magnet was stationary and the disk rotated, or when the disk and magnet

rotated coaxially along the magnet’s north-south axis of symmetry; but not when the magnet

rotated about this axis and the disk was stationary [3, 5].

Faraday subsequently experimented with a rotating conducting magnet connected to a

galvanometer via brushes on the magnet’s axle and rim [5, 6]. Current flowed when the mag-

net rotated around its north-south axis but the galvanometer circuit remained stationary,

or when the magnet was stationary but the circuit rotated. Subsequent researchers have

explored additional permutations in the configurations of Faraday’s experiments [7].

In modern terms, the conducting magnet rotates at velocity v = ω × ρ (for angular

velocity ω and cylindrical radius ρ) through its own magnetic field H (or equivalently,

through its own magnetic flux density B = µH, where µ is the magnetic permeability),

generating a v ×B Lorentz force that drives the current.
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The electromotive force (emf) around a path C with line element dl is given by [8–10]:

emf =
∮
C

(E + v ×B) · dl =
∫
S
[−∂B/∂t+∇× (v ×B)] · da, (1)

where E is the electric field, and the area element da is right-hand normal to the surface S

bounded by C. The second equality in Eq. (1) holds via Stokes’ theorem and the Faraday’s

law Maxwell equation provided there is no jump discontinuity on S [11]. This condition will

be met in our work below, and we will calculate the emf using Eq. (1), which we take as

the definition of the term.

For the Faraday disk, for which B is spatially constant and ∂B/∂t = 0, only the v ×B

term contributes to the integral. Were the entire circuit rotating at constant ω, the curl of

v ×B would be zero and we would have emf = 0. But because the galvanometer circuit is

stationary while the disk rotates in the laboratory frame, the line integral of v ×B around

C is nonzero. In any frame at least part of C is in motion. A Poynting theorem analysis

of the Faraday disk shows that the energy for the electric current flowing between axle and

rim in the disk comes from the disk’s kinetic energy of rotation [12]. Taking into account

the small magnetic perturbations to the applied B due to the current that flows in C does

not change these conclusions [12].

The emf in Eq. (1) is often identical to an electromotive force defined by the “flux rule”:

emfΦ = −dΦ/dt, (2)

where magnetic flux Φ =
∫
S B · da. Inequality between emf and emfΦ in Eqs. (1) and (2)

in certain circumstances give rise to so-called Faraday paradoxes. Auchmann et al. [11],

consistent with some earlier discussions [13], show that equality requires the path velocity

of the moving surface S (and its boundary C) to be equal to the material velocity of the

conducting medium in which S is embedded. Our applications below meet this requirement.

Faraday concluded from his experiments that magnetic field lines do not rotate with a

magnet when the magnet rotates around its axis of symmetry [3, 4, 6]. But Preston [2]

showed in 1885 that Faraday’s results are equally explained if the magnetic field does rotate

with the magnet, producing a v ×B force on the stationary part of C, giving an emf identical

to that of a non-rotating field with the rotating disk. The idea of the field “rotating with

the magnet” was understood [2, 14, 15] to mean that a force qv ×B would be experienced

by an electric charge q if q had a velocity v relative to axes fixed in (so co-rotating with) the
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rotating magnet. This differs from the current understanding of the qv ×B force, in which

v is the velocity of q in the frame in which the magnetic flux density is B [13, 16].

Poincaré [17] and others [18] asserted that since both the rotating and non-rotating pic-

tures appeared to give identical results, the distinction between them was meaningless. But

Barnett’s experiments in 1912 [1], reproduced by Kennard [15] and improved upon by Pe-

gram in 1917 [19], demonstrated a difference and resolved the question for the magnetic

fields of electromagnets by using an open circuit. Barnett placed a cylindrical capacitor

axially in the field of a solenoid (or, in analogous experiments, between two large iron flat-

pole electromagnets); a thin wire connected the two concentric cylinders of the capacitor.

Co-rotation of the cylinders and their connecting wire while holding the solenoid stationary

charged the capacitor (due to the v ×B force on the wire). After charging, the connecting

wire was disconnected, the system despun, and opposite charges on the cylinders were mea-

sured by electrometer. But rotating the solenoid (or flat-pole electromagnets) while holding

the cylindrical capacitor and connecting wire stationary generated no charge. Co-rotation

of the capacitor and connecting wire together with the solenoid charged the capacitor [19].

Barnett and his contemporaries thereby proved that the field of a rotating axially symmetric

electromagnet does not itself rotate [1, 5, 15, 18, 19].

III. NON-ROTATION OF EARTH’S AXISYMMETRIC FIELD

The Barnett [1], Kennard [15], and Pegram [19] experiments with electromagnets sug-

gest that those components of Earth’s magnetic field that are axisymmetric about Earth’s

rotation axis will be stationary with respect to (do not rotate with) the rotating Earth,

understood in the sense described for rotating electromagnets in the previous section [20–

22]. These would be, for example, the axially symmetric dipole, quadrupole, and octopole

components, with coefficients in the usual Schmidt-normalized Legendre-function expansion

of g0
1, g0

2 and g0
3, respectively [23]. Components with coefficients gmn or hmn where m 6= 0

depend on azimuthal angle ϕ like cos(mϕ) and sin(mϕ), respectively, and therefore rotate

with Earth.

To our knowledge, no experiment has been performed that demonstrates that Earth’s

axisymmetric field does not rotate with Earth. Non-rotation of Earth’s axisymmetric field is

the conservative expectation given the experimental results for electromagnets [1, 5, 15, 19],
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and this has been taken to be the case by many authors [20–22, 24]. Were the effect we

predict in this paper to be demonstrated, an ancillary consequence would be an experimental

demonstration of the non-rotation of Earth’s axisymmetric field.

Earth’s rotation carries its surface through the non-rotating component of Earth’s mag-

netic flux density B with an azimuthal speed v = 465 sin θ m s−1 at colatitude θ. The

resulting v ×B force generates position-dependent volume charge densities (of order 1 e−

m−3 [22]) whose electric field perfectly cancels v ×B [20, 24, 25]. A resulting latitude-

dependent surface charge density maintains overall charge balance, with a corresponding

electric potential at Earth’s surface. Any additional motion of individual conductors or

conducting fluids leads to continuous extremely rapid charge redistribution with resulting

perfect cancellation of fields.

However, Earth is surrounded by a conducting ionosphere co-rotating with Earth. Does

this external conducting spherical shell mean that Earth’s axisymmetric magnetic field is

somehow “dragged” into co-rotation with Earth? One might imagine that this is an implica-

tion of Alfvén’s “frozen-flux” theorem [26], which considers Ohm’s law (for current density

J) for a moving conductor

E + v ×B = J/σ (3)

in the limit σ → ∞ (a so-called perfect conductor), so that E = −v ×B. Then Eqs. (1)

and (2) imply that the magnetic flux Φ cannot change through the surface S as C moves

along — in the usual picturesque language, the flux is “frozen in.”

But consider an axially symmetric conductor rotating with angular speed ω about the

axis of Earth’s axisymmetric magnetic field. Clearly ∂B/∂t = 0 in such a case. This is the

first term in the integrand of the surface integral in Eq. (1). In spherical polar coordinates

(r, θ, ϕ) we have v = ωr sin θϕ̂ and find

∇× (v ×B) = −ω∂B/∂ϕ, (4)

using ∇× (v ×B) = (B · ∇)v − (v · ∇)B + v(∇ ·B)−B(∇ · v) and ∇ ·B = 0. Therefore

the second term in the integrand in Eq. (1) is also zero due to axisymmetry, and by Eq. (2)

this means dΦ/dt = 0. But this has nothing to do with σ →∞; it would be just as true for

a very poor conductor as for a perfect conductor. It is therefore not a consequence of the

“frozen-flux” theorem. It is simply a consequence of the symmetry involved, and there is no

reason to view the field as somehow being dragged around with the ionosphere.
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In fact, there are well-known examples where translating or rotating conductors do not

“drag” magnetic fields at all, and cause no distortions in the magnetic fields through which

they are moving [22, 27, 28]. This is because the background field is only modified if a

current density J is induced in the conductor; J then induces a magnetic field of its own

via Ampère’s law and it is this induced field that distorts the shape of the overall B field

away from the background field. This distortion often, though not always [27], leads to field

lines that have the appearance of being dragged by the moving conductor. But Van Bladel

has proven that it is impossible to induce a non-zero J for any axially symmetric conductor

rotating in an axially symmetric field [29]. By this theorem a conducting ionosphere rotating

about Earth’s axially symmetric field components cannot induce a J, and therefore cannot

distort (“drag” along with it) Earth’s axially symmetric field. To the contrary, Appendix A

describes how it is Earth’s non-rotating axially symmetric field that brings charged particles

in a conducting plasma around Earth into co-rotation [24].

IV. A PROOF THAT ELECTRIC POWER GENERATION IS IMPOSSIBLE

Could we construct a circuit C in the lab whose rotation along with Earth’s surface

through Earth’s axially symmetric field would generate a continuous electric current via the

v ×B force? The emf around any path C is given by Eq. (1). The v ×B force experienced

as the conductor C rotates through Earth’s magnetic field drives electron redistribution until

the resulting electrostatic field E perfectly cancels the v ×B field: E = −v ×B everywhere

within C [5, 22, 30]. Redistribution of charge occurs extremely rapidly, on a classical charge

relaxation timescale τe ∼ ε0/σ ≈ 10−11 (1 S m−1/σ) s [31]. For very good conductors such as

typical metals for which σ ∼ 107 S m−1, the relaxation time is given by the electron collision

timescale τc ∼ 107τe, or ∼ 10−11 s [32]. Since charge redistributes rapidly and continuously

to maintain E = −v ×B, emf = 0 by Eq. (1) always. Electric power generation therefore

appears impossible for uniform rotation about an axially symmetric field.

However, this argument contains hidden assumptions. The electric field of a static charge

distribution may always be written as a potential of a scalar field: E = −∇V . But since

∇×∇V = 0 always, the equation E = −∇V = −v ×B can hold only if ∇ × (v ×B) =

0. We will use magnetically permeable materials to violate this requirement, providing a

necessary, but not sufficient, condition for generating a non-zero emf.
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Of course, one can always choose to transform to a gauge in which the transformed

scalar potential Ṽ = 0. But then the vector potential transforms to Ã = (∇V )t, and

E = −∂Ã/∂t − ∇Ṽ = −∇V , as before [33]. So once again E = −v ×B can only hold if

∇× (v ×B) = 0.

V. THE LOOPHOLE IN THE PROOF

Magnetically permeable materials channel magnetic flux, and can be used to alter B

to give ∇ × (v ×B) 6= 0. This guarantees that the electrons in such a conductor cannot

rearrange themselves to generate an electrostatic field E = −∇V that satisfies E = −v ×B

in Eq. (1). This is the first of our two necessary conditions for electric power generation.

But one could still have E = −v ×B if E were no longer purely electrostatic, i.e. if one had

E = −∂A/∂t −∇V = −v ×B, where A is the magnetic vector potential. If this equality

were always to hold for our system, power generation would still be impossible. Are there

circumstances where this equality can be circumvented? This may be answered using the

advection-diffusion equation for A, to which we now turn.

Consider two inertial frames. In frame K at infinity there is a constant background

magnetic flux density (B∞), and no electric field (E∞ = 0). A conductor is moving at

constant velocity v = vŷ in K. Frame K ′ is the frame co-moving with the conductor.

Frame K ′ approximates our frame on Earth’s surface (the laboratory frame), translating

through the non-rotating component of Earth’s field. Frame K approximates a non-rotating

frame fixed at Earth’s center and moving with Earth in its orbit.

Frames K and K ′ are not exactly related by a Lorentz boost because of Earth’s rotation.

In K ′, Maxwell’s equations incorporate rotation via the metric tensor gµν , introducing factors
√
g00 ≈ 1 − 1

2
(v/c)2 when (v/c) � 1 [29]. For v = 465 m s−1, (v/c)2 ≈ 10−12. We show

below that these corrections are negligible compared to the effects of interest. We assume

(v/c)2 � 1 throughout. We may therefore approximate K and K ′ as two inertial frames in

relative linear motion.

Coordinates in the two frames are then related by t′ = t, x′ = x, y′ = y − vt, and z′ = z.

We have ∂xµ/∂xν = δµν and ∂x′µ/∂x′ν = δµν , ∂t/∂t′ = 1, v = ∂y/∂t′, ∂/∂t′ = ∂/∂t + v∂/∂y,

and ∂/∂x′ = ∂/∂x, ∂/∂y′ = ∂/∂y, ∂/∂z′ = ∂/∂z, so ∇′2 = ∇2. The fields are related by

E′ = E + v ×B, (5)
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B′ = B, and A′ = A. For our system, the curl of Eq. (5) yields ∂B/∂t′ = ∂B/∂t+v∂B/∂y,

i.e. the curl of the field transformation for E′ is just the advective derivative for B. While

B = B′, Eq. (5) means that E = 0 in K implies E′ = v ×B in K ′.

We begin with an analysis in frame K, and examine results in K ′ in Section XI. Ohm’s

law in K ′ is E′ = J′/σ, so by Eqs. (3) and (5), J′ = J. We have B = µH and B′ = µH′ [29].

Using E = −∇V − ∂A/∂t and J = ∇×H, Eq. (3) yields the advection-diffusion equation

for A in K:

−∇V − ∂A/∂t+ v × (∇×A) = η∇×∇×A, (6)

where η = (σµ)−1 is the magnetic diffusivity, here assumed constant. The displacement

current does not appear in Ampère’s law because | ε0∂E/∂t | � | J | (ε0 is the vacuum

permittivity) for timescales t� τe [10, 34]. Ohm’s law in K ′ also yields Eq. (6) because of

the field transformation Eq. (5).

The curl of Eq. (6) yields the advection-diffusion equation for B, or “induction equation”:

−∂B/∂t+∇× (v ×B) = −η∇2B. (7)

Integrated over S, Eq. (7) is identical to Eq. (1). Therefore

emf = −η
∫
S
∇2B · da = η

∮
C

(∇×B) · dl. (8)

Whether η∇2B is negligible in Eq. (7) depends on the magnetic Reynolds number Rm =

τD/τv = σµvξ, where τD = ξ2/η is the magnetic diffusion time, and τv = ξ/v the transport

time, for a system that varies over a characteristic length scale ξ. Then | η∇2B |∼ ηB/ξ2

and | ∇ × (v ×B) |∼ vB/ξ so Rm = | ∇ × (v ×B) | / | η∇2B | [35, 36]. If Rm � 1, η∇2B

is negligible in Eq. (7), so emf = 0. If Rm � 1 however, we may have emf 6= 0. Rm � 1 is

the second of our two necessary conditions for electric power generation.

In Eq. (1) consider a path C lying within a conducting slab, made say of aluminum for

which σ = 4×107 S m−1 and relative permeability µr = 1 (µr = µ/µ0 where µ0 = 4π×10−7

H m−1) [37]. Then for v = 465 m s−1, Rm � 1 if ξ > 1 mm so emf = 0. We instead explore

a system satisfying Ohm’s law with Rm � 1 and ∇ × (v ×B) 6= 0. As we show below,

one realization is a path C lying within a long cylindrical shell made of an appropriate

magnetically permeable MnZn ferrite [38]. We first consider this system at rest in a frame

K in which B∞ is constant and there is no background electric field (E∞ = 0), in which

case emf = 0. We then give this system a velocity v and show that a nonzero emf will be
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generated. Such a system at rest in a laboratory on Earth’s surface would therefore generate

electrical power as Earth rotates.

VI. MAGNETICALLY PERMEABLE CYLINDRICAL SHELL

Consider an infinitely long magnetically permeable conducting cylindrical shell with axis

of symmetry along the z-axis, and inner and outer radii a and b, respectively. The back-

ground fields at infinity are B∞ = B∞x̂ and E∞ = 0 in a frame in which the shell has

v = 0. Of course v ×B = 0 and with E∞ = 0 we must have by Eq. (3) J = 0. Therefore

∇ ×H = J = 0, so H = −∇W , where W is a magnetic potential. We designate H when

v = 0 as H0 (and define B0 = µH0) so ∇ ·H0 = ∇2W = 0, whose solution for a magneti-

cally permeable cylindrical shell for all space is well known in cylindrical (ρ, φ, z) coordinates

[39, 40]. In Cartesian coordinates, the resulting magnetic flux densities exterior to the shell,

within its conducting body, and within its hollow interior are:

B0x(ρ > b) = B∞ + β3(b/ρ)2 cos 2φ, (9a)

B0y(ρ > b) = β3(b/ρ)2 sin 2φ; (9b)

B0x(a ≤ ρ ≤ b) = β1 − β2(a/ρ)2 cos 2φ, (10a)

B0y(a ≤ ρ ≤ b) = −β2(a/ρ)2 sin 2φ; (10b)

and

B0x(ρ < a) = 2β1(µr + 1)−1, (11a)

B0y(ρ < a) = 0. (11b)

Here

β1 = 2B∞µr(µr + 1)ζ, (12)

β2 = 2B∞µr(µr − 1)ζ, (13)

β3 = B∞[1− (a/b)2](µ2
r − 1)ζ, (14)

and

ζ = [(µr + 1)2 − (a/b)2(µr − 1)2]−1. (15)

If a = 0, Eq. (10) collapses to that for a solid magnetically permeable cylinder:

B(ρ ≤ b) = β1(a = 0)x̂ = 2µr(µr + 1)−1B∞x̂, (16)
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for which the magnetic field is constant in the interior, although of course the exterior (ρ > b)

field is distorted according to Eq. (9) with a = 0.

Because Bz = 0, only the z-component of A is non-zero [9, 27], so

Bx = ∂Az/∂y, (17a)

and

By = −∂Az/∂x. (17b)

Eqs. (9) to (11) then correspond to the vector potential A0 = A0ẑ, with

A0(ρ > b) = B∞y + β3(b2/ρ) sinφ, (18)

A0(a ≤ ρ ≤ b) = β1y − β2(a2/ρ) sinφ, (19)

and

A0(ρ < a) = 2β1(µr + 1)−1ρ sinφ, (20)

with the usual gauge ambiguity allowing the addition of a gradient of a single-valued function.

Moreover, because of Eq. (17), any function of z alone may be added to A0 without affecting

B0 (or E). A0 must be continuous across the boundaries at ρ = a and ρ = b; this is easy

to verify for Eqs. (18) to (20). This requirement means that a choice of gauge on one side

of a boundary restricts the choice of gauge on the other [41]: one cannot arbitrarily assign

different gradient terms (or functions of z) to A0 in each of Eqs. (18) to (20), and this will

prove important below.

From Eq. (19) we see that a solid permeable cylinder has A0(ρ ≤ b) = β1y in its interior.

That is, the first term on the right in Eq. (19) is that for a solid cylinder; when a 6= 0 a

second term enters as a modification of this first a = 0 term.

For the region within the body of the cylindrical shell (a ≤ ρ ≤ b), we find by Eq. (10):

∇× (v ×B0) = 2vβ2a
2ρ−3[(3 sinφ− 4 sin3 φ)x̂ + (3 cosφ− 4 cos3 φ)ŷ)] 6= 0, (21)

using ∂ρ/∂x = cosφ, ∂φ/∂x = −ρ−1 sinφ, ∂ρ/∂y = sinφ, and ∂φ/∂y = ρ−1 cosφ. Such

a translating shell, if made out of conducting material satisfying Rm � 1, would therefore

satisfy our two necessary criteria for electric power generation. We show below that in this

case these conditions are also sufficient.
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Instead of an infinite shell, consider a finite shell lying along the z axis from −L/2 to L/2,

with L � 2b. The magnetic field in the interior (ρ < a) of a finite permeable cylindrical

shell may be written as the sum of two contributions: the field corresponding to the shielded

interior of an infinitely long shell, plus a contribution from the field penetrating in from the

openings [42]. For ρ < a near z = ±L/2, B deviates from B0, but moving inward this

deviation falls off rapidly like exp(−3.83z/a) [42], so in the interior the result for an infinite

shell should hold for a finite shell provided |z| <∼ L/2− a. For this result to hold for ρ < a,

the field in the region a ≤ ρ ≤ b must be similarly undisturbed, so we take the result for a

finite shell in this region to correspond to those for an infinite shell provided |z| <∼ L/2− a.

VII. TIME-DEPENDENT SOLUTION FOR v 6= 0 AND Rm � 1

It is clear that B0 in Eq. (10) can no longer be a solution for our system once v 6= 0,

since B0 could only solve Eq. (7) were ∇× (v ×B0) 6= 0, in contradiction to Eq. (21).

We show in Appendix B that B0(x, y′) = B0(x, y − vt), i.e. the advecting version of Eq.

(10), also cannot be a general solution when v 6= 0. Any traveling wave solution of the form

B(x, y − vt) solves the transport equation, so will solve Eq. (7) in the limit Rm � 1. We

wish to solve Eq. (7) for smaller Rm, when the diffusion term is not negligible.

It is easiest first to solve for A. We therefore solve Eq. (6) explicitly to find A (and so

B) for the magnetically permeable cylindrical shell in the case v 6= 0 (Fig. 1) with Rm � 1.

We impose the requirement that in the limit v→ 0 we must have A→ A0 and B→ B0.

We first work in K, and examine the picture in K ′ in Sec. XII.

Our calculations can be facilitated by a choice of gauge to simplify Eq. (6). We choose

a gauge sometimes used in eddy current [43] or magnetohydrodynamic (MHD) [44] applica-

tions that relates the potentials by the gauge condition:

∇ ·A = −V/η. (22)

Because Eq. (22) is less familiar than the more commonly used Lorenz (∇ ·A = −µ0ε0∂V/∂t)

or Coulomb (∇ ·A = 0) gauges [45], we discuss it further in Appendix C. In the gauge of

Eq. (22), Eq. (6) simplifies to

−∂A/∂t+ v × (∇×A) = −η∇2A (23)
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using the identity

∇×∇×A = ∇(∇ ·A)−∇2A. (24)

A complete solution to the system is given by Eqs. (22) and (23) together. We have

A = Azẑ and ∇ ·A = ∂Az/∂z. Because v × (∇×A) = −v∂Az/∂y ẑ, Eq. (23) reduces to

a single non-trivial equation:

∂Az/∂t+ v∂Az/∂y = η∇2Az. (25)

By Eq. (17), a function f(z) may be added to Az without altering B, so f(z) may be chosen

to yield in Eq. (22) the appropriate V expected by physical arguments. However, by Eq.

(1), the emf around C is independent of V , so for the emf it is enough to solve Eq. (23).

If Rm � 1, | η∇2Az |�| v∂Az/∂y| and Eq. (25) collapses to a transport equation whose

solution is a function of the form Az(x, y − vt). We are interested in the case Rm � 1, for

which we expect diffusion to be important. The advection term v∂Az/∂t in Eq. (25) cannot

be neglected even with Rm � 1 because η∇2A0 = 0 and by analogy to MHD [10, 34, 41], we

expect (or at least must not exclude ab initio) | v∂A0/∂t |∼| η∇2A1 |, where A1 is a small

perturbation term satisfying | A1 |∼ Rm | A0 |. We seek a solution Az to Eq. (25) that holds

when Rm � 1 for any v = vŷ with the requirement Az → A0 as v→ 0. Henceforth we set

ξ = b as the relevant diffusion length scale, so put Rm = µσvb, with advection timescale

τv = b/v, and diffusion timescale τD = b2/η = Rmτv.

We solve Eq. (25) exactly using cylindrical coordinates in K with the origin centered

in the shell at some particular instant; such a solution will hold only for a time short

compared with τv, after which the shell will have moved sufficiently far from the origin that

the cylindrical symmetry assumed in Eqs. (9) to (11) is broken. However, we will see that

the system reaches steady-state extremely rapidly with τD � τv, meaning that B extremely

rapidly adapts itself via diffusion to the shell’s motion [34, 41]. For any location of the

translating shell, we may choose the origin in K to coincide with the center of the shell at

that instant. Since there was nothing special about the instant chosen, this should represent

the steady-state for the system.

The solution to Eq. (25) may in general be written

Az = As(ρ, φ) + At(ρ, φ, t), (26)
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where As(ρ, φ) solves the steady-state equation

v∂As/∂y = η∇2As, (27)

and At(ρ, φ, t) solves the time-dependent equation

∂At/∂t = −v∂At/∂y + η∇2At. (28)

When Rm � 1, naive inspection of Eq. (28) suggests At will exponentially decay away

on a timescale ∼ τD [9, 44]. We explicitly solve Eq. (28) by separation of variables using

At = G(ρ, φ)W (t). With separation constant −α2, this gives

η−1∂W (t)/∂t = −α2W (t), (29)

and

∇2G− (v/η)∂G/∂y + α2G = 0. (30)

By Eq. (29),

W (t) = C0e
−ηα2t; (31)

all Ci are constants. The alternative choice of separation constant +α2 yields an At (hence

B) exponentially growing with time, so we exclude this solution on physical grounds. Were

Rm � 1, Eq. (28) would become the transport equation for which separation of variables

yields a traveling wave solution.

Putting G = g(ρ, φ)eky (a standard technique from MHD [10, 27]) in Eq. (30) yields

∇2g + λ2g = 0, (32)

with

k = v/2η (33)

and λ2 = α2 − k2. Therefore Eq. (31) becomes

W (t) = C0e
−η(k2+λ2)t. (34)

Solving Eq. (32) by putting g = m(ρ)n(φ) with separation constant ν2 yields

m(ρ) = C1Jν(λρ) + C2Yν(λρ) (35)

and

n(φ) = C3 cos(νφ) + C4 sin(νφ), (36)
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where the Jν and Yν are Bessel functions of the first and second kinds of order ν. Therefore

At = C0m(ρ)n(φ)ekρ sinφe−η(k2+λ2)t. (37)

Since η(k2 + λ2) > 0 always, in Eq. (37) At decays exponentially and the system over

time goes to the steady-state solution As(ρ, φ) in Eq. (26). We therefore cannot choose the

trivial solution As = 0 in Eqs. (26) and (27) since for v = 0 we must have Az = A0 with

A0 given by Eq. (19). Therefore As(v = 0) = A0. The condition Rm � 1 requires v 6= 0 so

solutions for Rm � 1 need not satisfy this constraint.

We use boundary conditions and Eqs. (35) to (37) to solve for λ. This allows us to show

explicitly that the exponential in Eq. (37) does indeed decay on a timescale (even faster

than) ∼ τD, consistent with more general arguments [9, 44]. In Eq. (35), we set C2 = 0

so that our solutions remain bounded in the case a → 0. By Gauss’ law, we know that

Bρ must be continuous across the boundary of the cylindrical shell at ρ = a. In the case

of a static external transverse magnetic field, Bρ(ρ < a) ∼ 10−3B∞ for µr ∼ 5 × 103, a

value typical of the magnetically permeable materials we will discuss here. That is, the shell

acts as a magnetic shield for its hollow interior [39, 40, 42, 46]. For time-varying fields, the

shielding is as good or better than it is for the static field case [46–48]. We may then take

as a boundary condition for the time-dependent part Bt of B that Btρ(ρ = a)→ 0 for all φ

as one approaches the boundary from ρ > a within the shell. Since Btρ = ρ−1∂At/∂φ and

At evolves independently of As, this boundary condition then implies that, for all φ,

1

ρ

∂At
∂φ

∣∣∣∣
ρ=a

= 0. (38)

One could try to satisfy Eq. (38) for all φ by setting the product of constants in Eq.

(37), either C0C1C3 or C0C1C4, to be proportional to some negative power of µr that goes

to zero for large µr. But this is an unphysical choice, since its effect is to force At to 0

for all ρ within a ≤ ρ ≤ b, meaning that the cylindrical shell magnetically shields itself

throughout its entire volume, as well as its hollow interior. If this unphysical choice were

made nonetheless, it would render At negligible so that only the steady-state solution As

would remain. This conclusion would be the same as that we obtain below, but below it

will be for the reason that At decays away extremely quickly.

Using Eqs. (35) with C2 = 0 and Eq. (37), requiring that Eq. (38) be true for all φ in

turn requires

Jν(λa) = 0 (39)
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for all ν. Choosing ν = 0, the first zero of the Bessel function gives λ = 2.40/a, and Eq.

(34) becomes

W (t) = C0e
−(Rm/4)t/τve−(2.4b/a)2t/τD , (40)

using the definitions of Rm, τv, and τD. The first exponential in Eq. (40) is a decay that

is slow with respect to the translation timescale τv. The second exponential is a decay that

is much faster than the diffusion timescale τD. Since τD = Rmτv, this decay for Rm � 1

is extremely fast with respect to τv. Choosing any higher value of ν (or values, were one

to make the solution a series of terms in ν) would yield larger values for λ, leading to even

faster exponential decays in Eq. (40). In the special case a = 0 in Eq. (40), W (t) = 0 so

At = 0 and the full solution is is just the steady-state solution As(a = 0) from Eq. (26).

VIII. TIME-INDEPENDENT SOLUTION FOR v 6= 0, Rm � 1

Clearly W (t) → 0 as t → ∞ in Eq. (40), with As in Eq. (26) the steady-state solution

that remains. When Rm � 1, W (t) → 0 on a timescale < τD � τv, so At in Eq. (37)

decays rapidly away in the time that it takes the shell to move a distance < vτD, where

vτD � vτv = b. That is, we are — as expected — in a quasi-stationary situation where at

any point in the shell’s translation, Az = As(ρ, φ) to a good approximation, with As given

by Eq. (27). We now solve Eq. (27).

First consider the special case where our cylinder is solid (a = 0) and translating at

v = vŷ through the background field B∞ = B∞x̂. Then A0(a = 0) must be given by Eq.

(19) with a = 0, i.e A0 = β1y + h(z), where h(z) is an arbitrary function of z. This satisfies

Eq. (27) provided h(z) = kβ1z
2 with k given by Eq. (33), so that

A0(a = 0) = kβ1z
2 + β1y. (41)

By the gauge condition Eq. (22), we then have

V (a = 0) = −vβ1z. (42)

For a finite solid cylinder, charges in the cylinder experience a v ×B force and flow in

response, redistributing on an extremely short timescale τe until an electric field E = −∇V

is established that perfectly cancels v ×B. In particular, we see that Eq. (42) gives the

physically correct answer for the special case of a translating finite solid cylinder.
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Now what happens when our cylinder becomes a cylindrical shell with a 6= 0? We

anticipate from Eq. (19) that A0(a 6= 0) will be given by A0(a = 0) plus additional terms.

We solve Eq. (27) for the general (a 6= 0,v 6= 0) case, with the requirements that we recover

Eq. (41) when a = 0 and Eq. (19) when v = 0.

Eq. (27) is solved by f(ρ, φ)eky, where the function f satisfies

∇2f − k2f = 0 (43)

with k given by Eq. (33), so

f(ρ, φ) = [C5 cos(νφ) + C6 sin(νφ)][C7Iν(kρ) + C8Kν(kρ)], (44)

where the separation constant is ν2 and Iν and Kν are modified Bessel functions of order ν

of the first and second kind. We therefore write the general solution as

As = kβ1z
2 + β1y + f(ρ, φ)eky, (45)

where the first two terms provide the solution to Eq. (27) for the case a = 0 and the final

term modifies that solution, analogously to Eq. (19), for the case a 6= 0. Eq. (45) must go

to Eq. (19) in the v = 0 limit. Noting that as kρ→ 0 [49]:

K1(kρ) = (kρ)−1 + kρ(2γ − 1) + (kρ/2) ln(kρ/2) +O(kρ)2, (46)

where γ = 0.5772... is the Euler constant;

Iν(kρ) = (kρ)ν/(2νν!) +O(kρ)ν+2; (47)

and

eky = 1 + kρ sinφ+ (1/2)(kρ)2 sin2 φ+O(kρ)3, (48)

requiring Eq. (45) to equal Eq. (19) for v = 0 fixes in Eq. (44) C5 = 0 = C7 and ν = 1,

with C6 = 1 and C8 = −β2ka
2. Then the solution to Eq. (27) is

Az(a ≤ ρ ≤ b) = As = kβ1z
2 + β1y − β2ka

2K1(kρ)eky sinφ. (49)

For kρ→ 0, Eq. (49) becomes

Az(a ≤ ρ ≤ b) = As = A0 + A1 +O(Rm)2 (50)
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where A0 is given by Eq. (19),

A1 = −(Rm/2)b−1β2a
2 sin2 φ, (51)

and Rm = 2kb = µσvb. That is, when Rm � 1, Az for v 6= 0 is perturbed away from the

v = 0 solution (A0) by a series whose terms are scaled by powers of Rm.

Finally, applying the gauge condition Eq. (22) to A = Azẑ with Eq. (49), we find

V (a ≤ ρ ≤ b) = −vβ1z, (52)

so that even when a 6= 0,

∇V = −vβ1ẑ. (53)

IX. GENERATION OF AN EMF

Eqs. (17a) and (49) yield

Bx(a ≤ ρ ≤ b) = β1−β2(a/ρ)2eky{[kρ cos 2φ+(kρ)2 sinφ]K1(kρ)−(kρ)2 sin2 φK0(kρ)}, (54)

using the identities [50]

∂K1(kρ)/∂(kρ) = −[K0(kρ) +K2(kρ)]/2 (55)

and

K0(kρ)−K2(kρ) = −(2/kρ)K1(kρ), (56)

so that

∂K1(kρ)/∂(kρ) = −K0(kρ)− (kρ)−1K1(kρ). (57)

Noting that [49]

K0(kρ) = −γ − ln(kρ/2) +O(kρ), (58)

as v → 0 we have by Eq. (54) for Rm � 1:

Bx(a ≤ ρ ≤ b) = B0x +B1x +O(Rm)2, (59)

with

B1x = −Rmb
−1β2a

2ρ−1 sinφ cos2 φ. (60)

Fig. 2 shows for a particular case how Bx differs from B0x to O(Rm).
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Similarly, Eqs. (17b) and (54) yield

By(a ≤ ρ ≤ b) = B0y +B1y +O(Rm)2, (61)

with

B1y = −Rmb
−1β2a

2ρ−1 sin2 φ cosφ. (62)

Fig. 3 shows for a particular case how By differs from B0y to O(Rm).

We see that B1x = ∂A1/∂y and B1y = −∂A1/∂x. Eqs. (60) and (62) are readily checked

to verify that they do solve Eq. (7); e.g. v∂B0x/∂y = η∇2B1x as required. Eqs. (59)

and (61) show that the effect of v 6= 0 for Rm � 1 is to perturb B away from B0 by a

series scaled by successive powers of Rm. The asymmetry of Bx about y = 0 leads to the

continuous generation of an emf within the cylindrical shell. Consider the current path C

in Fig. 1 for x0 = b cosφ0, and y0 = b sinφ0. Then Eq. (8) for this path gives:

emf(x0, y0) = −η
∮
C
∇2Azẑ · dl = −2Rmvβ2l(a/b)

2 sinφ0 cos2 φ0 +O(Rm)2, (63)

using

η∇×B = −∇V − η∇2A (64)

from Eqs. (22) and (24), Az = As, and Eqs. (27), (17), and (59). Eq. (63) is only valid for

Rm � 1; if Rm � 1, emf = 0 by Eq. (7). Even for Rm � 1, emf = 0 in Eq. (63) if v = 0,

or a = 0, or µr = 1. The emf in K ′ is the same as that in K provided (v/c)2 � 1 [13].

The result in Eq. (63) is for one designated current path C. For an arbitrary C

with segments parallel to the z axis, the integration underlying Eq. (63) leads to emf ∝

[Bx(x1, y1) − Bx(x2, y2)], where the coordinates designate the (x, y) coordinates of the two

segments of C parallel to the z axis. (Arbitrary current paths can then be built up by

fusing such rectangular sub-paths.) Because of the symmetry in φ of B0x, Eq. (10a), it

is clear that for every such circuit with 0 < φ < π there is a corresponding circuit with

π < φ < 2π that yields an emf of opposite sign with respect to B0x. This is because the

scalar product (v ×B0) · dl = vB0xẑ · dl has the opposite sign in the two cases, since the

circuits are mirror reflections across the y = 0 plane and in each case C is traversed using a

right-hand rule. Over the entire shell, these therefore average to zero. It is the component

of Bx of O(Rm) that makes a non-zero contribution, because of the asymmetry in φ of B1x,

with B1x switching sign at the y = 0 plane (Fig. 2). With respect to B1x, for every current
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path C with 0 < φ < π, there is a corresponding path with π < φ < 2π that yields an emf

of identical sign, so the two do not cancel. To O(Rm) therefore, the average emf around the

shell cannot be zero. We will see in Sec. XII that, consistent with a non-zero emf, there is

a net absorption of power by the shell from Poynting vector inflow.

An infinite solid conducting bar moving through a background magnetic field will (in

principle) generate a current due to v ×B since its infinite extent prevents the accumulation

of the charges at its ends that for a finite bar generates the electric field E = −∇V =

−v ×B. However, even for the infinite solid bar, ∇× (v ×B) = 0 so there will be emf = 0

about any closed path C lying within the bar. The nonzero emf in Eq. (63) is not, therefore,

attributable to the fact that our formalism began with an infinite cylindrical shell.

X. INTUITIVE PHYSICAL PICTURE

A simple physical picture offers insight into why a magnetically permeable cylindrical

shell moving at velocity v and satisfying Rm � 1 would be expected to generate an emf

according to Eq. (8). In frame K, picture a finite cylindrical shell moving transversely to

its long axis (Fig. 1). Assume a 6= 0. By Eq. (21), we know that it is impossible for the

shell’s electrons to establish a configuration such that −∇V = −v ×B.

Imagine beginning with the cylindrical shell at rest and then placing it into motion at

velocity v. The magnetic flux density within the shell itself is initially B0, given by Eq.

(10). B0 results from Maxwell’s equations requiring the continuity of the normal component

of B and tangential component of H at the surfaces ρ = a and ρ = b. As the shell moves

it attempts, so to speak, to enforce B = B0 throughout a ≤ ρ ≤ b. If τD/τv = Rm � 1,

the diffusion timescale τD for the magnetic flux density is much longer than the advection

timescale τv. That is, diffusion is negligible compared to advection and the field B(a ≤ ρ ≤ b)

advects along with the shell, so that B = B0 to very high precision. (Alfvén’s frozen-flux

theorem [26] holds.) Since ∇×B0 = 0, by Eq. (8) we must have emf = 0 when Rm � 1.

Contrast this with the case τD/τv = Rm � 1. Now the timescale τD for diffusion is

much shorter than τv. That is, as the shell moves, the field’s adjustment is dominated not

by advection but by diffusion, toward a field configuration at which diffusion would stop,

i.e. toward B0(a ≤ ρ ≤ b), where the “destination” B0 is the value that would apply for a

stationary shell at the location to which the shell has just moved. The field can never reach
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this end point since the shell keeps moving even as the field diffuses, so a steady-state is

reached in which the diffusing field differs slightly from B0. The field within the shell does

not adjust instantaneously to the shell’s motion, so never (unless the shell is brought to rest

in K) fully “catches up” to that motion. A closed path C moving with the shell constantly

experiences a field that is diffusing across its boundaries, and Eq. (8) in general is nonzero.

XI. ANALYSIS IN THE LABORATORY FRAME

We now consider our system in the laboratory frame K ′, where v = 0 so there is no

magnetic v ×B force, but there is instead an electric field given by the field transformation

Eq. (5): E′ = E + v ×B. Ohm’s law in K ′ is simply E′ = J′/σ, which leads to the induction

equation in K ′:

∂B/∂t′ = η∇2B. (65)

Since J′ = J and B′ = B when (v/c)2 � 1, the emf is given by

emf ′ =
∮
C

E′ · dl′ = σ−1
∮
C

J · dl = η
∮
C

(∇×B) · dl. (66)

We have used the fact that E′ and therefore J must be parallel to ẑ, so the relevant part

of dl is perpendicular to y and therefore we can put dl′ = dl. Eq. (66) is identical to Eq.

(8) and therefore to Eq. (63), so emf ′ = emf, as expected [13]. Eq. (66) is nonzero in K ′

provided the same conditions hold as those needed for Eq. (63) to give emf 6= 0.

It might nevertheless seem puzzling that an emf could be generated in K ′. We intuitively

expect ∂B/∂t′ = 0 in steady state, so that by Eqs. (8) and (65), emf ′ = 0. But care must

be taken with B in Eq. (65): because B is not rotating with Earth, it cannot be treated

implicitly as B(x, y′), where y′ = y − vt relates the coordinates in K ′ and K. If B were

rotating with Earth, then in K ′ we would simply have B = B(x, y′) and ∂B(x, y′)/∂t′ =

(∂B/∂y′)(∂y′/∂t′) = 0, using the chain rule and ∂y′/∂t′ = 0.

But treating B as rotating with Earth is inconsistent with the clear expectation from

the results of the Barnett [1], Kennard [15], and Pegram [19] experiments. Rather, in K ′

we must treat B as advecting through the cylindrical shell at velocity v = −vŷ, which

we capture by writing B = B(x, y) with y = y′ + vt. The time-dependence of B(x, y) is

driven by the advection of B through the shell; this dependence is included implicitly by
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y = y(y′, t) = y′ + vt. Then by the chain rule and ∂y/∂t′ = v,

∂B/∂t′ = ∂B(x, y(y′, t))/∂t′ = (∂B/∂y)(∂y/∂t′) = v∂B/∂y. (67)

That is, we do have ∂B(x, y′)/∂t′ = 0, but we also have ∂B(x, y)/∂t′ = v∂B/∂y 6= 0, and we

must distinguish between the two. Only the second representation for B in K ′ is consistent

with experiment.

Substituting Eq. (67) into (65) gives a time-independent equation for B:

v∂B/∂y′ = η∇2B. (68)

Recalling ∂/∂y′ = ∂/∂y, Eq. (68) yields Eq. (27) for A given the gauge choice Eq. (22).

Physically, the induction (advection-diffusion) equation concerns the steady-state that is

reached in B as it advects through the Rm � 1 cylindrical shell and undergoes concomitant

diffusion; as a result B (as we know from Eqs. (59) to (62)) is slightly perturbed away from

B0. Were B instead advecting along with the shell, there would be no emf.

A Poynting vector and flux transport analysis [41, 51, 52] in K ′ make it clear that energy is

flowing into our Rm � 1 cylindrical shell, providing the power required to sustain emf ′ 6= 0.

The Poynting vector in K ′ is

S′ = µ−1(E′ ×B) = µ−1η(∇×B)×B, (69)

where we have used E′ = J/σ and Ampère’s law. Were it the case that B = B0, we would

have S′ = 0 by ∇×B0 = 0 in Eq. (69) and there would be no energy input to the cylindrical

shell. However, ∇×B1 6= 0 and using Eqs. (24), (23), (53), (27), and (17), we find

η∇×B = v(β1 −Bx)ẑ, (70)

giving

S′ = vµ−1(β1 −Bx)(Bxŷ −Byx̂). (71)

We perform our calculations at the instant at which the origins of the K ′ and K frames

coincide. The net energy flux P ′S into the shell’s surface within l/2 ≤ z ≤ l/2 (where l/2 is

chosen to be sufficiently far in from the shell’s edge at L/2) is given by:

P ′S =
∫ 2π

0

∫ l/2

−l/2
S′·ρ̂ ρdφdz, (72)
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where ρ̂ = cosφ x̂ + sinφ ŷ and the boundaries at both ρ = b and ρ = a must be taken into

account by summing the contributions from evaluating Eq. (72) at ρ = b and at ρ = a. The

boundary at ρ = a enters with a negative sign, opposite from that at ρ = b. The calculation

is simplified by noting

(Bxŷ −Byx̂) · ρ̂ = −By cosφ+Bx sinφ = [β1 + β2(a/ρ)2] sinφ+O(Rm)2, (73)

i.e. the O(Rm)1 terms cancel in Eq. (73). In Eq. (72), nearly all terms integrate to zero,

and

P ′S = (π/4)σv2β2
2a

2[1− (a/b)2]l +O(Rm)2. (74)

P ′S = 0 if v = 0, or µr = 1 (because then β2 = 0), or a = 0. Otherwise, the Poynting vector

S′ in K ′ gives a net energy flow into the cylindrical shell that sustains the emf ′.

It is interesting to ask which terms within S′ provide this energy. Nearly every term in

Eq. (71) makes zero contribution to Eq. (72), either because it cancels an identical term of

opposite sign, or because it integrates to zero over φ: the energy from most terms simply

flows through the shell, with as much energy leaving as entering. The only term in S′ that

makes a nonzero contribution is

S′x = 2σv2β2
2a

4ρ−3 sin2 φ cosφ(4 cos2 φ− 1) x̂. (75)

Eq. (65) can be written [41, 52]:

∂B/∂t′ = ∇× (w ×B) (76)

for an appropriate velocity w. By Ampère’s and Ohm’s law in K ′, we have

E′ = η∇×B, (77)

so E′ ·B = 0 since B = (Bx, By, 0). When E′ ·B = 0, w in Eq. (76) is [41, 52]:

w = (E′ ×B)/B2, (78)

which is called the “flux transporting velocity” [52], meaning that w for the case σ 6= ∞

preserves flux, because it satisfies Eq. (76) in the same way that v satisfies Eq. (7) for the

case σ =∞. A contour C in the cylindrical shell will therefore have dΦ/dt = 0 through its

corresponding surface S if C is moving at w, where w may vary point-to-point along C.
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By Eqs. (68) and (78),

w = µS′/B2. (79)

Direct calculation using Eqs. (79) and (71) reveals w to be algebraically complicated with

w 6= v, even while satisfying ∇× (w ×B) = ∇× (v ×B), as it must. When w 6= v, then

if C is simply being transported with the conductor at v 6= 0, there must be an emf around

C. This is the case, for example, for the contour C in Fig. 1. By Eqs. (78), the zero-velocity

solution B0 in K ′ is not transported through the shell — because in this case E′ = 0 by

Eq. (77), so w = 0 in Eq. (78). Of course, B0 does not diffuse: ∇2B0 = 0. Only the

perturbations B1 and higher orders will have w 6= 0.

Eq. (79) means that magnetic flux is transported proportionally to the transport of

energy defined by the Poynting vector. Since S′ integrated over the cylindrical shell is non-

zero, there is a corresponding net flow of magnetic flux into the shell. We have a picture

in K ′ in which by Eq. (75), near the x = 0 plane for π/3 < φ < 2π/3 and again for

4π/3 < φ < 5π/3, magnetic field lines are diffusing (transported at velocity w) in the x

direction vertically toward the x = 0 plane from above and below. These lines annihilate

[9, 52, 53] in the x = 0 plane, providing energy that drives the current flow in C. The

cancellation (annihilation) of the magnetic filed lines in the x = 0 plane preserves the

gradient, which in turn maintains the continuing inward diffusion of the field.

We note an analogy to the homopolar generator. By Eqs. (67) and (76),

emf ′ =
∮
C

(w ×B) · dl, (80)

where w is given by Eq. (78). In the homopolar generator, the analog to Eq. (80) gives

emf ′ 6= 0 because only part of C is rotating, so v varies (stepwise) around C and v ×B does

not integrate to 0 around C. In the Rm � 1 cylindrical shell of Fig. 1, emf ′ 6= 0 because w

varies around C according to Eq. (79), so w ×B does not integrate to 0 around C.

XII. POYNTING’S THEOREM AND MAGNETIC BRAKING

When Rm � 1, in the steady-state (e.g. Eq. (45)) we have ∂A/∂t = 0, so E = −∇V =

vβ1ẑ by Eq. (53). Together with Ampère’s law and Eq. (69), we have

E · J = σv2β1(β1 −Bx). (81)
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By Eq. (3) we also have

E · J = σ−1J2 + (J×B) · v. (82)

Integrating Eq. (81) over the volume dV = ρdφdρdz gives zero, so Eq. (82) implies

σ−1
∫
V
J2 dV = −

∫
V

(J×B) · v dV, (83)

where the integral on the right-hand side is the familiar expression for magnetic braking.

In K, Joule heating therefore derives from the energy made available by magnetic braking

of the cylindrical shell. Since the shell is being carried by Earth, it is clear that electrical

power in our system derives ultimately from the kinetic energy of Earth’s rotation. This is

analogous to the Poynting theorem analysis of the homopolar generator [12].

Explicitly integrating (J×B) · v in Eq. (83) over the volume V of the shell with J =

µ−1∇×B shows the power removed from Earth’s rotational kinetic energy to be:

Pk = −σv2l
∫ b

a

∫ 2π

0
Bx(β1 −Bx)ρdρdφ = (π/2)σv2β2

2 la
2[1− (a/b)2] +O(Rm)2. (84)

Were B = B0, we would have Pk = 0 since ∇×B0 = 0. If v = 0 or µr = 1 or a = 0, then

Pk = 0. The power in K must equal that in the laboratory frame K ′ to O(v/c)2 [13].

The manner in which this power arises in K ′ is of interest. Poynting’s theorem [54] states

that the rate at which work is done on the electrical charges within a volume V of surface

area Σ is equal to the decrease in energy stored in the electric and magnetic fields, minus

the energy that flowed out through the surface bounding the volume. In K ′, Poynting’s

theorem is: ∫
V

E′ · J dV = −µ−1
∫
V

B · ∂B/∂t′ dV −
∫

Σ
S′ · dΣ, (85)

where as before the displacement current is negligible. By Eq. (65), E′ · J = σ−1J2. The

second term on the right of Eq. (85) is just Eq. (72). The first term on the right may

be evaluated using Eq. (76), a calculation most easily performed with B in cylindrical

coordinates (Appendix D). The result is identical to Eq. (74).

Therefore in K ′, Eq. (85) gives the power P ′P provided to the shell, to be

P ′P = σ−1
∫
V
J2 dV = (π/2)σv2β2

2a
2[1− (a/b)2]l +O(Rm)2, (86)

with the energy for electrical power being provided in Poynting’s theorem coming equally

from Poynting vector inflow and the ∂B/∂t′ term. This is indeed equal to the expression
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found in Eq. (84) by calculating in the K frame: Pk = P ′P . For a given choice of b, Eqs.

(84) and (86) reach their maximum values for a = b/
√

2.

An important question is whether the slight de-spinning of Earth caused by the mag-

netic braking found here is consistent with angular momentum conservation. Mechanical

systems can come in or out of rotation solely via the transfer of angular momentum between

mechanical rotation and the electromagnetic field. (For the fully calculated example of a

charged magnetized sphere exhibiting this behavior, see [55, 56].) The angular momentum

of the electromagnetic field is proportional to r× S (with r the usual radial component in a

spherical coordinate system). For the system in our thought experiment, the analogous issue

is linear momentum conservation. In K, the mechanical momentum of the cylindrical shell

lies in the ŷ direction, and the braking force per unit volume, given by J×B, acts in the

−ŷ direction. The momentum (per unit volume) of the electromagnetic field associated with

this system is p = ε0µ0S, with S = µ−1E×B = (µσ)−1J×B, i.e. p is proportional to, and

lies in the direction of, the magnetic braking vector. Therefore, as the system is braked,

positive mechanical linear momentum is lost from the cylindrical shell while negative linear

momentum is lost from the electromagnetic field, and momentum conservation is possible.

XIII. EXPERIMENTAL PREDICTIONS

Evaluating the emf expected to be measured in a laboratory test of these claims requires

that part B∞ of Earth’s total field that is axially symmetric about the planet’s rotation axis.

This is well approximated by summing the axisymmetric dipole, quadrupole, and octupole

components of the total field to yield the northward (X) and downward (Z) components of

B∞ at a point on the surface of the Earth. These are [23], at colatitude θ,

X = −g0
1 sin θ − 3g0

2 sin θ cos θ − (3/2)g0
3 sin θ(5 cos2 θ − 1) (87a)

and

Z = −2g0
1 cos θ − (3/2)g0

2(3 cos2 θ − 1)− 2g0
3 cos θ(5 cos2 θ − 3), (87b)

giving

B∞ = (X2 + Z2)1/2, (87c)

where the Gauss coefficients g0
1 = -29496.5 nT, g0

2 = -2396.6 nT, and g0
3 = 1339.7 nT [57].

Then for, say, Princeton’s colatitude θ = 49◦39′ (for which v = 354 m s−1) B∞ = 45 µT ,
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pointed downward into Earth’s surface at an angle (from the horizontal when facing the

north geographic pole) tan−1(Z/X) = 57.5◦.

Suppose that our cylindrical shell had dimensions l = 20 cm, b = 1 cm and a = b/
√

2,

and was made of MN60 MnZn ferrite, with data sheet values given to be µr = 6, 500±3, 000

and σ ≈ 0.5 S m−1 [58]. Then Rm = 1.4× 10−2 � 1, while Rm � (v/c)2 ensures that
√
g00

effects are small compared to first-order perturbations scaled by Rm. For φ0 = 45◦, Eq. (63)

gives emf = 65 µV .

By inspection of the integral in Eq. (63), the emf should reverse sign when the shell

(together with the attached measuring apparatus, a digital voltmeter; see Fig. 1) is ro-

tated by 180◦. This is a striking prediction that should separate an emf generated by the

effect predicted here from other types of emf generation. Our derivation is only valid for

v transverse to the shell, but the emf must pass through zero between the two transverse

orientations that are separated by 180◦. A voltmeter across d and f in Fig. 1 would measure

half the emf around C in Eq. (63). We caution that C may “choose itself” under rotation,

and experiment will show whether a voltage measurement actually somehow averages over

many possible current paths. If so, we may approximate the expected emf by averaging over

ρ and φ in the calculation leading to Eq. (63):

< emf >= − 1

π(b− a)

∫ b

a

∫ π

0
vBxl dρdφ = −(4/3π)Rmvβ2l(a/b)

2(1− a/b)−1 ln(b/a), (88)

which for the identical parameter values as above gives < emf >= 46 µV. Once again, emf

measured as in Fig. 1 yields half this value, and the sign reverses under 180◦ rotation.

XIV. SCALING AND CONCLUSIONS

The cylindrical shell was chosen as an especially simple realization of a conductor with

∇× (v ×B) 6= 0, and MN60 material was chosen to provide Rm � 1 on a laboratory scale.

For the MN60 device considered above, Pk ≈ 16 nW by Eq. (84). By the maximum power

transfer theorem at most half of this power can be transferred to the load [59]. To be useful,

the effect must be scaled up greatly in voltage and power. One way might be to maintain

Rm � 1 while increasing σ, by decreasing µr, b, and therefore a. Carbon nanotubes can be

coated with materials such as iron [60, 61], so very small low-Rm magnetically permeable

tubes seem plausible. One must also consider resistance and ohmic loss.
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It should be possible to separate the magnetic shield producing ∇×(v ×B) 6= 0 from the

conductor providing Rm � 1. For example, note that the functional form of Eq. (9), for the

magnetic flux density outside a magnetically permeable shell, is identical to that of Eq. (10)

for the flux density in the shell’s interior. This guarantees that Eq. (21) holds outside the

shell with the substitutions β2 → −β3 and a2 → b2. Therefore we should be able to realize

the effect using a magnetically permeable cylinder surrounded by an insulated concentric

cylindrical shell of a non-permeable low-Rm material, and find results analogous to those

found above. Graphite has σ = 7.3 × 104 S m−1 [37], giving Rm ≈ 2 × 10−2 for b = 1 mm,

so we can hope to realize the effect for a mu-metal or ferrous cylindrical core surrounded

by a thin insulator with an overlying shell of graphite. Decreasing b to 5 µm would allow

copper (σ = 6.0 × 107 S m−1 [37]) or other common metals to be used for the outer layer,

with obvious advantages. Altogether different topologies and materials are possible.

The effect predicted here would be available nearly globally and with no intermittency,

but requires testing then further examination to see if it or some other configuration based

on broadly similar principles could be scaled to practical emission–free power generation.

Devices could have important practical implications even if only voltages of ∼ 1 volt could

be achieved. Such a device would represent a small-application power supply whose lifetime

would be limited only by material degradation. At the other, extreme end of speculations

regarding generated power, we note that global installed power generation capacity is pro-

jected to grow to 10,700 GW by 2040 [62]. Imagine as an upper limit that human civilization

generated this power entirely from Earth’s rotation through its magnetic field. Over a cen-

tury, the resulting kinetic energy loss would increase Earth’s rotation period by 7 ms. This

may be compared to fluctuations in the length of Earth’s day of 10 ms over time intervals of

several decades [63], and an observed long-term increase (dominated by lunar tidal recession)

of 2.5 ms per century [64].
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APPENDIX A: CO-ROTATION OF THE IONOSPHERE

What happens to charged particles in a conducting plasma around Earth in the presence

of Earth’s non-rotating axially symmetric field? Hones and Bergeson [24], building on Davis

[20, 25] and Backus [30] examined this question for the complicated general case of mag-

netic fields with both axisymmetric and non-axisymmetric components, treating the purely

axisymmetric case as a special case of their more general result. Here we follow their overall

logic but present the simpler calculation for the axisymmetric component only: the special

case of a magnetic dipole aligned antiparallel to Earth’s rotation axis.

An observer in a non-rotating frame sees a (non-rotating) dipole field anti-aligned with

Earth’s axis, given by Br = −(2M/r3) cos θ, Bθ = −(M/r3) sin θ, and Bϕ = 0, where M

is a constant proportional to the magnetic dipole moment. In general the electric field

seen in this frame is given by E = −∂A/∂t − ∇V . However, for our non-rotating dipole

we can put ∂A/∂t = 0 so E = −∇V . Earth’s rotation through its own dipole field

leads to an electrostatic field within the Earth that balances the resulting v ×B force:

E = −∇V = −v ×B, which gives V = −(Mω/r) sin2 θ, and a surface potential for Earth

(of radius R⊕) of V (r = R⊕) = −(Mω/R⊕) sin2 θ. Fields E and B in the plasma must sat-

isfy E ·B = 0, due to the plasma’s near-infinite conductivity parallel to the magnetic field

lines. This condition gives 2 cos θ ∂V/∂r = −(1/r) sin θ ∂V/∂θ. The solution consistent with

the boundary condition at r = R⊕ is V = −(Mω/r) sin2 θ, so that Er = (Mω/r2) sin2 θ,

Eθ = −(2Mω/r2) sin θ cos θ, and Eϕ = 0. (Note that this satisfies E∞ = 0.) Charged

particles in this plasma drift azimuthally at a velocity v = (E×B)/B2; direct calculation

gives v = −ωr sin θ φ̂ for particles of any charge or mass. That is, the ionosphere comes into

co-rotation with Earth because the charged particles composing it acquire exactly the neces-

sary co-rotation velocity from their interactions with Earth’s non-rotating axially symmetric

field together with the electric field induced in the ionosphere. Earth’s rotation through the
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non-rotating axisymmetric component of its magnetic field drives ionospheric co-rotation.

The non-axisymmetric components — those components that give Earth’s magnetic field

its tilt away from Earth’s rotation axis — of course do rotate with Earth. Since magnetic

field lines are defined as lines everywhere tangent to the magnetic field, an observer well

away from Earth who could somehow see field lines would see Earth’s tilted dipole lines

rotating with Earth — the rotating lines being the vector sum of a non-rotating azimuthally

constant component plus a rotating azimuthally varying component.

There is a standard result that magnetic lines of force in a perfectly conducting fluid move

with the fluid — the fluid is “line-preserving.” [9, 51, 65]. (However, magnetic field lines are

not relativistically covariant [51], and their reality must be treated with care [21, 66, 67].)

When we calculate the equations for the magnetic field lines of a tilted dipole, we find that

these lines are described by axisymmetric time-independent terms (from the non-rotating

axisymmetric dipole) plus terms sinusoidal in ωt, i.e. terms that rotate with Earth. The field

lines do indeed vary sinusoidally with ωt, due to the superposition of a rotating component

on top of an underlying axially symmetric component.

Magnetic field lines must satisfy dl×B = 0, where dl is the arc length. This leads to

the usual condition

dr/Br = rdθ/Bθ. (A1)

Earth’s magnetic potential U , taking into account only the lowest-order terms for the ax-

isymmetric dipole (g0
1) and inclined dipole (g1

1 and h1
1) terms, is [23]:

U = g0
1(a3/r2) cos θ + (a3/r2)(g1

1 cosϕ+ h1
1 sinϕ) sin θ, (A2)

where g0
1 = −29496.5 nT, g1

1 = −1585.9 nT, and h1
1 = 4945.1 nT [57]. Because of Earth’s

rotation, a non-rotating observer co-orbiting with Earth would see ϕ = ωt where ω is Earth’s

angular speed. Using Eq. (A1) with Br = −∂U/∂r and Bθ = −r−1∂U/∂θ, we find

Br = 2g0
1(a/r)3 cos θ + 2(a/r)3(g1

1 cosϕ+ h1
1 sinϕ) sin θ, (A3)

Bθ = g0
1(a/r)3 sin θ − (a/r)3(g1

1 cosϕ+ h1
1 sinϕ) cos θ, (A4)

and
dr

r
= 2dθ

g0
1 cos θ + (g1

1 cosϕ+ h1
1 sinϕ) sin θ

g0
1 sin θ − (g1

1 cosϕ+ h1
1 sinϕ) cos θ

. (A5)
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Now since g1
1/g

0
1 ≈ 0.05 and h1

1/g
0
1 ≈ 0.17, we may roughly approximate this as

dr

r
≈ 2dθ{cot θ + [(g1

1/g
0
1) cosφ+ (h1

1/g
0
1) sinφ] csc2 θ}. (A6)

Integrating, then exponentiating both sides and using a Taylor expansion yields

r ≈ r0 sin2 θ − r0[(g1
1/g

0
1) cosϕ+ (h1

1/g
0
1) sinϕ] sin 2θ, (A7)

where r0 is a constant of integration and ϕ = ωt. The first term in Eq. (A7) is identical

to the usual equation for the field lines of an axisymmetric dipole field [9]. The next term

gives the inclined dipole and its rotation with Earth. An observer rotating with Earth at

a particular ϕ could interpret what he or she sees as co-rotating field lines with a shape

specific to that value of ϕ. An observer looking back at Earth who could see field lines

would see an inclined dipole rotating with Earth.

APPENDIX B: FAILURE OF THE v = 0 SOLUTION

We demonstrate that the v = 0 solution B0 (Eq. (10)) is no longer a solution for the

magnetically permeable cylindrical shell once the shell is moving with v = vŷ in K (Fig.

1). We assume B0 (or equivalently, A0 with allowance for gauge ambiguity) remains the

solution even though v 6= 0, and show that this leads to a contradiction.

When v = 0, we have B∞(ρ� b) = B∞x̂ and E∞(ρ� b) = 0 in K. These must continue

to hold once v 6= 0, since the shell’s distortion of the fields must go to zero at infinity.

First assume B0(x, y, z, t) to be a solution for the a 6= 0 cylindrical shell for v 6= 0.

Inserting Eq. (10) into Eq. (7) requires ∇× (v ×B0) = 0. But we know by Eq. (21) that

this is false in general. Therefore B0(x, y, z, t) cannot be a solution when v 6= 0.

Rather than assuming a solution B0(x, y, z, t), we instead treat the disturbance in the

background field B∞ as moving together with the cylindrical shell at v. We implement

this in Eqs. (9) to (11) by referring the coordinates of B0 to the K ′ system (x′, y′, z′, t′) =

(x, y − vt, z, t). For example when v 6= 0, Eq. (9a) would be

B′0x(ρ
′ > b) = B∞ + β3(b/ρ′)2 cos 2φ′, (B1)

where ρ′ = (x2 + y′2)1/2, φ′ = tan−1(y′/x), and of course y′ = y − vt. Correspondingly, Eq.

(18) becomes

A′0(ρ′ > b) = B∞y
′ + β3(b2/ρ′) sinφ′. (B2)
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Henceforth in this discussion primed field quantities are understood to be written in terms

of the coordinate y′. In the limit v→ 0, Eqs. (B1), (B2), and their analogs go to Eqs. (9)

to (11) and (18) to (20), as required.

In this appendix only we make the following simplifying choice of gauge [33, 41]:

A′ → Ã′ = A′ +∇′
∫
V ′dt′, (B3a)

so that

V ′ → Ṽ ′ = V ′ − ∂

∂t′

∫
V ′dt′ = 0. (B3b)

I.e. the corresponding gauge condition is V ′ = 0. Because V ′ = V − vAy = V since only Az

is nonzero, we have V ′ = V = 0. Henceforth dropping the tilde on A′, we have

E′ = −∂A′/∂t′. (B4)

Eqs. (B2) and (B4) give E′(ρ′ > b) = 0, so by Eq. (5), E(ρ > b) = vB0xẑ, where B0x is

given by Eq. (9a). But by taking ρ → ∞ in Eq. (9a), this means E∞ = vB∞ẑ, which

contradicts our premise that E∞ = 0 in K. Therefore Eq. (B2) cannot be a solution for the

magnetically permeable cylindrical shell once v 6= 0.

But perhaps we can add a piece to A′0 that preserves B′0 while giving E∞ = 0? (This

would not be a gauge transformation, as we would be explicitly attempting to alter the field

quantity E while preserving B′0.) We now show that this is impossible, so that there is no

modification of Eqs. (18) to (20) that both maintains B′ = B′0 and is consistent with the

requirement that B∞(ρ � b) = B∞x̂ and E∞(ρ � b) = 0. Whatever term is added to Eq.

(B2) cannot vary with x or y′, or else B′0 will be changed, in contradiction to our premise. If

we tried instead to add a spatially constant term vB∞t
′ to Eq. (B2) to alter E′ and thereby

E∞, by Eq. (17) we would still change B′0x by vB∞(∂t′/∂y) = B∞, again contradicting

a premise. We have therefore shown that B′0(x′, y′, z′, t′) = B′0(x, y − vt, z, t) cannot be a

solution when v 6= 0. In effect, the “solution” B′0(x, y − vt, z, t) is incompatible with the

premise that B∞ does not rotate together with the frame K ′.

APPENDIX C: CHOICE OF GAUGE

While the gauge condition Eq. (22) is cited in the literature [43, 44], it is not included

in lists of standard electrodynamics gauges [68]. We therefore discuss it further here, and

32



show that it satisfies the requirements of gauge invariance. A gauge transformation leaves

B and E unchanged provided the transformed vector and scalar potentials satisfy

Ã = A +∇χ (C1)

and

Ṽ = V − ∂χ/∂t. (C2)

Now take the divergence of Eq. (C1), multiply it by η, and add to this Eq. (C2), to obtain:

Ṽ + η∇ · Ã = V + η∇ ·A + (−∂χ/∂t+ η∇2χ). (C3)

The gauge condition Eq. (22) therefore holds both before and after the gauge transformation

Eqs. (C1) and (C2) provided χ satisfies the diffusion equation

∂χ/∂t = η∇2χ. (C4)

That is, gauge invariance with χ satisfying Eq. (C4) leads to the gauge condition Eq. (22).

APPENDIX D: CYLINDRICAL COORDINATE REPRESENTATION

Some calculations are most easily performed with B0 and B1 in cylindrical coordinates.

For convenience, we give this representation here. We have

Bρ = Bx cosφ+By sinφ, (D1a)

Bφ = −Bx sinφ+By cosφ, (D1b)

so that, from Eq. (10):

B0ρ(a ≤ ρ ≤ b) = [β1 − β2(a/ρ)2] cosφ; (D2a)

and

B0φ(a ≤ ρ ≤ b) = [−β1 − β2(a/ρ)2] sinφ. (D2b)

Using Eq. (D2) and v = vŷ = v sinφ ρ̂+ v cosφ φ̂ yields a simpler expression for Eq. (21):

∇× (v ×B0) = 2vβ2a
2ρ−3[sin 2φ ρ̂+ cos 2φ φ̂]. (D3)

We also have, from Eqs. (60) and (62):

B1ρ(a ≤ ρ ≤ b) = −(1/2)Rmb
−1β2a

2ρ−1 sin 2φ; (D4a)
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and

B1φ(a ≤ ρ ≤ b) = 0. (D4b)

The first term on the right hand side of Eq. (85) may then be evaluated via Eq. (65) and the

vector Laplacian in cylindrical coordinates. The calculation is tedious but straightforward.
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FIG. 1. A magnetically permeable, low-Rm cylindrical shell with inner and outer radii a and b

and length L is moving at velocity v = vŷ through background fields B∞ = B∞x̂ and E∞ = 0. A

rectangular current path C with vertices d, e, f, g is embedded in, and translating with, the shell.

An emf is generated around C according to Eq. (63). A digital voltmeter (DVM) measures half

this emf between d and f . C lies in the plane x = b cosφ0 ≡ x0, with |x0| ≥ a. It has right-angle

vertices at d = (x0, y0,−l/2), e = (x0, y0, l/2), f = (x0,−y0, l/2) and g = (x0,−y0,−l/2), where

y0 = b sinφ0 and l/2 < L/2− a.
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FIG. 2. Deviations in the x component Bx of the magnetic flux density (Eq. 59) for the moving

cylindrical shell from that for the stationary shell (Eq. 10), relative to the flux density at infinity,

for a shell made of MN60 material (see text) with b = 1 cm. These results are for the x0 = b/
√

2

plane, with (a/b) = 1/
√

2.
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FIG. 3. Deviations in the y component By of the magnetic flux density (Eq. 61) for the moving

cylindrical shell from that for the stationary shell (Eq. 10), relative to the flux density at infinity,

for a shell made of MN60 material (see text) with b = 1 cm. These results are for the y0 = b/
√

2

plane, with (a/b) = 1/
√

2.
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