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Abstract 

Magnesium-Aluminum (Mg-Al) alloys are important metal alloys with a wide range of 

engineering applications. We investigate the elastic and thermodynamic properties of Mg, 

Al, and four stoichiometric Mg-Al compounds including Mg17Al12, Mg13Al14, and 

Mg23Al30, and MgAl2 with orbital-free density functional theory (OFDFT). We first 

calculate the lattice constants, zero-temperature formation energy, and independent 

elastic constants of these six materials and compare the results to those computed via 

Kohn-Sham DFT (KSDFT) benchmarks. We obtain excellent agreement between these 

two methods. Our calculated elastic constants of hexagonal close-packed Mg and face-

centered cubic Al are also consistent with available experimental data. We next compute 

their phonon spectra using the force constants extracted from the very fast OFDFT 

calculations, because such calculations are computationally challenging using KSDFT. 

This is especially the case for the Mg23Al30 compound, whose 3×3×3 supercell consists 

of 1431 atoms. We finally employ the quasi-harmonic approximation to investigate 

temperature-dependent thermodynamic properties, including formation energies, heat 

capacities, and thermal expansion of the four Mg-Al intermetallic compounds. The 

calculated heat capacity and thermal expansion of both Mg and Al agree well with 

experimental data. We additionally find that Mg13Al14 and MgAl2 are both unstable, 

consistent with their absence from the equilibrium Mg-Al phase diagram. Our work 

demonstrates that OFDFT is an efficient and accurate quantum-mechanical 

computational tool for predicting elastic and thermodynamic properties of complicated 

Mg-Al alloys and also should applicable to many other engineering alloys. 
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Introduction 

Magnesium (Mg) and aluminum (Al) are two of the most abundant metal 

elements on earth. Alloys based on these two elements exhibit a wealth of excellent 

properties such as low density and high strength-to-weight ratio, which lead to a variety 

of applications including lightweight automobile components and portable electronic 

devices [1]. An abundance of these elements combined with their potential to enhance 

energy-efficiency of vehicles via weight reduction encourages use of Mg-Al alloys far 

into the future. 

Properties of Mg-Al alloys, particularly mechanical properties of primary 

engineering interest, strongly depend on diverse stoichiometric and nonstoichiometric 

intermetallic phases [2] that are commonly observed due to the chemically active nature 

of Mg. One representative example is that of the precipitated intermetallic compound 

Mg17Al12 that is responsible for creep deformation at high temperature, which 

subsequently deteriorates the performance of Mg-Al alloys [3]. Studies of Mg-Al 

intermetallics therefore are critical to improving Mg-Al alloy properties and ultimately 

widening the range of their applications.  

Computational tools based on Kohn-Sham density functional theory (KSDFT) 

[4,5] play an important role in understanding Mg-Al intermetallic compounds. Numerous 

KSDFT calculations have characterized various properties of Mg-Al intermetallic 

compounds [6-9]. Elastic and thermodynamic properties are two of the most critical and 

of the greatest interest for engineering Mg-Al alloys. The former property indicates the 

stiffness of a material, while the latter property affects its phase stability at high 

temperatures. Both properties are measurable in experiment and computable in theory.  
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Methods based on atomic models to calculate elastic properties typically require a large 

number of energy calculations for an optimized cell that is subjected to different strain 

patterns. These calculations are time-consuming within KSDFT, especially for cells with 

low symmetries and consisting of many atoms. Similarly, phonon calculations usually 

involve supercells with a number of atomic displacements to determine thermodynamic 

properties [6]. Phonon calculations at the KSDFT level are limited to supercells with a 

small number of atoms because of the large number of operations needed that involve the 

KS orbitals at sufficiently sampled k points in reciprocal space. However, Mg-Al alloys 

contain complicated stoichiometric, e.g., Mg23Al30 [10], and nonstoichiometric, e.g., the 

Samson phase of Mg2Al3 [11], compounds with large unit cells that make KSDFT-

derived phonon computations prohibitively expensive.  

Orbital-free DFT (OFDFT), on the other hand, scales quasi-linearly with system 

size with a small prefactor and hence is significantly faster than the typical cubic scaling 

of KSDFT [12]. OFDFT and KSDFT methods differ in two fundamental respects. First, 

OFDFT describes the kinetic energy of electrons using a kinetic energy density functional 

(KEDF) [13], while KSDFT adopts KS orbitals to exactly evaluate the non-interacting 

electron kinetic energy. By eschewing orbitals, the electron density becomes the sole 

variable in OFDFT. This enormous simplification significantly increases the number of 

atoms that can be treated with DFT. Second, although non-local pseudopotentials (NLPSs) 

[14] are widely used in KSDFT to accurately describe electron-ion interactions, pure 

OFDFT utilizes local pseudopotentials (LPSs) because no orbitals are available to use 

with the orbital-based non-local projectors present in NLPSs. An LPS must be carefully 
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constructed and tested. Here, we choose the bulk-derived LPSs (BLPSs) [15,16] for both 

Al and Mg [17].  

OFDFT with suitable non-local KEDFs [18-24] and LPSs yields accurate 

properties of light metals and their compounds [25]. Examples include the motion of edge 

and screw dislocations in pure face-centered cubic (fcc) Al [26-28] and hexagonal-

closest-packed (hcp) Mg [29,30], ductile crack propagation in fcc Al [31], diffusion of 

silicon along an edge dislocation of fcc Al [32], vacancy formation and aggregation in Al 

[33], melting behavior of sodium clusters [34], as well as plasticity properties of body-

centered cubic Mg-Li alloys [35]. Bulk and vacancy formation energies of four Mg-Al 

intermetallic compounds, Mg17Al12, Mg13Al14, and Mg23Al30, and MgAl3 [36], were 

recently studied with a real-space implementation of OFDFT [37].  

In the present work, we focus on four stoichiometric compounds, i.e., Mg17Al12, 

Mg13Al14, Mg23Al30, and MgAl2, which have been experimentally observed and archived 

in the inorganic crystal structure database (ICSD) [38]. We first compare lattice constants 

calculated via OFDFT and KSDFT with those obtained from experiment. This 

comparison serves as a benchmark of the reliability of OFDFT and the chosen KEDF for 

simulating Mg-Al alloys. We next assess the stability of these four Mg-Al intermetallic 

structures by means of three common criteria: formation energies, elastic constants, and 

phonon dispersion. Our calculated elastic constants and Pugh’s ratios suggest that 

Mg23Al30  and MgAl2 should exhibit better ductility than Mg17Al12 and precipitates of the 

former could be used to improve the ductility of magnesium. We then use the phonon 

frequencies dispersed over the reciprocal lattice to obtain thermodynamic properties, 

including the temperature-dependent formation energy, constant-pressure heat capacity, 
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and linear thermal expansion coefficients of the four intermetallic compounds. Our work 

offers the first predicted phonon spectra of Mg23Al30, Mg13Al14, and MgAl2. It also 

provides another set of tests of the transferability of the Mg and Al BLPSs [16,17] and of 

the accuracy of the Wang-Teter (WT) KEDF [18] used in this study (vide infra). We 

demonstrate that OFDFT can be used as an independent (non-empirical) simulation tool 

for characterizing properties of and perhaps ultimately facilitating optimal design of Mg-

Al alloys. In addition to light metal compounds with simple crystal structures [26-35], 

this simulation tool can be used to characterize the behavior of numerous other 

complicated alloys, for which experimental elastic and thermodynamic properties do not 

exist and for which theoretical data are too computationally expensive to obtain with, 

e.g., KSDFT. Making these data available is critical for expediting development of new 

engineering alloys, e.g., to pinpoint alloy compositions with desirable target properties. 

This objective is in line with the Materials Genome Initiative [39].  Tremendous effort 

has been expended collecting such large data sets of materials properties. For example, 

Asta and coworkers calculated the elastic properties of about 1200 inorganic compounds 

using KSDFT [40]. In this context, we will demonstrate that using our OFDFT method to 

compute elastic and thermodynamic properties is an extremely efficient technique to 

analyze, augment, and predict such properties, which will continue to expand currently 

available databases. 

Methods 

We used the Vienna Ab Initio Simulation Package (VASP) [41] to perform all 

KSDFT calculations. The projector augmented wave (PAW) method [42,43] was 

employed, with the standard PAW projectors for Mg and Al that respectively treat the 
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outer two and three valence electrons self-consistently in the presence of all-electron 

frozen core atomic densities. We employed the Perdew-Burke-Ernzerhof (PBE) 

functional for electron exchange-correlation (XC) [44].  

Figure 1 displays the crystal structures of Mg17Al12, Mg13Al14, Mg23Al30, and 

MgAl2. The crystal structure data for these intermetallic phases with their respective 

identification (ID) numbers in the ICSD and space groups are listed in  

 

 

 

 

 

 

 

 

 

Table 1  (vide infra). We used primitive cells for geometry relaxations and energy 

calculations of Mg, Mg17Al12, Mg13Al14, Mg23Al30, MgAl2, and Al, consisting of 2, 29, 

27, 53, 12, and 1 atoms, respectively. The Monkhorst-Pack k-point grids [45] used for 

these primitive cells were correspondingly 18 × 18 × 12, 8 × 8 × 8, 10 × 10 × 10, 8 × 8 × 

8, 8 × 8 × 12, and 18 × 18 × 18. A 500 eV kinetic energy cutoff for the plane wave basis 

set was used. The selected planewave kinetic energy cutoff and k-point meshes ensured 

that the accuracy of the total energy is converged to within 1.0 meV/atom. Integration 

over the Brillouin zone was performed using the Methfessel-Paxton [46] method with a 
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smearing width of 0.2 eV. All lattice parameters and atomic coordinates were fully 

relaxed until a force tolerance of 0.01eV/Å was reached.  

All OFDFT calculations were performed using the PROFESS 3.0 package [47]. 

The total energy functional within the OFDFT scheme is an electron-density-only 

functional and thus no explicit orbitals are needed:  

( ) ( ) ( ) ( ) ( ) ( ) ( )'1 '
2 - 'tot s IE xc II

r r
E r T r drdr r r dr E r E

r r
ρ ρ

ρ ρ ϕ ρ ρ= + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫      (1) 

where the first term is the KEDF of a real-space electron density ρ(r). We adopted the 

WT KEDF [18], which is based on the Lindhard response function for the perturbed 

uniform electron gas, as this response function contains the physics appropriate for 

studying nearly-free-electron-like metals such as Mg and Al and their alloys. Our group 

has previously shown that the WT KEDF and the more recent Wang-Govind-

Carter (WGC) [22,24] KEDF yield nearly the same lattice constants, elastic moduli and 

total energies for hcp Mg and fcc Al [36]. In Ref. [48], we further compare the phonon 

spectra calculated with these two nonlocal KEDFs. The two phonon spectra are 

reasonably independent of the choice of KEDF. However, when applied to the Mg-Al 

alloys, the WGC KEDF suffers from a numerical instability problem originating from the 

second order Taylor expansion used in the WGC expression [49]. We therefore use the 

WT KEDF throughout this work. The second and third terms in Eq. (1) represent the 

electron-electron Coulomb repulsion and ion-electron interactions, respectively. The 

latter is evaluated using the BLPSs mentioned earlier [17]. The final two terms in Eq. (1) 

respectively denote the XC and ion-ion interactions, with the PBE functional used for the 

XC term. We used a plane wave basis kinetic energy cutoff of 1200 eV here in OFDFT in 

order to reach the same convergence as for the PAW potentials employed in KSDFT. The 
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PAW potentials utilize a smooth electron density on a uniform grid which then permits a 

lower kinetic energy cutoff, while the BLPSs are somewhat sharper functions, requiring a 

higher cutoff to achieve the same accuracy. We used the truncated Newton method 

[50,51] for optimizing the electron density, with the initial guess density being that of a 

uniform electron gas. All geometries are fully relaxed with the conjugate gradient method 

until the forces reach the tolerance of 5×10-5 hartree-bohr-1, i.e., 2.6 meV/Å.  
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(a) Mg17Al12

(c) Mg23Al30

(b) Mg13Al14Mg Al

(d) MgAl2

 

Figure 1. Schematic representation of (a) Mg17Al12, (b) Mg13Al14, (c) Mg23Al30, and (d) MgAl2 crystal 
structures. 

 

 

We used the strain-energy method to obtain the independent elastic constants of 

hcp Mg, fcc Al, and the four Mg-Al intermetallic compounds [52,53]. We apply a series 
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of strains to an optimized unit cell, and the atomic positions are fully relaxed until the 

force tolerance is reached. A general applied strain � is written as 

ε = ε11,ε22 ,ε33,2ε23,2ε31,2ε12( )                                                         (2)            

with the elements �ij (i, j = 1, 2, 3) defined as 

1
2

ji
ij

j i

uu
x x

ε
⎛ ⎞∂∂= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

                                                                        (3) 

where u is the displacement at point x.  

Under this strain, the resulting strain energy is 

ΔE = E − E0 =U ⋅V                                                                       (4)                             

where E and E0 are the energies of the deformed and strain-free cells, respectively, and V 

is the volume of the deformed cell. U is the strain energy density under each strain: 

1
2

U Cε ε= ⋅ ⋅                                                                                 (5) 

where C is the stiffness tensor in the Voigt notation [54]. The calculated strain energy 

density as a function of the applied strain is quadratically fitted to obtain the above 

individual elastic constants. We used energy data corresponding to 20 strains δ ranging 

from -1.0% to 1.0% with an increment of 0.1% in the present work. The number of 

independent elastic constants in the stiffness tensor for hexagonal, cubic, trigonal, and 

tetragonal crystal systems is different depending on the crystal symmetry. We provide the 

details of strain patterns applied to each crystal system in Ref. [48].  

We implemented a Python-based interface to calculate the phonon spectra by 

coupling PROFESS 3.0 with PHONOPY [55,56]. We first used this interface to generate 

supercells of various Mg-Al alloys based on their symmetries. We utilized 6 × 6 × 6 
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supercells for hcp Mg and fcc Al, where the numbers multiply the primitive unit cells 

discussed earlier to create the supercell. We built 3 × 3 × 3 supercells for Mg17Al12, 

Mg13Al14, Mg23Al30, and MgAl2. This notably results in 53 Mg23Al30 supercells, each of 

which corresponds to an inequivalent pattern of atomic displacement (determined by the 

symmetry of Mg23Al30) and consists of 1431 atoms. We employed PROFESS 3.0 to 

perform static energy calculations for each supercell that yields atomic forces that are 

collected by the PROFESS 3.0-PHONOPY interface. The interface post-processes the 

atomic forces and transforms them to force constants using the PHONOPY package 

[55,56] with 53 inequivalent displacements. The large number of phonon bands obscures 

observation, so we also calculated the corresponding phonon densities of states with the 

same k-point density as used in the KSDFT calculations and with a broadening parameter 

of 2 cm-1. 

We adopted the quasi-harmonic approximation (QHA) [57] for the 

thermodynamic properties calculations, including temperature (T) - dependent formation 

energies Ef (T), heat capacities at constant pressure CP (T), and linear thermal expansion 

coefficients αL (T), where quasi-harmonic effects are taken into account by computing 

volume (V) -dependent phonon frequencies ( ),q Vω r
 with qr  being the phonon wave 

vector. The contributions of lattice vibrations A(V,T) to the Helmholtz free energy F(V,T) 

within the QHA, are given by [57] 

( ) ( )
B

B

,1( , ) , ln 1 exp
2 q q

q V
A V T q V k T

k T
ω

ω
⎡ ⎤⎧ ⎫

= + − −⎢ ⎥⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦

∑ ∑
r r

r
hr

h                 (6) 

Therefore, 

0( , ) ( ) ( , )F V T E V A V T= +                                                                (7) 
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where E0 (V) is the quantum mechanical total energy of a system with volume V. 

Minimizing F(V, T) with respect to V at a specified T gives the Helmholtz free energy at 

that temperature.  Then, 

{ }x yf Mg Al Mg Al( ) ( , ) ( ) ( ) ( ) / ( )E T F V T F T xF T yF T x y= Δ = − − +           (8) 

where FMgxAly (T), FMg (T), and FAl (T) refer to the Helmholtz free energies of an MgxAly 

intermetallic compound, hcp Mg, and fcc Al, respectively. x and y respectively denote the 

number of Mg and Al atoms in MgxAly. 

To calculate CP (T) and αL (T) at zero pressure (P = 0), we employed the relation 

[57,58] 

2( ) ( ) ( ) ( )P V VC T C T T B T VTα= +                                                        (9)
 

where CV(T) is the constant volume heat capacity 

( )2

2

,
( )V

V

F V T
C T T

T
⎛ ⎞∂

= − ⎜ ⎟∂⎝ ⎠
       ,                                                  (10)

 

B(V, T) is the bulk modulus 

( )2

2

,
( , )

T

F V T
B V T V

V
⎛ ⎞∂

= ⎜ ⎟∂⎝ ⎠
        ,                                                (11)

 

and αV(T) is the volume thermal expansion coefficient 

1( )V
P

VT
V T

α ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
         .                                                             (12)

 

The linear thermal expansion coefficient αL(T) depends on αV(T) as 

αL (T ) = 1
3

αV (T )  .                                                               (13) 
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To obtain ( ),q Vω r , we calculate the phonon frequencies for each intermetallic compound 

at 17 different volumes ranging from 0.94 to 1.06V0, where V0 is the equilibrium volume 

of a ground-state structure. This requires, e.g., 901 static energy calculations for the 

1431-atom Mg23Al30 supercell, not feasible for KSDFT but easily done within OFDFT. A 

grid of 24 × 24 × 24 q points on the reciprocal lattice was utilized for the summation in 

Eq. (6). 

Results and discussion 
 
 
 
 

 

 

 

 

 

Table 1 lists the predicted equilibrium lattice constants of hcp Mg, Mg17Al12, 

Mg13Al14, Mg23Al30, MgAl2, and fcc Al using both OFDFT and KSDFT. Experimental 

and theoretical data from the literature are also given for comparison. We observe 

satisfactory agreement between our simulation results and those from the literature. Our 

OFDFT and KSDFT lattice constants compare well; in some cases the results from 

OFDFT are fortuitously slightly closer to experimental values, e.g., the lattice constant of 

Mg13Al14 (10.314 Å) obtained from OFDFT is closer to the experimental value (10.437 

Å) than the KSDFT result (10.183 Å).  

We next consider the formation energy Ef of an MgxAly compound at zero Kelvin 

according to   
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( )f Mg Al Mg Al / ( )
x y

E E xE yE x y= − − +                                           (14)
 

where EMgxAly, EMg, and  EAl  refer to the ground-state total energies per formula unit of 

MgxAly, hcp Mg, and fcc Al cells, respectively. This definition is analogous to that of the 

temperature-dependent formation energy given in the previous section (Eq. (8)). Negative 

Efs  correspond to stable Mg-Al intermetallic compounds, and vice versa for positive Efs. 

Table 1 lists the Efs derived from OFDFT and KSDFT, along with previous theoretical 

and experimental data for comparison. Our OFDFT and KSDFT formation energies once 

again agree reasonably well with each other, to within 20 meV/atom. These energies are 

also consistent with other theoretical reference values, e.g., the Ef  of Mg17Al12  calculated 

with both OFDFT and KSDFT lie within a wide span of literature results ranging from -

48 to -11 meV/atom.  

Among the four Mg-Al intermetallic compounds, Mg17Al12 and Mg23Al30 are the 

only ones that exhibit negative Efs, which shows that these two structures are stable at 

zero Kelvin. The magnitudes of Ef for these two compounds are also close. In contrast, 

the predicted Efs of Mg13Al14 and MgAl2 are positive, suggesting that they are unstable at 

zero Kelvin, i.e., the decomposition of these two compounds to hcp Mg and fcc Al is 

exothermic. We also observe that the Ef of Mg13Al14 is much larger than that of MgAl2, 

indicating Mg13Al14 is much less stable than MgAl2 at zero Kelvin. As we will see later, 

the contrasting Efs of Mg13Al14 and MgAl2 are consistent with their phonon spectra: 

Mg13Al14 has imaginary frequencies while MgAl2 has only real ones. 
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Table 1. Crystal structure information including ICSD ID, structure, space group, and lattice constants a 
and c/a of hcp Mg, Mg17Al12, Mg13Al14, Mg23Al30, MgAl2, and fcc Al. Zero-Kelvin formation energies Ef 
of Mg17Al12, Mg13Al14, Mg23Al30, and MgAl2. Experimental and theoretical data from the literature are also 
shown for comparison. Results calculated in this work are shown in bold, while experimental data are 
italicized. Literature KSDFT data are shown in regular font. 
 

 ICSD ID Structure Space group a (Å) c/a Ef (meV/atom) 

hcp Mg 76748 Hexagonal No. 194, 
P63/mmc 

3.195a 
3.192b 

3.209c 

1.632a 
1.623b 

1.624c 

 

Mg17Al12 158247 Cubic No. 217, 
I43m  

10.649a

10.523b 

10.549d 

10.55f 

10.53g 
10.571h

 -35.5a

-24.3b 

-11.0e 

-48f 

-27g 
-21h 

Mg13Al14 150647 Cubic No. 229, 
Im3m  

10.314a 
10.183b 

10.437i 

 42.7a 

61.6b 

52e 
Mg23Al30 57965 Trigonal No. 148, 

R 3  

12.966a

12.790b 

12.825j 

1.670a

1.692b 

1.696j 

-34.6a

-18.7b 

-34e 
MgAl2 608412 Tetragonal No. 141, 

I41/amd 
4.236a

4.195b 

4.132k 

5.979a

5.955b 

6.438k

18.7a 
11.9b 

fcc Al 43423 Cubic No. 225, 
Fm3m  

4.063a 
4.039b 

4.050l 

  

aOFDFT; this work. 
bKSDFT; this work. 
cExperiment; reference [59].  
dExperiment; reference [60]. 
eOFDFT; reference [37].     
fKSDFT; reference [61].   
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gKSDFT; reference [6].   
hKSDFT; reference [9].  
iExperiment; reference [62].  
jExperiment; reference [10].  
kExperiment; reference [63]. 
lExperiment; reference [64].  
 

The formation energy is only the first basic criterion of structural stability. We 

proceed to evaluate another important criterion, the mechanical stability [65], that can be 

directly determined from the calculated elastic constants (Table 2). As shown in the table, 

our calculated elastic constants of hcp Mg and fcc Al are in fair agreement with available 

experimental data. Additionally, the OFDFT elastic constants of Mg, Mg17Al12, and Al 

generally are very close to KSDFT results from the current and previous work, with the 

lone exception being C12 of Mg17Al12, which has a larger discrepancy. 
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Table 2. Elastic constants (in GPa) and Pugh’s ratio B/G of hcp Mg, Mg17Al12, Mg13Al14, Mg23Al30, MgAl2, 
and fcc Al. Experimental and theoretical data from the literature are also shown for comparison. Results 
calculated in this work are shown in bold, while experimental data are italicized. Literature KSDFT data 
are shown in regular font. The B/G of Mg13Al14 is not shown because Mg13Al14 is mechanically unstable.  

 C11 C12 C13 C14 C15 C33 C44 C66 B/G 
 

hcp Mg 
63a 

66b 

64c 

28a 

25b 

26c 

21a

19b 

22c 

  67a

70b 

66c 

15a 

20b 

18c 

 2.118a 
1.714b 
1.932c 

Mg17Al12 94a 

96b 

87d 

98e 

88f 

91g 

18a 

27b 

29d 

28e 

24f 

27g 

  20a 

22b 

20d 

31e 

27f 

30g 

 1.671a 
1.897b 
2.081d 
1.577e 

1.569f 

1.570g 
Mg13Al14 37a 

45b 
46a 

51b 
    24a 

38b 
  

Mg23Al30 79a 

78b 
38a 

46b 
38a

45b 
2a

3b 
0a

2b 
78a

79b 
26a 

18b 
 2.300a 

3.380b 
MgAl2 73a 

82b 
45a 

50b 
44a

48b 
  71a

84b 
23a 

19b 
25a

27b 
2.800a 
3.077b 

fcc Al 100a 
103b 

106h 
107i 

69a 

66b 

57h 

61i 

    30a 

33b 

28h 

28i 

 3.447a

2.994b 
2.763h 

2.950i 
aOFDFT; this work. 
bKSDFT; this work. 
cExperiment; reference [66]. 
dKSDFT; reference [61]. 
eKSDFT; reference [6]. 
fKSDFT; reference [7]. 
gKSDFT; reference [9].  
hKSDFT; reference [67]. 
iExperiment; reference [68].  
 
Notably, we find that C14 and C15 of Mg23Al30 are significantly smaller than the other 

components of the stiffness tensor. In the four-index notation, these two elastic constants 

can be written as 

11
14 1123

23

C C σ
ε

= =                                                                 (15) 

and 
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11
15 1131

31

C C σ
ε

= =                                                                 (16) 

We conclude that a small stress σ11 along the x direction for Mg23Al30 will cause 

significant shear strains �23 and �31 on the yz and zx planes, respectively.  

We employ Born’s stability criteria [69] to examine the mechanical stability of 

these materials, which exploits the idea that any applied strain should increase the energy 

of a stable, ground-state solid. Numerically, the stiffness tensor must be positive definite 

[70]; namely, the eigenvalues of this matrix are all positive. The elastic constants of 

crystals should fulfill certain conditions based on their different symmetries as a result 

[71]. More precisely, the following four criteria have to be satisfied for hcp Mg and 

tetragonal MgAl2 [71]:  

11 12C C>                                                                       (17) 

( )2
13 33 11 122C C C C< +                                                       (18) 

44 0C >                                                                           (19) 

and 

66 0C >                                                                           (20) 

Substitution of OFDFT and KSDFT elastic constants into the above relations confirms 

that hcp Mg and MgAl2 are mechanically stable. For cubic Mg17Al12, Mg13Al14, and fcc 

Al, three criteria need to be met:  

11 12 0C C− >                                                                    (21) 

11 122 0C C+ >                                                                   (22) 

and 



20 
 

44 0C >                                                                            (23) 

We find that C11 and C12 of Mg13Al14 calculated from both KSDFT and OFDFT do not 

satisfy the above criteria whereas those of Mg17Al12 and fcc Al do. This finding is 

consistent with the large positive formation energy of Mg13Al14. Finally, the elastic 

constants should be commensurate with the following conditions for trigonal Mg23Al30 

[71]:  

11 12C C>                                                                     (24) 

44 0C >                                                                         (25) 

( )2
13 33 11 122C C C C< +                                                     (26) 

and 

( )2
14 44 11 122C C C C< −                                                     (27) 

It is straightforward to verify that all OFDFT and KFDFT elastic constants of Mg23Al30 

comply with the above four conditions, confirming that Mg23Al30 is mechanically stable, 

although it may easily deform via shear, as mentioned earlier. 

The elastic constants calculated above are useful not only for assessing the 

fundamental stability of the Mg-Al intermetallic compounds but also for evaluating 

mechanical properties of key interest for engineering applications. For instance, the 

elastic constants can be transformed to bulk moduli B and shear moduli G according to 

the Voigt-Reuss-Hill approximation (see Refs. [48,68]). Pugh found that the ratio B/G is 

strongly correlated to the ductility of a material, i.e., a larger B/G indicates a better 

ductility [72]. The OFDFT B/G values for hcp Mg and fcc Al are in good agreement with 

available experimental values (Table 2). Furthermore, the OFDFT Pugh’s ratios in Table 
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2 suggest that both Mg23Al30  and MgAl2 should be more ductile than Mg17Al12, 

consistent with the brittle nature of the latter [73], and that precipitates of Mg23Al30 or 

MgAl2 in Mg could improve its ductility. Thus, efficient screening of simple mechanical 

properties of complex Mg-Al intermetallic compounds is possible with OFDFT.  

In addition to mechanical stability, we further assess another crucial criterion of 

stability, namely, phonon or dynamical stability [74]. The absence of imaginary phonon 

modes implies that a system is dynamically stable. We first benchmark our computed 

phonon spectra of hcp Mg and fcc Al obtained from OFDFT with those from KSDFT and 

measurements. Figure 2 displays the phonon spectra of hcp Mg and fcc Al from all three 

methods. We observe good agreement at most q points in the first Brillouin zone, when 

comparing phonon spectra from OFDFT with the ones from KSDFT and with 

experiment. However, we also observe that at other q points, e.g., the X point for fcc Al, 

the OFDFT optical phonon frequency is around 30 cm-1 lower than the KSDFT one and 

the experimental data. This deviation shows the accuracy limits of the WT KEDF and/or 

the BLPSs used in OFDFT.  

Phonon spectra for the four Mg-Al compounds considered here have not yet been 

measured. Figure 3 provides predicted phonon spectra of Mg17Al12, Mg13Al14, Mg23Al30, 

and MgAl2. We emphasize that our calculated phonon spectra of Mg13Al14, Mg23Al30, and 

MgAl2 are the first to ever be calculated at the DFT level. These calculations are only 

possible because of the speed and accuracy of OFDFT. Figure 3 also displays the 

corresponding phonon density of states (PDOS) in order to better visualize the 

distribution of phonon modes. We observe many flat phonon bands, which give rise to 

sharp peaks in the PDOS plots. The phonon modes for Mg17Al12 and Mg23Al30 in the first 
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Brillouin zone are all real, consistent with their negative formation energies and their 

elastic constants that satisfy Born’s criteria. In contrast, Mg13Al14 exhibits imaginary 

phonon modes, suggesting that it is dynamically unstable, consistent with its positive 

formation energy and elastic constants failing to obey Born’s criteria. Interestingly, 

although the zero-Kelvin formation energy of MgAl2 is positive, the calculated phonon 

spectrum suggests that MgAl2 is dynamically stable. The latter finding is also consistent 

with the elastic constants that we showed satisfy the Born criteria. 
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Figure 2. Phonon spectra of (a) hcp Mg and (b) fcc Al derived from OFDFT and KSDFT. Experimental 
data from Refs. [75] and [76] are also shown for comparison. The coordinates of the high-symmetry q 
points are Г(0,0,0), K(1/3,1/3,0), M(0,1/2,0), A(0,0,1/2), X(0,1/2,1/2), W(1/4,3/4,1/2), and L(1/2,1/2,1/2), 
respectively. 
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Figure 3. Phonon spectra and phonon density of states (PDOS) of (a) Mg17Al12, (b) Mg13Al14, (c) Mg23Al30, 
and (d) MgAl2 calculated with OFDFT. The coordinates of the high-symmetry q points are Г(0,0,0), 
Z(1/2,1/2,1/2), N(0,0,1/2), P(1/4,1/4,1/4), F(1/2,1/2,0), and M(0,1/2,0), respectively. 

 

With the phonon dispersion relations now determined, we are able to explore how 

temperature affects the formation energy and other thermodynamic properties of the four 

Mg-Al intermetallic compounds. Figure 4(a) displays the formation energies of Mg17Al12, 

Mg13Al14, Mg23Al30, and MgAl2 as a function of temperature. The formation energies 

decrease as temperature increases because of increasing phonon entropy as temperature 

rises. The formation energies of Mg17Al12 and Mg23Al30 are negative over the entire 

temperature range considered (0 K < T < 700  K, with the latter close to the melting 

temperature of Mg17Al12) [2], showing that they are thermally stable. This stability 

explains why both phases appear in the Mg-Al phase diagram [77]. In contrast, the 

formation energies of Mg13Al14  and MgAl2 are much higher.  The formation energy of 

Mg13Al14 remains completely positive (and dynamically unstable) at high temperatures 
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while MgAl2 is also unstable up to nearly 700 K. This instability correlates with the fact 

that both MgAl2 and Mg13Al14  are absent from the equilibrium phase diagram. Indeed, 

the MgAl2 phase has only been prepared by the liquisol quenching method [63], a 

common technique for obtaining non-equilibrium phases through rapid quenching of an 

alloy from the liquid to the solid state [78].  

Finally, we use OFDFT to calculate thermodynamic properties of hcp Mg, 

Mg17Al12, Mg13Al14, Mg23Al30, MgAl2, and fcc Al. In particular, we evaluate the constant 

pressure heat capacity CP and the linear thermal expansion coefficient αL, both of which 

are measureable quantities that can be directly compared to our predictions. OFDFT-

derived CP curves (Figure 4(b)) capture the typical variation of CP with temperature, i.e., 

strong and weak temperature dependence at low and high temperatures, respectively, 

resembling the Debye model [79]. The CPs of the six materials are predicted to have very 

similar values over a wide temperature range, reflecting the insensitivity of CP in Mg, Al, 

and their respective alloys. Figure 4(c) displays the OFDFT-derived αL values of the six 

materials. The calculated αLs of Mg and Al are nearly identical and in good agreement 

with experimental values. For example, at room temperature (T = 298 K), the calculated 

αLs of Mg and Al are 22.8 and 22.6×10-6/K, respectively, quite close to the corresponding 

experimental values of 24.8 and 23.1×10-6/K [80]. The four Mg-Al intermetallic 

compounds are predicted to exhibit larger αLs, especially at high temperatures. These 

differences potentially may affect interface properties, e.g., misfit strain, when such an 

Mg-Al intermetallic phase precipitates from Mg at high temperatures. 
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Figure 4. OFDFT-derived temperature-dependent (a) formation energies Ef, (b) heat capacities CP, and (c) 
linear expansion coefficients αL of four Mg-Al alloys. Temperature-dependent heat capacities and linear 
expansion coefficients for hcp Mg and fcc Al are also shown. 
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Conclusions 

We computationally characterized various properties of four complex Mg-Al 

intermetallic compounds, including lattice constants, formation energies, and elastic 

constants. Benchmark computations performed on hcp Mg and fcc Al demonstrated that 

OFDFT with the nonlocal WT KEDF is as accurate as KSDFT for Mg-Al intermetallics. 

The extraordinary computational efficiency of OFDFT permitted phonon spectra and 

thermodynamic properties of the four Mg-Al intermetallic compounds to be obtained. In 

particular, the phonon spectra and thermodynamic properties of Mg23Al30, Mg13Al14, and 

MgAl2 were predicted for the first time, offering explanations of prior and guidance to 

future experiments. For example, Mg13Al14 and MgAl2 were predicted to have positive 

formation energies, consistent with their absence from the experimental phase diagram of 

Mg-Al alloys. Secondly, the predicted differences in thermal expansion coefficients of 

the intermetallic compounds suggest that possible interfacial strains may emerge during 

high temperature metallurgical processing of Mg-Al alloys. From the theoretical 

perspective, our work shows that the WT KEDF combined with the BLPS within the 

OFDFT framework is quantitatively reliable and very efficient for computing different 

properties of Mg-Al intermetallic compounds.  

From a broader perspective, our procedure for characterizing the elastic and 

thermodynamic properties of Mg-Al intermetallic compounds via OFDFT can be 

straightforwardly generalized to study the properties and behavior of other complicated 

Mg-Al intermetallic compounds and many other lightweight alloys. We plan to link our 

method to the ICSD so that complex intermetallic structures documented in the database 

can be used as starting points for automatic OFDFT calculations. This high-throughput 
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strategy will establish a database of elastic constants and thermodynamic properties of 

complicated intermetallic compounds. Such an OFDFT-based database will extend 

existing ones such as the KSDFT-based Materials Project [81]. The resulting database 

will serve as a map of alloy selection and ultimately to accelerate discovery of new 

lightweight alloys for applications in the automotive and portable electronic device 

industries. 
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