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We analytically derive a decoherence model for orbital angular momentum states of a photon
in a multimode optical fiber and show that rate of decoherence scales approximately exponentially
with l2, where l is the azimuthal mode order. We also show numerically that for large values of l
the orbital angular momentum photon state completely dephases. However for lower values of l the
decoherence can be minimized by using dynamical decoupling to allow for qudit high-bandwidth
quantum communication and similar applications.
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I. INTRODUCTION

For the past few years the quantum information
community has been putting a great deal of effort
into boosting the bit rate for photonic quantum state
transmission by encoding more than one bit per
photon. This is done by exploiting multiple temporal,
spatial, polarization, and frequency modes of the single
photon and then preparing a single photon in a
superposition of those modes as a qudit. The number
of bits then is log2 d, where d is the dimension of the
qudit. The focus has been on using orbital angular
momentum (OAM) modes of the photon, particularly in
multimode optical fiber, as a road to high bit rate.
Photons that are OAM eigenstates, originate as

a consequence of spatial distribution of optical field
intensity and phase [1, 2]. The photon carries an
azimuthal phase term exp(ilθ) and l units orbital angular
momentum [3]. Such phase dependence is characteristic
of either Laguerre-Gaussian or Bessel modes and each
of these mode families provides a higher dimensional
state space. The most immediate advantage of a large
state space is the large alphabet size for quantum
communication and hence considerable increase in data
capacity. Higher dimensional systems have been known
to improve security in quantum cryptography [4] and
are required by some quantum network protocols [5]
and quantum computation schemes [6] to efficiently
solve problems like Byzantine agreement problem [7] and
quantum coin tossing [8].
There are several protocols that encode quantum

information in the two-dimensional Hilbert space of the
photon’s spin and exploit the polarization or time-bin
degrees of freedom [9, 10]. Physical implementations
of one such protocol for quantum key distribution has
shown that such a encoding is not optimal for practical
applications due to a low bit rate [11]. Information
encoding based on the two-dimensional Hilbert space of
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photon polarization (or SAM) imposes a limitation on
the rate of optical communication. To overcome such
limitations the orbital angular momentum (OAM) of
light has been proposed that uses the photon’s spatial
mode structure and allows use of higher-dimensional
Hilbert space, or a “qudit” encoding of a photon
[12]. This leads to an increased alphabet size and
subsequently, increased rate of communication [13–
15]. Recent experiments have shown that the classical
data-carrying capacity of a terabit per second can be
achieved using OAM states of light in an optical fiber
[16]. The potential of higher dimensional encoding of
quantum information to achieve a higher bit rate can
only be achieved if the photon can be protected from the
decohering effect of optical index of refraction fluctuation
in an optical fiber.
Here we report using a detailed calculation; an

analytical model for decoherence caused by the refractive
index fluctuation in a multi-mode fiber for an OAM
photon state. We show that rate of decoherence is faster
for large values of l and it scales exponentially with
l2, where l is azimuthal mode number. We additionally
show that such a decoherence can be mitigated to a
large extent with a open-loop control technique called
dynamical decoupling (DD) and we numerically show
that OAM photon with small values of l (up to about
10) can be preserved with a fidelity greater than 99%.
The transverse spatial wave function of a paraxial

beam is an eigenstate of OAM and it can be written in
cylindrical coordinates as

ϕpl(r, θ) =
1√
2π
Rp,l(r) exp (i l θ). (1)

The functions Rp,l(r) are a basis for the radial
dependence, such as the Laguerre-Gauss functions. They
are defined in free space as

Rp,l(r) =
A

w(z)

(√
2r

w(z)

)|l|

L|l|
p

(

2r2

w(z)
2

)

× eikr
2/[2R(z)]ei(2p+|l|+1) tan−1 (z/zR), (2)
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where w(z) = w0

√

1 + (z/zR)
2

is the beam width,

R(z) = z
[

1 + (zR/z)
2
]

is the radius of wave-front

curvature, and zR = 1
2kw

2
0 is the Rayleigh range. The

quantity tan−1(z/zR) is known as the Gouy phase. These
Rp,l(r) functions are modified slightly inside fiber.
Optical fibers have other complex spatial modes but

for simplicity, we consider here an OAM photon that
is launched in to a multimode optical fiber that is in
superposition of l and −l states and has the following
ket representation

|ψpl〉 =
1√
2π
Rp,l(r)[exp (i l θ)|p, l〉

+ exp (−i l θ)|p,−l〉]. (3)

For example, such a state could be used as one code
letter of a four-letter code for the BB84 protocol [9]. The
other letters would be the negative superposition and the
individual ±l states. The density matrix for the above
input state can be written as

ρ̂in = |ψpl〉〈ψpl|

= |Rp,l(r)|2
(

1 ei 2lθ

e−i 2lθ 1

)

. (4)

II. NOISE MODEL

In general, the index of refraction fluctuation in
an optical fiber can be represented by a series of
concatenated, homogeneous segments of length ∆L

with constant index fluctuation ∆β = ω(nl−n
−l)

c [17,
18]. When a photon that is in superposition of +l
and −l propagates through the fiber in z direction the
E-fields see a slightly different refractive index due to
the corkscrew nature of the OAM photon. The photon
acquires a phase proportional to the azimuthal mode
number l, since the number of helix surfaces in a
fixed volume of fiber is proportional to the helix step
length λ/|l|. The two independent index of refraction
fluctuations interact with the orbital angular momentum
degree of freedom of the photon. The noise operator is
given by

Mz(δφj) =

(

ei l
δφj
2 0

0 e−i l
δφj

2

)

= cos

(

l
δφj
2

)

I+ i sin

(

l
δφj
2

)

L̂z

= ei l
δφj
2

L̂z

= Rz(l δφj) (5)

where δφj = ∆βj∆L is the phase angle acquired due
to propagation through the jth segment of fiber and
L̂z = −i ∂

∂θ is orbital angular momentum operator
that generates rotation about z axis. Laguerre-Gaussian
beams are eigenfunction of orbital angular momentum

operator L̂z. The output density matrix after the
interaction in the jth segment is given by

ρ̂jout = Mz(δφj)ρ̂inMz(δφj)
†

= |Rp,l(r)|2
(

1 ei (2 l θ + l δφj)

e−i (2 l θ + l δφj) 1

)

. (6)

Now, if we assume that cross-talk between OAMmodes
is negligible [16], which is a good approximation for
linear interactions, then the above density matrix can
be rewritten as:

ρ̂jout = |Rp,l(r)|2
(

1 ei l(2 θ+ δφj)

e−i l(2 θ+ δφj) 1

)

. (7)

After passing through the fiber with n homogeneous
concatenated segments the output density matrix is

ρ̂jout = |Rp,l(r)|2








1 ei (2 l θ)
n
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j=1
ei (l δφj)

e−i (2 l θ)
n
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j=1
e−i (l δφj) 1









.

(8)

We model the sum of acquired phases

{δφ1, δφ2, ......, δφn} as random variable φ̂ with a mean
〈

φ̂
〉

= φ0 and a nonzero variance
〈

∆φ̂2
〉

= ∆φ2. Here

φ0 is proportional to n but ∆φ2 is independent of n. The

factor
n
∏

j=1

e±i l δφi in the off-diagonal term of Eq. 8 can

be expressed in terms of mean and variance of random

variable φ̂

n
∏

j=1

e±i l δφi = exp





n
∑
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= exp
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〈
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〉
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)]

= exp
[
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〈
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〉]

exp
[
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]

. (9)

We then Taylor expand the factor exp
[

±i l∆φ̂
]

of Eq.

9 and take the time average to obtain

〈

exp
[

±i l∆φ̂
]〉

=

〈

1± i l∆φ̂− 1

2
l2 ∆φ̂2 + · · ·

〉

= 1± i l
〈

∆φ̂
〉

− 1

2
l2
〈

∆φ̂2
〉

+ · · ·
(10)

Since the mean of variance is zero in Eq. 10, and average

of the variance is
〈

∆φ̂2
〉

= ∆φ2, hence we obtain the

expression [17, 19]

〈

exp
[

±i l∆φ̂
]〉

= 1− 1

2
l2∆φ2 + · · · ≈ e−

1

2
l2 ∆φ2

.

(11)
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The condition that l∆φ̂ is small can always be met
for small l by shortening the lengths of the virtual
segments. Using Eq. 11, we can write Eq. 9 as

〈

n
∏

j=1

e±i l δφi

〉

=
〈

exp
[

±i l
〈

φ̂
〉]〉〈

exp
[

±i l∆φ̂
]〉

= e±i l φ0 e−
1

2
l2 ∆φ2

. (12)

And finally, with the expression obtained in Eq. 12, the
output density matrix in Eq. 8 can be rewritten as

ρ̂out = |Rp,l(r)|2
(

1 ei l (2 θ+φ0)e−
1

2
l2 ∆φ2

e−i l (2 θ+φ0)e−
1

2
l2 ∆φ2

1

)

. (13)

The state represented by ρ̂out is no longer pure due

to presence of the dephasing term e−
1

2
l2 ∆φ2

in the
off-diagonal terms and the rate of decoherence is much
faster for larger values of l.

III. DYNAMICAL DECOUPLING

Dynamical Decoupling (DD) is inspired by the
nuclear magnetic resonance (NMR), where tailored time
dependent perturbations are used to control system
evolution. It is an open-loop control technique that
decouples the system from environmental interactions,
where the interaction is pure dephasing. It effectively
controls the dynamical evolution of the system while still
minimizing the effects of environment.
In DD, a sequence of pulse is applied to the system

that is faster than the shortest time scale accessible to
the reservoir degree of freedom, such that system-bath
coupling is averaged to zero. The simplest pulse sequence
that cancels system-environment interaction to first order
is known as Carr-Purcell-Meiboom-Gill (CPMG) DD
pulse sequence[20, 21]. It is a equidistant two pulse
sequence that has been ubiquitously used for decoupling
of system from environment.

IV. NUMERICAL RESULTS

To understand the detrimental effects of noise
encountered in the communication channel we
numerically study three scenarios. First we analyze the
decoherence of free evolving OAM photon in a fiber due
to index of refraction fluctuations and then we analyze
the effectiveness of open-loop control in preserving the
coherence of the qubit, where the system is subjected
to external, suitably tailored, space-dependent pulses
which do not require measurement. Finally we analyze
the impact of large values of quantum number l on
decoherence suppression.
Decoherence of a photonic state has its origin in optical

index fluctuation of a fiber that can result from both

intrinsic and extrinsic perturbations. We model axially
varying index dephasing in an optical fiber of length L by
a series of concatenated, homogeneous segments of length
∆L with constant ∆n [17, 18, 22]. The index fluctuations
across these segments is modeled by generating a set
of values according to the Rayleigh distribution, whose
probability density function is given as

f(x, σ) =
x

σ2
e−x2/(2σ2), x ≥ 0 (14)

where σ ≥ 0, is the scale parameter of the distribution,
and x is the distance along the fiber [18, 23]. A noise
profile of the fiber is extrapolated from these phase error
values. Here we assume that the fiber only exhibits linear
index fluctuation as the radial dimension of the fiber is
very small.
For our numerical analysis we consider the following

input state

|ψ〉 = 1√
2π

[Rp,l(r) exp (i l θ)|p, l〉

+Rp,−l(r) exp (−i l θ)|p,−l〉]. (15)

Since R(p, l) = R(p,−l), we can normalize the state and
rewrite the ket in matrix notation as:

|ψ〉 = 1√
2

(

ei lφ

e−i lφ

)

. (16)

We first calculate the fidelity of the fiber without any
error suppression mechanism in place for a particular
length, number of sections, and initial state. The initial
state of the photon is allowed to freely evolve through
each section of the fiber according to

Mz(δφj) =

(

ei l
δφj
2 0

0 e−i l
δφj
2

)

, (17)

where, δφj includes the phase error from the Rayleigh
distribution. The freely evolved state is then compared
with the input state. We use fidelity as a measure of
effectiveness in preserving the state of photon and it is
defined as

F = |〈ψi|ψf 〉|2, (18)



4

○

○ ○
○

○

○

○

○

○ ○ ○

△ △

△

△

△

△

△

△

△ △ △

□ □ □

□

□

□

□

□

□ □ □

▽

▽
▽ ▽

▽

▽

▽

▽

▽ ▽ ▽

○ σβ = 12.16 degree/m, l=2

△ σβ = 14.36 degree/m, l=2

□ σβ = 16.56 degree/m, l=2

▽ σβ = 18.76 degree/m, l=2

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Number of Dove Prisms

F
id
el
it
y

OAM in Optical Fiber with CPMG

FIG. 1. (Color Online) Fidelity of CPMG sequence in a 500
m optical fiber with perfect pulses. The result shown in the
plot is for an OAM state with arbitrary φ and l = 2.
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FIG. 2. (Color Online) Fidelity of CPMG sequence in a 500
m optical fiber with perfect pulses. The result shown in the
plot is for an OAM state with arbitrary φ and l = 10.

where ψf and ψi represent the final and initial state
respectively. The fidelity F is averaged over n fiber noise
profiles.

When photon with state of the form Eq. 16 is launched
into the fiber of length 500 m it completely dephases and
fidelity remains at 50%.

We then calculate fidelity for second scenario where
the passive error suppression mechanism called the
Carr-Purcell-Meiboom-Gill (CPMG) DD pulse sequence
is used for a particular length, number of sections, and
initial state [20, 21]. For each section of fiber, the initial
state of photon is allowed to freely evolve for a certain
distance according to Eq. 17 and then the state is rotated
according to the CPMG DD pulse sequence, where
the pulse sequence is implemented by inserting a dove
prism. This prism is a well-known device in optics that
acts as image flipper in one transverse dimension, while
leaving unchanged the image in the other transverse
dimension [24]. This changes the OAM of a light beam
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FIG. 3. (Color Online) Fidelity of CPMG sequence in a 500
m optical fiber with perfect pulses. The result shown in the
plot is for an OAM state with arbitrary φ and l = 50.
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FIG. 4. (Color Online) Fidelity of CPMG sequence in a 500
m optical fiber with perfect pulses. The result shown in the
plot is for an OAM state with arbitrary φ and l between one
and 100.

from l = 1 to l = −1. This is repeated for each section in
the fiber. We then compare the output state with input
state and use fidelity as a measure of effectiveness in
preserving the state of photon. We see that for l = 2
the photon state can be preserved with a fidelity greater
than 99% as shown in Fig. 1.

Finally we analyze the impact of large quantum
number l on effectiveness of CPMG DD pulse sequence
in preserving the OAM state of photon. We find that
the fidelity decreases for same number of resource with
increasing value of quantum number l such as l = 10 and
l = 50 as shown in Fig. 2 and Fig. 3. As l is increased
from 1 to 100, we see that the DD pulse sequence fails
to preserve the OAM state of photon and it completely
dephases as shown in the Fig. 4. We note that there is no
intuitive relation between the exponential noise scaling
and number of prisms.
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V. CONCLUSION

The proposed decoherence model for OAM photons
in a optical fiber shows that the rate of decoherence
is dependent on l2. We then show numerically that
the OAM state can be preserved against decoherence
caused by the index fluctuation present in a fiber with
> 99% fidelity using CPMG DD scheme up to a certain
maximum value of l. The DD sequences are implemented
with Dove prisms, which presents a practical challenge,
and motivates the development of such devices in an
integrated optics environment. In realistic scenarios,
pulse sequences implemented by Dove prisms may be
imperfect but the advantage of CPMG is that it is
robust againt such pulse error and it can mitigate
these errors[17, 25]. For quantum optimal communication
schemes, such as quantum key distribution, one would
like to put a single-photon into a superposition state
of the highest possible number of OAM states. That is
because the number of bits per photon scales as log2(d),
where d is the dimension of the qudit. For example,
encoding in a superposition of up to p and l OAM states
gives

d = 2
(p(p+ 1))

2

(l(l + 1))

2
.

Our work here indicates that dephasing will limit lmax to
l = 10 for most scenarios. Dephasing cannot be corrected
by DD beyond that value of l.

A state of the form Eq. 15, which is an equal
superposition of OAM l and −l, can be prepared by
starting with a linear polarized light at 45° and Mach
–Zehnder interferometer with quarter-wave plate in both
the arms and Dove prism in one of the arms.

We have modeled the effects of index fluctuations on
the propagation of the OAM photons in fiber, and show
the decoherence scales approximately exponentially with
l2. We then show that DD sequence may be used to
mitigate the decoherence for small l. Our results then
give a road map for using OAM qudit states in fiber.

More generally, our work indicates that there is a
path to more generally create passive linear optical
elements that can correct dephasing in quantum states of
light stored in higher spatial modes including the OAM
Laguerre-Gauss modes, and the related Hermite-Gauss
and Bessel beam modes. While the current work focuses
on the particular example of OAM modes carrying
single photons for QKD, a great deal of work has gone
into using such states for quantum imaging [26, 27],
quantum metrology, quantum sensing [28], and tests of
quantum mechanics [29]. Even recently, Zeilinger and
collaborators have developed an automated method to
search for new experiments that utilize such states [30].
In all such technologies, quantum state dephasing is

a limiting factor to the performance of the technology.
As we have indicated, one can model dephasing in a
fiber as fluctuations in the index of refraction. For
remote quantum imaging and sensing applications, the
primary source of dephasing is atmospheric turbulence
[31]. Our technique outlined in this current paper can
be extended to of quantum imaging and communications
systems where the photon field is recycled through a
linear optical device that is designed to implement a
dynamical coupling or related scheme to remove the
dephasing in any higher order photon mode state.
Our model for decoherence given here is very specific

to the use of OAM states in fiber. We realize that
there is a great deal of interest in using OAM states
for free-space communication but for that regime we
will need to develop new model of decoherence and
also think carefully about a practical scenario whereby
the dynamical decoupling would be implemented in a
free-space scenario. Hence we are studying the free-space
scenario for future work.
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