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Compressing a porous material will decrease the volume of the pore space, driving fluid out.
Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid
skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to
geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling
by combining Darcy’s law with Terzaghi’s effective stress and linear elasticity in a linearized kine-
matic framework. This is a good model for very small deformations, but it becomes increasingly
inappropriate for moderate to large deformations, which are common in the context of phenom-
ena such as swelling and damage, and for soft materials such as gels and tissues. The well-known
theory of large-deformation poroelasticity combines Darcy’s law with Terzaghi’s effective stress and
nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in
biomechanics to model large elastic deformations in soft tissues, and in geomechanics to model large
elasto-plastic deformations in soils. Here, we first provide an overview and discussion of this theory
with an emphasis on the physics of poromechanical coupling. We present the large-deformation
theory in an Eulerian framework to minimize the mathematical complexity, and we show how this
simplifies to linear poroelasticity under the assumption of small strain. We then compare the pre-
dictions of linear poroelasticity with those of large-deformation poroelasticity in the context of
two uniaxial model problems: Fluid outflow driven by an applied mechanical load (the consolida-
tion problem) and compression driven by a steady fluid through-flow. We explore the steady and
dynamical errors associated with the linear model in both situations, as well as the impact of in-
troducing a deformation-dependent permeability. We show that the error in linear poroelasticity is
due primarily to kinematic nonlinearity, and that this error (i) plays a surprisingly important role
in the dynamics of the deformation and (ii) is amplified by nonlinear constitutive behavior, such as
deformation-dependent permeability.

I. INTRODUCTION

In a deformable porous material, deformation of the
solid skeleton is mechanically coupled to flow of the in-
terstitial fluid(s). This poromechanical coupling has rel-
evance to problems as diverse as cell and tissue mechan-
ics [e.g., 1–9], magma/mantle dynamics [e.g., 10–15], and
hydrogeology [e.g., 16–25]. These problems are notori-
ously difficult due to the inherently two-way nature of
poromechanical coupling, where deformation drives flow
and vice-versa.

In poroelasticity, the mechanics of the solid skeleton
are described by elasticity theory. The theory of poroe-
lasticity has a rich and interdisciplinary history [26].
Wang [17] provides an excellent discussion of the histori-
cal roots of linear poroelasticy, which models poroelastic
loading under infinitesimal deformations. Major touch-
stones in the development of linear poroelasticity include
the works of M. A. Biot [e.g., 27–29], who formalized the
linear theory and provided a variety of analytical solu-
tions through analogy with thermoelasticity, as well as
that of Rice and Cleary [30], who reformulated the lin-
ear theory in terms of more tangible material parameters
and derived solutions to several model problems.

When the deformation of the skeleton is not in-
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finitesimal, poroelasticity must be cast in the frame-
work of large-deformation elasticity [e.g., 31, 32]. Large-
deformation poroelasticity has found extensive applica-
tion over the past few decades in computational biome-
chanics for the study of soft tissues, which are porous,
fluid-saturated, and can accommodate large deforma-
tions reversibly. Much of this effort has been directed at
capturing the complex and varied structure and constitu-
tive behavior of biological materials [e.g., 33–39]. Large-
deformation poroelasticity has also been applied in com-
putational geomechanics for the study of soils and other
geomaterials. Soils typically accommodate large defor-
mations through ductile failure (plasticity or yielding)
due to their granular and weakly cemented microstruc-
ture, and much of the effort has been directed at the chal-
lenges of large-deformation elasto-plasticity [e.g., 40–43].
Large deformations can also occur through swelling [e.g.,
44, 45], which has attracted interest recently in the con-
text of gels [e.g., 46–48].

Large-deformation (poro)elasticity is traditionally ap-
proached almost exclusively with computational tools,
and these are based almost exclusively on the finite-
element method and in a Lagrangian framework [e.g.,
46, 48]. A thorough treatment of the Lagrangian ap-
proach to large-deformation poroelasticity can be found
in Ref. [32]. Although powerful, these tools can be cum-
bersome from the perspective of developing physical in-
sight. They are also poorly suited for studying nontriv-
ial flow and solute transport through the pore structure.
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Here, we instead consider the general theory of large-
deformation poroelasticity in an Eulerian framework. Al-
though the Eulerian approach is well known [e.g., 32], it
has very rarely been applied to practical problems and a
clear and unified presentation is lacking. This approach
is useful in the present context to clearly emphasize the
physics of poromechanical coupling.

In the first part of this paper, we review and discuss
the well-known theory (§II–III). We first consider the ex-
act description of the kinematics of flow and deformation,
adopting a simple but nonlinear elastic response in the
solid skeleton (§II). We then show how this theory re-
duces to linear poroelasticity in the limit of infinitesimal
deformations (§III).

In the second part of this paper, we compare the lin-
ear and large-deformation theories in the context of two
uniaxial model problems (§IV–VI). The primary goals of
this comparison are to study the role of kinematic nonlin-
earity in large deformations, and to examine the resulting
error in the linear theory. The two model problems are:
(i) Compression driven by an applied load (the consolida-
tion problem) and (ii) compression driven by a net fluid
through-flow. In the former, the evolution of the defor-
mation is controlled by the rate at which fluid is squeezed
through the material and out at the boundaries; as a re-
sult, fluid flow is central to the rate of deformation but
plays no role in the steady state. In the latter, fluid flow
is also central to the steady state since this is set by the
steady balance between the gradient in fluid pressure and
the gradient in stress within the solid skeleton. We show
that, in both cases, the error in linear poroelasticity due
to the missing kinematic nonlinearities plays a surpris-
ingly important role in the dynamics of the deformation,
and that this error is amplified by nonlinear constitutive
behavior such as deformation-dependent permeability.

II. LARGE-DEFORMATION POROELASTICITY

Poroelasticity is a multiphase theory in that it de-
scribes the coexistence and interaction of multiple im-
miscible constituent materials, or phases [e.g., 49]. Here,
we restrict ourselves to two phases: A solid and a fluid.
The solid phase is arranged into a porous and deformable
macroscopic structure, “the solid skeleton” or “the skele-
ton”, and the pore space of the solid skeleton is satu-
rated with a single interstitial fluid. Deformation of the
solid skeleton leads to rearrangement of its pore struc-
ture, with corresponding changes in the local volume
fractions (see §II B). Throughout, we use the terms “the
solid grains” or “the solid” to refer to the solid phase and
“the interstitial fluid” or “the fluid” to refer to the fluid
phase. Although the term “grain” is inappropriate in
the context of porous materials with fibrous microstruc-
ture, such as textiles, polymeric gels, or tissues, we use
it generically for convenience.

We assume here that the two constituent materials are
incompressible, meaning that the mass densities of the

fluid, ρf , and of the solid, ρs, are constant. Note that
this does not prohibit compression of the solid skeleton—
variations in the macroscopic mass density of the porous
material are enabled by changes in its pore volume. The
assumption of incompressible constituents is standard
in soil mechanics and biomechanics, where fluid pres-
sures and solid stresses are typically very small com-
pared to the bulk moduli of the constituent materials.
However, some caution is merited in the context of deep
aquifers where, at a depth of a few kilometers, the hy-
drostatic pressure and lithostatic stress themselves ap-
proach a few percent of the bulk moduli of water and
mineral grains. In these cases, it may be appropriate
to allow for fluid compressibility while retaining the in-
compressibility of the solid grains, in which case much
of the theory discussed here still applies. The theory of
poroelasticity can be generalized to allow for compress-
ible constituents [e.g., 17, 32, 50–52], but this is beyond
the scope of this paper.

What follows is, in essence, a brief and superficial in-
troduction to continuum mechanics in the context of a
porous material. We have minimized the mathematical
complexity where possible for the sake of clarity, and to
preserve an emphasis on the fundamental physics. For
the more mathematically inclined reader, excellent re-
sources are available for further study [e.g., 32, 53, 54].

A. Eulerian and Lagrangian reference frames

A core concept in continuum mechanics is the distinc-
tion between a Lagrangian reference frame (fixed to the
material) and an Eulerian one (fixed in space). These
two perspectives are rigorously equivalent, so the choice
is purely a matter of convention and convenience. A La-
grangian frame is the natural and traditional choice in
solid mechanics, where displacements are typically small
and where the current state of stress is always tied to
the reference (undeformed) configuration of the material
through the current state of strain (displacement gradi-
ents). An Eulerian frame is the natural and traditional
choice in fluid mechanics, where displacements are typi-
cally large and where the current state of stress depends
only on the instantaneous rate of strain (velocity gradi-
ents). More complex materials such as viscoelastic solids
and non-Newtonian fluids can have elements of both,
with a dependence on both strain and strain rate [e.g.,
55, 56].

Problems involving fluid-solid coupling lead to a
clear conflict between the Eulerian and Lagrangian ap-
proaches. In classical fluid-structure interaction prob-
lems, such as air flow around a flapping flag or blood
flow through an artery, the fluid and the solid exist in
separate domains that are coupled along a shared mov-
ing boundary. In a porous material, in contrast, the fluid
and the solid coexist in the same domain and are coupled
through bulk conservation laws. As a result, the entire
problem must be posed either in a fixed Eulerian frame
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or in a Lagrangian frame attached to the solid skeleton.
One major advantage of the latter approach is that it
eliminates moving (solid) boundaries since the skeleton
is stationary relative to a Lagrangian coordinate system;
this is particularly powerful and convenient in the context
of computation. However, the Eulerian approach leads to
a simpler and more intuitive mathematical model in the
context of fluid flow and transport, and it is straight-
forward and even advantageous when boundary motion
is absent or geometrically simple. This conflict can be
avoided altogether when the deformation of the skeleton
is small, such that the distinction between an Eulerian
frame and a Lagrangian one can be ignored; this is a core
assumption of linear (poro)elasticity.

In the present context, we consider two model prob-
lems where the fluid and the skeleton are tightly coupled,
the deformation of the skeleton is large, and there is a
moving boundary. We pose these problems fully in an
Eulerian frame and write all quantities as functions of
an Eulerian coordinate x, fixed in the laboratory frame.
Accordingly, we adopt the notation

∇ ≡ êi
∂

∂xi
, (1)

where the xi are the components of the Eulerian coor-
dinate system, i = 1, 2, 3, with êi the associated unit
vectors, and adopting the Einstein summation conven-
tion. For reference and comparison, we summarize the
key aspects of the Lagrangian framework in Appendix A.

B. Volume fractions

We denote the local volume fractions of fluid and solid
by φf (the porosity, fluid fraction, or void fraction) and
φs (the solid fraction), respectively. These are the true
volume fractions in the sense that they measure the cur-
rent phase volume per unit current total volume, such
that φf + φs ≡ 1. As such, the true porosity is the rele-
vant quantity for calculating flow and transport through
the pore structure. However, changes in φf at a spatial
point x reflect both deformation and motion of the un-
derlying skeleton, so the relevant state of stress must be
calculated with some care.

Alternatively, it is possible to define nominal volume
fractions that measure the current phase volume per unit
reference total volume [32]. These are convenient in a La-
grangian frame where, if the solid phase is incompress-
ible, the nominal solid fraction is constant by definition
and the nominal porosity is linearly related to the local
volumetric strain. However, the nominal porosity is not
directly relevant to flow and transport. In addition, the
nominal volume fractions do not sum to unity; rather,
they must sum to the Jacobian determinant J (see §II C).
Here, we avoid these nominal quantities and work strictly
with the true porosity. Note that Coussy [32] denotes the
true porosity (“Eulerian porosity”) by n and the nomi-
nal porosity (“Lagrangian porosity”) by φ, whereas we

denote the true porosity by φf and the nominal porosity
by Φf (see Appendix A).

C. Kinematics of solid deformation

The most primitive quantity for calculating deforma-
tion is the displacement field, which is a map between the
current configuration of the solid skeleton and its refer-
ence configuration. In other words, the displacement field
measures the displacement of material points from their
reference positions. In an Eulerian frame, the solid dis-
placement field us(x, t) is given by

us(x, t) = x−X(x, t), (2)

where X is the reference position of the material point
that sits at position x at time t (i.e., it is the Lagrangian
coordinate in our Eulerian frame). We adopt the conven-
tion that X(x, 0) = x such that us(x, 0) = 0; this is not
required, but it simplifies the analysis.

The displacement field is not directly a measure of de-
formation because it includes rigid-body motions. The
deformation-gradient tensor F, which is the Jacobian of
the deformation field, excludes translations by consider-
ing the spatial gradient of the displacement field. In an
Eulerian frame, F is more readily defined through its in-
verse,

F−1 = ∇X = I−∇us, (3)

where (·)−1 denotes the inverse and I is the identity ten-
sor. The deformation-gradient tensor F still includes
rigid-body rotations, but these can be excluded by multi-
plying F by its transpose. Hence, measures of strain are
ultimately derived from the right Cauchy-Green deforma-
tion tensor C = FᵀF or the left Cauchy-Green deforma-
tion tensor B = FFᵀ, where (·)ᵀ denotes the transpose.

The eigenvalues λ2i of C (or, equivalently, of B) are
the squares of the principal stretches λi, with i = 1, 2, 3.
The stretches measure the amount of elongation along
the principal axes of the deformation, which are them-
selves related to the eigenvectors of C and B: In the
reference configuration, they are the normalized eigen-
vectors of C; in the current configuration, they are the
normalized eigenvectors of B.

The Jacobian determinant J measures the amount of
local volume change during the deformation,

J(x, t) = det (F) =
1

det (F−1)
= λ1λ2λ3. (4)

This is precisely the ratio of the current volume of the
material at point x to its reference volume, and where
det (·) denotes the determinant. For an incompressible
solid skeleton, J ≡ 1. For a compressible solid skele-
ton made up of incompressible solid grains, as considered
here, deformation occurs strictly through rearrangement
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of the pore structure and the Jacobian determinant is
connected directly to the porosity,

J(x, t) =
1− φf,0(x, t)

1− φf (x, t)
, (5)

where φf,0(x, t) ≡ φf
(
x − us(x, t), 0

)
is the reference

porosity field. In an Eulerian frame, the reference poros-
ity field depends on us because it refers to the initial
porosity of the material that is currently located at x
but that was originally located at x − us. Note that
φf,0(x, t) 6= φf (x, 0) unless φf (x, 0) is spatially uniform,
in which case φf (x, 0) = φf,0 is simply a constant and
this distinction is unimportant.

Lastly, local continuity for the incompressible solid
phase is written

∂φs
∂t

+∇ ·
(
φsvs

)
= 0 or

∂φf
∂t
−∇ ·

[
(1− φf )vs

]
= 0,

(6)
where vs(x, t) is the solid velocity field. The solid velocity
is the material derivative of the solid displacement,

vs =
Dus
Dt
≡ ∂us

∂t
+ vs ·∇us =

∂us
∂t
· F. (7)

Equations (2)–(7) provide an exact kinematic description
of the deformation of the solid skeleton, assuming only
that the solid phase is incompressible. This is valid for
arbitrarily large deformations and, because it is simply
a geometric description of the changing pore space, it
makes no assumptions about the fluid that occupies the
pore space. This remains rigorously valid when the fluid
phase is compressible, and in the presence of multiple
fluid phases. Further, this description makes no addi-
tional assumptions about the constitutive behavior of the
solid skeleton—it remains rigorously valid for any elas-
ticity law, and in the presence of viscous dissipation or
plasticity.

D. Kinematics of fluid flow

We assume that the pore space of the solid skeleton is
saturated with a single fluid phase. For a compressible
fluid phase, local continuity is written

∂

∂t

(
ρfφf

)
+ ∇ ·

(
ρfφfvf

)
= 0, (8)

where vf (x, t) is the fluid velocity field. This remains
valid for multiple fluid phases if ρf and vf are calculated
as fluid-phase-averaged quantities, in which case Equa-
tion (8) must also be supplemented by a conservation
law for each of the individual fluid phases. For simplic-
ity, we focus here on the case of a single, incompressible
fluid phase, for which we have

∂φf
∂t

+ ∇ ·
(
φfvf

)
= 0. (9)

There is no need to introduce a fluid displacement field
since we assume below that the fluid is Newtonian. The
constitutive law for a Newtonian fluid, and also for many
non-Newtonian fluids, depends only on the fluid velocity.

E. Constitutive laws for fluid flow

We assume that the fluid flows relative to the solid
skeleton according to Darcy’s law. For a single Newto-
nian fluid, Darcy’s law can be written

φf (vf − vs) = −k(φf )

µ
(∇p− ρfg) , (10)

where k(φf ) is the permeability of the solid skeleton,
which we have taken to be an isotropic function of poros-
ity only, µ is the dynamic viscosity of the fluid, g is the
body force per unit mass due to gravity, and we have
neglected body forces other than gravity.

Darcy’s law is an implicit statement about the
continuum-scale form of the mechanical interactions be-
tween the fluid and solid [e.g., §3.3.1 of 32]. We simply
adopt it here as a phenomenological model for flow of a
single fluid through a porous material. In the presence
of multiple fluid phases, Equation (10) can be replaced
by the classical multiphase extension of Darcy’s law [e.g.,
57]. For a single but non-Newtonian fluid phase, Equa-
tion (10) must be modified accordingly [e.g., 58].

Generally, the permeability will change with the pore
structure as the skeleton deforms, although this depen-
dence is neglected in linear poroelasticity, where it is as-
sumed that deformations are infinitesimal. The simplest
representation of this is to take the permeability to be
a function of the porosity, as we have done above, and
here again the true porosity is the relevant quantity. A
common choice is the Kozeny-Carman formula, one form
of which is

k(φf ) =
d2

180

φ3f
(1− φf )2

, (11)

where d is the typical pore or grain size. This was de-
rived from experimental measurements in beds of close-
packed spheres, but is commonly used for a wide range
of materials. One reason for this is that the Kozeny-
Carman formula respects two physical limits that are
important for poromechanics: The permeability vanishes
as the porosity vanishes, and diverges as the porosity
approaches unity. The former requirement ensures that
fluid flow cannot drive the porosity below zero, and the
latter prevents the flow from driving the porosity above
unity.

We use a normalized Kozeny-Carman formula here,

k(φf ) = k0
(1− φf,0)2

φ3f,0

φ3f
(1− φf )2

, (12)

where k(φf,0) = k0 is the relaxed/undeformed permeabil-
ity. This preserves the qualitative characteristics of the
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original relationship while allowing the initial permeabil-
ity and the initial porosity to be imposed independently.
Clearly, it is straightforward to design other permeability
laws that have the same characteristics. Note that the
particular choice of permeability law will dominate the
flow and mechanics in the limit of vanishing permeabil-
ity since the pressure gradient, which is coupled with the
solid mechanics, is inversely proportional to the perme-
ability.

Since porosity is strictly volumetric, writing k = k(φf )
neglects the impacts of rotation and shear. This is overly
simplistic for materials with inherently anisotropic per-
meability fields, the axes of which would rotate under
rigid-body rotation and would be distorted in shear. It is
also possible that permeability anisotropy could emerge
through anisotropic deformations, or through other ef-
fects creating orthotropic structure. We neglect these
effects here for simplicity.

F. Nonlinear flow equation

One convenient way of combining Equations (6), (9),
and (10) is by defining the total volume flux q as

q ≡ φfvf + (1− φf )vs. (13)

This measures the total volume flow per unit total cross-
sectional area per unit time. The total flux can also be
viewed as a phase-averaged, composite, or bulk velocity.
From this, it is then straightforward to derive

∂φf
∂t

+ ∇ ·
[
φfq− (1− φf )

k(φf )

µ

(
∇p− ρfg

)]
= 0 ,

(14a)

and ∇ · q = 0 , (14b)

with

vf = q−
(

1− φf
φf

)
k(φf )

µ
(∇p− ρfg) , (15a)

and vs = q +
k(φf )

µ
(∇p− ρfg) . (15b)

Equations (14) and (15) embody Darcy’s law and the
kinematics of the deformation, describing the coupled
relative motion of the fluid and the solid skeleton. It re-
mains to enforce mechanical equilibrium, and to provide
a constitutive relation between stress and deformation
within the solid skeleton.

G. Mechanical equilibrium

Mechanical equilibrium requires that the fluid and the
solid skeleton must jointly support the local mechanical
load, and this provides the fundamental poromechanical
coupling. The total stress σ is the total force supported

by the two-phase system per unit area, and can be writ-
ten

σ = (1− φf )σs + φfσf , (16)

where σs and σf are the solid stress and the fluid stress,
respectively. The solid stress is the force supported by the
solid per unit solid area, and (1−φf )σs is then the force
supported by the solid per unit total area. Similarly,
the fluid stress is the force supported by the fluid per
unit fluid area, and φfσf is then the force supported
by the fluid per unit total area. Note that it is implicitly
assumed here and elsewhere that the phase area fractions
are equivalent to the phase volume fractions.

Any stress tensor can be decomposed into isotropic
(volumetric) and deviatoric (shear) components without
loss of generality. For a fluid within a porous solid, it
can be shown that the shear component of the stress is
negligible relative to the volumetric component at the
continuum scale [e.g., §3.3.1 of 32], so that σf = −pI,
where p ≡ −(1/3)tr(σf ) is the fluid pressure with tr(·)
the trace. Note that we have adopted the sign conven-
tion from solid mechanics that tension is positive and
compression negative. The opposite convention is usually
used in soil mechanics, rock mechanics, and geomechan-
ics since geomaterials are almost always in compression.

Because the fluid permeates the solid skeleton, the
solid stress must include an isotropic and compressive
component in response to the fluid pressure. This is
present even when the fluid is at rest, and/or when the
skeleton carries no external load, but this component can-
not contribute to deformation unless the solid grains are
compressible. Subtracting this component from the solid
stress leads to Terzaghi’s effective stress σ′ [59],

σ′ ≡ (1− φf )(σs + pI), (17)

which is the force per unit total area supported by the
solid skeleton through deformation [e.g., 17, 27, 32, 59].
We can then rewrite Equation (16) in its more familiar
form,

σ = σ′ − pI, (18)

which can be modified to allow for compressibility of the
solid grains [e.g., 52, 60].

Neglecting inertia, and in the absence of body forces
other than gravity, mechanical equilibrium then requires
that

∇ · σ = ∇ · σ′ −∇p = −ρg, (19)

where ρ ≡ φfρf + (1−φs)ρs is the phase-averaged, com-
posite, or bulk density. A useful but non-rigorous physi-
cal interpretation of Equation (19) is that the fluid pres-
sure gradient acts as a body force within the solid skele-
ton.

The stress tensors in Equation (19) are Cauchy or
true stresses. These are Eulerian quantities, and Equa-
tion (19) is an Eulerian statement: The current forces on
current areas in the current configuration must balance.
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H. Constitutive law for the solid skeleton

We assume that the solid skeleton is an elastic mate-
rial, for which the state of stress depends on the dis-
placement of material points from a relaxed reference
state. This distinguishes the theory of poroelasticity
from, for example, the poroviscous framework tradition-
ally used in magma/mantle dynamics, where the skeleton
is assumed to behave as a viscous fluid over geophysical
timescales [e.g., 13]. This assumption greatly simplifies
the mathematical framework for large deformations by
eliminating any dependence on displacement, but we can-
not take advantage of it here.

The constitutive law for an elastic solid skeleton typ-
ically links the effective stress to the solid displacement
via an appropriate measure of strain or strain energy.
For large deformations, elastic behavior is nonlinear for
two reasons. First, the kinematics are inherently nonlin-
ear because the geometry of the body evolves with the
deformation (kinematic nonlinearity). Second, most ma-
terials harden or soften under large strains as their inter-
nal microstructure evolves—that is, the material proper-
ties change with the deformation (material or constitu-
tive nonlinearity).

To capture the kinematic nonlinearities introduced by
the evolving geometry, relevant measures of finite strain
are typically derived from one of the Cauchy-Green defor-
mation tensors. A wide variety of finite-strain measures
exist, each of which is paired with an appropriate mea-
sure of stress through a stress-strain constitutive relation
that includes at least two elastic parameters. In modern
hyperelasticity theory, this constitutive relation takes the
form of a strain-energy density function. Selection of an
appropriate constitutive law and subsequent tuning of
the elastic parameters can ultimately match a huge vari-
ety of material behaviors, but our focus here is simply on
capturing kinematic nonlinearity. For this purpose, we
consider a simple hyperelastic model known as Hencky
elasticity.

The key idea in Hencky elasticity is to retain the clas-
sical strain-energy density function of linear elasticity,
but replacing the infinitesimal strain with the Hencky
strain [61, 62]. Hencky strain, also known “natural
strain” or “true strain”, is an extension to three di-
mensions of the one-dimensional concept of logarithmic
strain. Hencky elasticity is a generic model in that it
does not account for material-specific constitutive non-
linearity, but it captures the full geometric nonlinearity
of large deformations and thus provides a good model for
the elastic behavior of a wide variety of materials under
moderate to large deformations [61, 63]. It is also very
commonly used in large-deformation plasticity. Hencky
strain has some computational disadvantages [64], but
these are not relevant here.

Hencky elasticity can be written

Jσ′ = Λ tr(H)I + (M− Λ)H, and (20a)

H =
1

2
ln(FFᵀ), (20b)

where H is the Hencky strain tensor and the J on the left-
hand side of Equation (20a) accounts for volume change
during the deformation. Hencky elasticity reduces to lin-
ear elasticity for small strains and, conveniently, it uses
the same elastic parameters as linear elasticity (see §III).
For compactness, we work in terms of the oedometric or
p-wave modulusM = K+ 4

3G and Lamé’s first parameter

Λ = K − 2
3G, where K and G are the bulk modulus and

shear modulus of the solid skeleton, respectively. Note
that Lamé’s first parameter is often denoted λ, but we
use Λ here to avoid confusion with the principal stretches
λi. All of these elastic moduli are “drained” properties,
meaning that they are mechanical properties of the solid
skeleton alone and must be measured under quasi-static
conditions where the fluid is allowed to drain (leave) or
enter freely.

I. Boundary conditions

Poromechanics describes flow and deformation within
a porous material, so the boundaries of the spatial do-
main typically coincide with the boundaries of the solid
skeleton. These boundaries may move as the skeleton
deforms; in an Eulerian framework, this constitutes a
moving-boundary problem. This is the primary disad-
vantage of working in an Eulerian framework as it can
be analytically and numerically inconvenient. One note-
worthy exception is in infinite or semi-infinite domains,
in which case suitable far-field conditions are applied;
this is common in geophysical problems, which are often
spatially extensive.

To close the model presented above, we require kine-
matic and dynamic boundary conditions for the fluid and
the skeleton. Kinematic conditions are straightforward:
For the fluid, the most common kinematic conditions
are constraints on the flux through the boundaries; for
the solid, kinematic conditions typically enforce that the
boundaries of the domain are material boundaries, mean-
ing that they move with the skeleton.

The simplest dynamic conditions are an imposed total
stress, an imposed effective stress, or an imposed fluid
pressure. At a permeable boundary, any two of these
three quantities can be imposed. At an unconstrained
permeable boundary, for example, the normal compo-
nent of the total stress will come from the fluid pressure
and the shear component must vanish; this then implies
that both the normal and shear components of the effec-
tive stress must vanish. At an impermeable boundary, in
contrast, only the total stress can be imposed—the de-
composition of the load into fluid pressure and effective
stress within the domain will arise naturally through the
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solution of the problem (although imposed shear stress
can only be supported by the solid skeleton, via effec-
tive stress). Some care is required with more complex
dynamic conditions that provide coupling with a non-
Darcy external flow [e.g., 65–67], but this is beyond the
scope of this paper.

III. LINEAR POROELASTICITY

We now briefly derive the theory of linear poroelas-
ticity by considering the limit of infinitesimal deforma-
tions. For a deformation characterised by typical dis-
placements of size δ ∼ ||us|| varying over spatial scales
of size L ∼ ||x|| ∼ ||X||, the characteristic strain is of
size ε ≡ δ/L ∼ ||∇us||. The assumption of infinitesimal
deformations requires that ε � 1. We develop the well-
known linear theory by retaining terms to first order in
ε, neglecting terms of order ε2 and higher. Note that the
deformation itself enters at first order by definition.

A. Linear flow equation

We have from Equations (3) and (4) that

φf − φf,0
1− φf,0

≈∇ · us ∼ ε. (21)

This motivates rewriting Equation (14a) in terms of the

normalized change in porosity, φ̃f ≡ (φf − φf,0)/(1 −
φf,0) ∼ ε,

∂φ̃f
∂t

+∇·
[
φ̃fq− (1− φ̃f )

k(φf )

µ
(∇p− ρfg)

]
= 0, (22)

where we have taken the initial porosity field to be uni-
form. We then eliminate q in favor of vs using Equa-
tion (15b),

∂φ̃f
∂t

+ ∇ ·
[
φ̃fvs −

k(φf )

µ
(∇p− ρfg)

]
= 0. (23)

Equation (7) implies that ||vs|| ∼ δ, and therefore that

||∇ · (φ̃fvs)|| ∼ ε2. Simplifying Equation (23) accord-
ingly, we arrive at one form of the well-known linear
poroelastic flow equation:

∂φf
∂t
−∇ ·

[
(1− φf,0)

k0
µ

(∇p− ρfg)

]
≈ 0, (24)

where k0 = k(φf,0) is the relaxed/undeformed permeabil-

ity, and where we have reverted from φ̃f to φf .
Comparing Equation (24) with Equations (14) high-

lights the fact that exact kinematics not only render
the model nonlinear, but also introduce a fundamen-
tally different mathematical character: Equation (24)
can be written as a linear diffusion equation after in-
troducing linear elasticity in the solid skeleton, whereas
Equations (14) feature an additional, advection-like term
related to the divergence-free total flux.

B. Linear elasticity

It is straightforward to show that Hencky elasticity
(§II H) reduces to classical linear elasticity at leading or-
der in ε, as do many other (but not all) finite-deformation
elasticity laws. Linear elasticity can be written as

σ′ = Λ tr(ε)I + (M− Λ)ε, and (25a)

ε =
1

2
[∇us + (∇us)

ᵀ] , (25b)

where ε is the infinitesimal (“small”) strain tensor. By
linearizing the strain in the displacement (H ≈ ε) and
the stress in the strain (Jσ′ ≈ σ′), linear elasticity ne-
glects both kinematic nonlinearity and constitutive non-
linearity, and also the distinction between the deformed
configuration and the reference configuration.

C. Discussion

A closed linear theory is provided by combining the lin-
ear flow equation (Eq. 24) with mechanical equilibrium
(Eq. 19), linear elasticity (Eqs. 25), and the linearized
statement of volumetric compatibility (Eq. 21). The re-
sulting model is valid to first order in ε. A discussion of
the various forms of the linear theory commonly used in
hydrology, hydrogeology, and petroleum engineering can
be found in Ref. [17], and reviews of numerous classical
results in linear poroelasticity can be found in Refs. [17]
and [30].

Note that variations in permeability do not enter at
this order because Equations (19) and (25) together im-
ply that ||∇p/(M/L)|| = ||(∇ · σ′)/(M/L)|| ∼ ε. This
latter scaling should also be viewed as a constraint: Im-
posing pressure or stress gradients of size approaching
M/L will drive a deformation that violates the assump-
tion ε� 1, invalidating the linear theory.

The linear theory can alternatively be derived from a
Lagrangian perspective (Ref. [32] and Appendix A). This
must necessarily result in the same model, but in terms
of the Lagrangian coordinate X instead of the Eulerian
coordinate x. These coordinates themselves differ at first
order, ||(x−X)/L|| = ||us/L|| ∼ ε, but all quantities re-
lated to the deformation are also first order and this im-
plies, for example, that p(X, t) = p(x, t)−(∇p)·us+. . . ≈
p(x, t). As a result, replacing x with X in Equations (19),
(21), (24), and (25) will result in a Lagrangian interpreta-
tion of the linear model that is still valid to first order in ε.
These two models are equivalent in the limit of ε→ 0, but
they will always differ at order ε2 and diverge from each
other as the deformation grows. This conceptual ambi-
guity is one awkward aspect of linear (poro)elasticity (see
also, Appendix B).

Here, our interest is in the behavior of the linear the-
ory as the deformation becomes non-negligible. We next
consider two model problems involving uniaxial flow and
deformation, using these as a convenient setting for com-
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x

�0? = 0

�p? = 0

x = L

x = �(t) > 0

relaxed

mechanical compression

(consolidation)

x = 0

fluid-driven compression

x = �(t) > 0

�p? = 0

�0? < 0

�p? > 0

�0? = 0

FIG. 1. We consider the uniaxial deformation of a soft porous
material by an applied effective stress and/or an applied fluid
pressure drop. (a) The solid is laterally confined and has re-
laxed length L. Its right edge is attached to a rigid permeable
barrier (x = L, thick dashed black line), but the rest is free to
move. We denote the instantaneous position of the left edge
by x = δ(t), taking δ(0) = 0 (dashed orange line). The mate-
rial can be compressed against the barrier (δ > 0) by (b) an
applied effective stress σ′? < 0 (dark gray arrows), in which
case the rate of deformation is set by the rate of fluid outflow
(wiggly blue arrows) and/or by (c) an applied fluid pressure
drop ∆p? > 0, in which case the deformation is driven by a
net flow from left to right (straight blue arrows).

paring the predictions of linear poroelasticity with the
large-deformation theory.

IV. MODELS FOR UNIAXIAL FLOW
AND DEFORMATION

We now consider the uniaxial deformation of a de-
formable porous material, as shown schematically in Fig-
ure 1. Provided that the material properties are uniform
in the lateral directions, both the flow and the deforma-

tion will be restricted to one spatial dimension,

vf = vf (x, t)êx, (26a)

vs = vs(x, t)êx, (26b)

us = us(x, t)êx, (26c)

and

φf = φf (x, t). (26d)

As a result, the analysis is tractable even when the defor-
mation is large. This allows for the exploration of a vari-
ety of complex material models [68–70] and loading sce-
narios, including mechanical compression [71, 72], forced
infiltration [70, 73], and spontaneous imbibition [74, 75].
Here, we consider two canonical problems: Mechanical
compression (the consolidation problem) and fluid-driven
compression. These differ only in the boundary condi-
tions, so we develop a single model that applies to both
cases. We assume that gravity is unimportant.

For the solid, a one-dimensional displacement field im-
plies that the material is either laterally confined or lat-
erally infinite, otherwise the Poisson effect would lead
to lateral expansion or contraction. Our model and re-
sults are independent of the shape and size of the y-z
cross-section as long as the lateral boundaries are rigid,
frictionless, and impermeable. For example, the material
could be a rectangular slab within a duct [e.g., 76, 77]
or a cylinder within a tube [e.g., 78]. Although we focus
here on compression, our models and solutions remain
valid if we reverse the sign of the effective stress and/or
the pressure gradient; this will reverse the direction of the
displacement and/or the flow, stretching the skeleton to
the left in a state of tension.

A. Five models

Poromechanical phenomena are highly coupled. In or-
der to highlight the nonlinear interactions between the
various physical mechanisms at play, as well the qualita-
tive and quantitative behavior of the error introduced
by linearizing these, we consider five different models
below: A fully linear model (§III), two fully nonlinear
models, and two intermediate models. The nonlinear
models combine rigorous large-deformation kinematics
with Hencky elasticity (§II H) and one of two permeabil-
ity laws: Constant (k = k0) or deformation-dependent
(k = k(φf )) via the normalized Kozeny-Carman formula,
Eq. (12). The intermediate models are the same as the
nonlinear models, but replacing Hencky elasticity with
linear elasticity (§III B) while retaining all other nonlin-
earity. We refer to these models as:

1. “linear”: Linear poroelasticity;

2. “nonlinear-k0”: Nonlinear kinematics with Hencky
elasticity and constant permeability;
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3. “nonlinear-kKC”: Nonlinear kinematics with
Hencky elasticity and deformation-dependent per-
meability;

4. “intermediate-k0”: Nonlinear kinematics with lin-
ear elasticity and constant permeability; and

5. “intermediate-kKC”: Nonlinear kinematics with
linear elasticity and deformation-dependent perme-
ability.

Note that although the intermediate approach is nonlin-
ear, and retains most of the kinematic nonlinearity of
the fully nonlinear model, it is not kinematically rigor-
ous because the nonlinearity of Hencky elasticity is also
kinematic in origin. The intermediate approach should
also be considered with caution because it is asymptoti-
cally mixed, which can lead to non-physical behavior at
large deformations. However, it is useful for illustration.

We derive and discuss below the fully nonlinear models
(§IV B) and the linear model (§IV C), but we present
results from all five models [79]. We adopt the shorthand
names given above for conciseness.

B. Large-deformation poroelasticity

We first consider the exact kinematics of flow and de-
formation with a Hencky-elastic response in the solid
skeleton. The results from this section provide the
nonlinear-k0 and nonlinear-kKC models by introduc-
ing the appropriate permeability function, and can be
readily modified to provide the intermediate-k0 and
intermediate-kKC models by replacing Hencky elasticity
with linear elasticity in any steps involving the elasticity
law.

1. Kinematics and flow

We assume that the porosity in the initial state is spa-
tially uniform and given by φf (x, 0) = φf,0, where φf,0
is a known constant, thereby giving

J(x, t) =
1− φf,0

1− φf (x, t)
. (27)

The deformation-gradient tensor can be written as (c.f.,
Equation 3)

F =


J 0 0

0 1 0

0 0 1

 , (28)

where the Jacobian determinant is

J = det (F) =

(
1− ∂us

∂x

)−1
. (29)

The displacement field is linked to the porosity field via
Equation (27),

φf − φf,0
1− φf,0

=
∂us
∂x

. (30)

For uniaxial flow, Equations (14), (15), and (19) become

∂φf
∂t

+
∂

∂x

[
φfq(t)− (1− φf )

k(φf )

µ

∂p

∂x

]
= 0, (31a)

with

vf = q(t)−
(

1− φf
φf

)
k(φf )

µ

∂p

∂x
, (31b)

vs = q(t) +
k(φf )

µ

∂p

∂x
, (31c)

and

∂p

∂x
=
∂σ′xx
∂x

, (31d)

where the total volume flux q(t) = φfvf + (1−φf )vs is a
function of time only. Equations (30) and (31) constitute
a kinematically exact model for any constitutive behav-
ior in the solid skeleton. This model has been derived
previously [e.g., Equation (44) of Ref. 70].

2. Hencky elasticity

We take the constitutive response of the solid skele-
ton to be Hencky elastic, in which case the associated
effective stress is

σ′ =


M ln J

J
0 0

0 Λ
ln J

J
0

0 0 Λ
ln J

J

 . (32)

Although the displacement and the strain are uniaxial,
the stress has three nontrivial components due to the
Poisson effect under lateral confinement. If the material
were laterally unconfined, the stress would be uniaxial
and the strain would have three nontrivial components.

We link the mechanics of the skeleton with those of the
fluid by combining Equation (32) with Equations (30)
and (31d) to obtain

∂p

∂x
=
∂σ′xx
∂x

=
∂

∂x

[
M ln J

J

]
=

∂

∂x

[
M
(

1− φf
1− φf,0

)
ln

(
1− φf,0
1− φf

)]
.

(33)

With appropriate boundary conditions, Equations (30)–
(33) finally provide a closed model for the evolution of
the porosity.
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For uniaxial deformation, the Hencky stress and strain
depend only on J and can therefore be written directly
in terms of φf . In fact, this is the case for any con-
stitutive law since F itself depends only on J—that is,
the deformation can be completely characterized by the
local change in porosity. This is a special feature of
uniaxial deformation: The effective stress can be writ-
ten exclusively as a function of porosity, σ′ = σ′(φf ),
for any constitutive law. As a result, the framework of
large-deformation elasticity can be avoided in a uniax-
ial setting by simply positing or measuring the function
σ′xx(φf ) [e.g., 80]. This approach is simple and appeal-
ing, but has the obvious disadvantage that it cannot be
readily generalized to more complicated loading scenar-
ios. It also has the more subtle disadvantage that even
in the uniaxial case it is unable to provide answers to
basic questions about the 3D state of stress within the
material. For example: How much stress does the ma-
terial apply to the lateral confining walls? What is the
maximum shear stress within the material?

3. Boundary conditions

The left and right boundaries of the solid skeleton are
located at x = δ(t) and x = L, respectively, and we take
δ(0) = 0 without loss of generality (Figure 1). We then
have four kinematic boundary conditions for the skeleton
from the fact that the left and right edges are material
boundaries: Two on displacement,

us(δ, t) = δ and us(L, t) = 0, (34)

and two on velocity,

vs(δ, t) = δ̇ ≡ dδ

dt
and vs(L, t) = 0. (35)

We use the former pair in calculating the displacement
field from the porosity field, and the latter pair in deriv-
ing boundary conditions for porosity.

We take the pressure drop across the material to be
imposed and equal to ∆p ≡ p(δ, t)− p(L, t), and without
loss of generality we write this as

p(δ, t) = ∆p and p(L, t) = 0. (36)

We further assume that a mechanical load is applied to
the left edge in the form of an imposed effective stress
σ′?. The effective stress at the right edge can then be
derived by integrating Equation (31d) from δ to L to ar-
rive at σxx(δ, t) = σxx(L, t), which is simply a statement
of macroscopic force balance in the absence of inertia or
body forces. From this and the pressures at δ and L, we
then have that

σ′xx(δ, t) = σ′? and σ′xx(L, t) = σ′? −∆p. (37)

Since the effective stress is directly related to the poros-
ity in this geometry (see §IV B 2), Equations (37) pro-

vide φf (δ, t) and φf (L, t) and constitute Dirichlet condi-
tions. For Hencky elasticity, these can be readily calcu-
lated from

φf (x, t) = 1 + (1− φf,0)
σ′xx/M

W(−σ′xx/M)
(38)

where W( · ) denotes the Lambert W function (y =
W(x)/x solves x = − ln(y)/y).

When the pressure drop is imposed, the volume flux
q(t) through the material will vary in time and this ap-
pears explicitly in Equations (31). One approach to de-
riving an expression for q(t) is to rearrange and integrate
Equation (31c) [c.f., Equations (21)–(23) of 70],

q(t) =

∆p? +

∫ L

δ

µ

k(φf )
vs dx∫ L

δ

µ

k(φf )
dx

, (39)

but this is awkward in practice since it requires explicit
calculation of vs from us via Equation (7), which is oth-
erwise unnecessary. Alternatively, we can evaluate Equa-
tion (31c) at x = L to obtain

q(t) = −
[
k(φf )

µ

∂p

∂x

] ∣∣∣∣
x=L

= −
[
k(φf )

µ

dσ′xx
dφf

∂φf
∂x

] ∣∣∣∣
x=L

,

(40)
which we supplement with the Dirichlet condition above
on φf (L, t). Equation (40) is straightforward to imple-
ment.

For fluid-driven deformation, an imposed pressure drop
∆p? will eventually lead to a steady state in which the
solid is stationary, the fluid flow is steady, and the vol-
ume flux is constant, q(t) → q?. Imposing instead this
same flux q? from the outset and allowing the pressure
drop to vary must eventually lead to precisely the same
steady state, in which ∆p(t) → ∆p?. As a result, the
only difference between these two conditions is in the
dynamic approach to steady state. We focus on the
pressure-driven case below, but we provide analytical
and numerical solutions that are valid for both cases [79]
and we explore the relationship between q? and ∆p? at
steady state. Note that, for an imposed flux, the pres-
sure at x = δ is unknown and the Dirichlet condition at
x = L must be replaced by the Neumann condition that
φf (L, t)vf (L, t) = q?.

For an incompressible solid skeleton, conservation of
solid volume requires that∫ L

δ

(1− φf ) dx = (1− φf,0)L, (41)

and it is straightforward to confirm that this is identi-
cally satisfied by Equations (30) and (34). If any of these
relationships are approximated, the resulting model will
no longer be volume-conservative. Conservation of mass
or volume is typically not a primary concern in solid
mechanics because most engineering materials are only
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slightly compressible and typically experience very small
deformations. It becomes more important in porome-
chanics because porous materials are much more com-
pressible than non-porous ones since the skeleton can de-
form through rearrangement of the solid grains. This
allows for large volume changes through large changes in
the pore volume, which are then strongly coupled to the
fluid mechanics.

C. Linear poroelasticity

We now derive the linear model. We do this by lin-
earizing the nonlinear model above, so we write the re-
sults in terms of the Eulerian coordinate x. As described
in §III C, however, the spatial coordinate in the linear
model is ambiguous: Simply replacing the Eulerian co-
ordinate x with the Lagrangian coordinate X in the ex-
pressions below will result in a model that is still ac-
curate to leading order in δ/L. Whereas the Eulerian
interpretation of this model (with x) will only satisfy the
boundary conditions at x = δ at first order, the result-
ing Lagrangian interpretation (with X) will satisfy them
exactly at X = 0. However, the Eulerian interpreta-
tion will respect the relationship between porosity and
displacement exactly since this is linear in the Eulerian
coordinate (c.f., Equation 42), whereas the Lagrangian
interpretation will respect this only at first order.

1. Kinematics and flow

Adopting the assumption of infinitesimal deformations
and linearizing in the strain, Equation (21) becomes

φf − φf,0
1− φf,0

=
∂us
∂x

. (42)

Note that this is identical to Equation (30), and is there-
fore exact. This is another special feature of uniaxial
deformation: The exact relationship between φf and us
is linear. This does not hold for even simple biaxial de-
formations.

From Equations (19) and (24), we further have

∂φf
∂t
− ∂

∂x

[
(1− φf,0)

k0
µ

∂p

∂x

]
≈ 0, (43a)

∂p

∂x
=
∂σ′xx
∂x

. (43b)

Comparing Equation (43a) with Equation (31a) again
highlights the fundamentally different mathematical
character of the linear model as compared to the non-
linear model.

2. Linear elasticity

We take the constitutive response of the solid skeleton
to be linear elastic, in which case the associated effective

stress tensor is

σ′ =


M∂us

∂x
0 0

0 Λ
∂us
∂x

0

0 0 Λ
∂us
∂x

 . (44)

Combining this with Equations (42) and (43b), we obtain

∂p

∂x
=
∂σ′xx
∂x

=
∂

∂x

[
M∂us

∂x

]
=

∂

∂x

[
M
(
φf − φf,0
1− φf,0

)]
.

(45)
With appropriate boundary conditions, Equations (42)–
(45) provide a closed linear model for the evolution of the
porosity.

3. Boundary conditions

The kinematic conditions on the solid displacement
(Eqs. 34) become

us(0, t) ≈ δ and us(L, t) = 0, (46)

where the distinction between us(δ, t) and us(0, t) does
not enter at first order. The latter condition is used when
calculating the displacement field from the porosity field,
and the former then provides an expression for δ(t). Nei-
ther is necessary when solving for the porosity field itself.

For an imposed pressure drop, the dynamic conditions
on the pressure and the stress become

σ′xx(0, t) ≈ σ′? and σ′xx(L, t) = σ′? −∆p?, (47)

and these again provide Dirichlet conditions on the poros-
ity via the elasticity law,

φf (x, t) = φf,0 + (1− φf,0)
σ′xx
M

. (48)

With these conditions on porosity, the linear model is
fully specified. It is not necessary to calculate the total
flux because it does not appear explicitly in the linear
conservation law, but the flux can be calculated at any
time from

vs(L, t) = 0 → q(t) ≈ − 1

(1− φf,0)

k0M
µ

∂φf
∂x

∣∣∣
x=L

.

(49)
When the flux is imposed instead of the pressure drop,
Equation (49) can be rearranged to provide a Neumann
condition at x = L that replaces the Dirichlet condition
above. The pressure drop ∆p(t) is then unknown, and
must be calculated by rearranging Equations (47) and
(48).
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D. Scaling

We consider the natural scaling

t̃ =
t

Tpe
, x̃ =

x

L
, k̃ =

k

k0
,

p̃ =
p

M
, σ̃′xx =

σ′xx
M

, ũs =
us
L
,

(50)

where the characteristic permeability is k0 = k(φf,0) and
the classical poroelastic timescale is Tpe = µL2/(k0M).
The problem is then controlled by one of two dimen-
sionless groups that measure the strength of the driving
stresses relative to the stiffness of the skeleton: σ̃′? ≡
σ′?/M for deformation driven by an applied mechani-
cal load, or ∆p̃? ≡ ∆p?/M for deformation driven by
fluid flow with a constant pressure drop ∆p?. For an im-
posed flux q?, the relevant dimensionless group is instead
q̃? ≡ µq?L/(k0M).

The problem also depends on the initial porosity φf,0.
When the permeability is constant, φf,0 can be scaled
out by working instead with the normalized change in
porosity,

φ̃f =
φf − φf,0
1− φf,0

. (51)

When the permeability is allowed to vary, the initial value
φf,0 cannot be eliminated because the permeability must
depend on the current porosity rather than on the change
in porosity.

The discussion below uses dimensional quantities for
expository clarity, but we present the results in terms of
dimensionless parameter combinations to emphasize this
scaling.

E. Summary

Each of the models described above can ultimately be
written as a single parabolic conservation law for φf ; this
will be linear and diffusive for the linear model, and non-
linear and advective-diffusive for the intermediate and
nonlinear models. The boundary condition at the left is
a Dirichlet condition for all of the cases considered here,
and the boundary condition at the right is either Dirichlet
for flow driven by a imposed pressure drop or Neumann
for flow driven by an imposed fluid flux. For the nonlin-
ear and intermediate models, we must also solve for the
unknown position of the free left boundary. Below, we
study these models dynamically and at steady-state in
the context of two model problems.

V. MECHANICAL COMPRESSION: THE
CONSOLIDATION PROBLEM

We now consider the uniaxial mechanical compres-
sion of a porous material (Figure 1b), in which an ef-
fective stress σ′? is suddenly applied to the left edge of

the material at t = 0+ and the fluid pressure at both
edges is held constant and equal to the ambient pres-
sure, p(δ, t) = p(L, t) = 0. The process by which the
material relaxes under this load, squeezing out fluid as
the pore volume decreases, is known as consolidation.
The consolidation problem is a classical one, with di-
rect application to the engineering of foundations; it has
been studied extensively in that context and others [e.g.,
5, 17, 40, 51, 81–83].

Force balance requires that the total stress everywhere
in the material must immediately support the applied
load, σxx(x, t) = σ′xx(x, t) − p(x, t) = σ′? for t > 0.
However, the effective stress can only contribute through
strain in the solid skeleton, and the solid skeleton can
only deform by displacing fluid, and this is not instanta-
neous. As a result, the fluid pressure must immediately
jump to support the entire load: p(x, 0+) = −σ′?. In
soil and rock mechanics, this is known as an undrained
response: The mechanical response of a fluid-solid mix-
ture under conditions where the fluid content is fixed.
Over time, this high pressure relaxes as fluid flows out
at the boundaries, and the effective stress supports an
increasing fraction of the load as the material is com-
pressed. When the process is finished, the effective stress
will support the entire load and the fluid pressure will
have returned to its ambient value. This is classical con-
solidation theory.

A. Steady state

When the consolidation process is finished, the solid
and fluid are both stationary, vs(x) = vf (x) = 0, and
the fluid pressure is uniform, p(x) = 0. As a result,
the steady state is determined entirely by the boundary
conditions and the elastic response of the skeleton; the
fluid plays no role. In soil and rock mechanics, this is
known as the drained response of the material.

Without a fluid pressure gradient, mechanical equi-
librium implies that the effective stress and therefore
also the porosity must be uniform, σ′xx(x) = σ′? and
φf (x) = φ?f (Eqs. 33 and 45). Since the fluid plays no
role, the nonlinear-k0 and nonlinear-kKC models are iden-
tical in steady-state. For both of these, we have that

φ?f − φf,0
1− φf,0

= 1− 1

J?
, (52a)

us(x)

L
= −

(
1− 1

J?

)(
1− x

L

)
, (52b)

δ?

L
= 1− J?, (52c)

where the Jacobian determinant J? is found by inverting
σ′xx(J?) = σ′? with the aid of Equation 38,

J? = −W(−σ′?/M)

σ′?/M
, (53)
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and the deflection δ?/L is the change in length per unit
reference length, usually known as the “engineering” or
nominal strain. For the linear model, we instead have
that

φ?f − φf,0
1− φf,0

≈ σ′?

M
, (54a)

us(x)

L
≈ − σ′?

M

(
1− x

L

)
, and (54b)

δ?

L
≈ − σ′?

M
. (54c)

We compare these results in Figure 2, showing the lin-
ear model (Lagrangian interpretation), the nonlinear-k0
model, and the nonlinear-kKC model (see §IV A). We
include the latter for completeness but, as mentioned
above, it is identical to the nonlinear-k0 model at steady
state since there is no flow.

In all cases, the only nontrivial component of the defor-
mation is the displacement, and this is simply linear in x.
The difference between the models lies in the amount of
deformation that results from a given load: The nonlin-
ear and intermediate models deform much less than the
linear model, and increasingly so for larger compressive
loads (Figure 3). The relative error between the linear
and nonlinear models is ∼δ?/L, which is consistent with
the assumptions of linear (poro)elasticity. To highlight
the origin of this error, we further compare these two
models with the intermediate model, in which we replace
Hencky elasticity with linear elasticity in the nonlinear
kinematic framework (see §IV A; Figure 3). This com-
parison illustrates the fact that the majority of the error
associated with the linear model results in this case from
the kinematics of the deformation, and not from non-
linearity in the elasticity law. One source of kinematic
nonlinearity at steady state is the cumulative nature of
strain, where increments of displacement correspond to

increasingly larger increments of strain as the material
is compressed because the overall length decreases. The
opposite occurs in tension: The nonlinear model deforms
much more than the linear model because increments of
displacement correspond to increasingly smaller incre-
ments of strain as the material is stretched. Another
source of kinematic nonlinearity is the moving boundary,
since the linear model only satisfies the boundary condi-
tions there at leading order in δ?/L.

The nonlinear model implies that the material can sup-
port an arbitrarily large compressive stress, with δ?/L
approaching unity (i.e., the length of the deformed solid
approaching zero) as the compressive stress diverges.
Closer inspection reveals that the porosity will vanish
when the deflection δ?/L reaches φf,0, which occurs at
a finite compressive stress. One would expect the stiff-
ness of the skeleton to change relatively sharply across
the transition from compressing pore space to compress-
ing solid grains, and significant microstructural damage
would likely occur en route (e.g., grain crushing)—A
material-specific constitutive model would be necessary
to capture this. This behavior is also important and
problematic from the perspective of the fluid mechanics,
which can become non-physical unless the permeability
law accounts appropriately for the changing porosity (see
§II E above).

B. Dynamics

To explore the dynamics of consolidation, we solve the
nonlinear and intermediate models numerically using a
finite-volume method with an adaptive grid (Appendix C
and [79]), and we solve the linear model analytically via
separation of variables. The well-known analytical solu-
tion can be written

φf (x, t) = φ?f − (φ?f − φf,0)

∞∑
n=1

2

nπ

[
1 + (−1)n+1

]
e
− (nπ)2t

Tpe sin
(nπx
L

)
and (55a)

us(x, t)

L
= −

(
φ?f − φf,0
1− φf,0

){
1− x

L
+

∞∑
n=1

2

(nπ)2

[
1 + (−1)n+1

]
e
− (nπ)2t

Tpe

[
(−1)n − cos

(nπx
L

)]}
, (55b)

where φf (0, t) = φf (L, t) = φ?f = φf,0 + (1 −
φf,0)(σ′?/M), as in Equation (54a), and all other quan-
tities of interest can readily be calculated from the poros-
ity and displacement fields. Note that, as in the steady
state, the Eulerian interpretation of Equations (55) (as
written) only satisfies the boundary conditions at the
moving boundary to leading order in δ?/L. The La-
grangian interpretation (replacing x with X) rigorously
satisfies the boundary conditions at X = 0, but at the ex-

pense of exact conservation of mass (Eq. 42). However,
both interpretations predict the same deflection, which
is often the quantity of primary interest in engineering
applications (Eulerian: δ? ≈ us(x = 0, t); Lagrangian:
δ? = us(X = 0, t)).

In Figure 4, we compare the dynamics of consolida-
tion for the linear model (Lagrangian interpretation), the
nonlinear-k0 model, and the nonlinear-kKC model. In
all cases, the skeleton is initially relaxed in the middle
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FIG. 2. Steady state in the consolidation of a soft porous material under an applied effective stress σ′? < 0, here for σ′?/M =
−0.1, −0.2, −0.3, −0.4, and −0.5, as indicated. We show the porosity (taking φf,0 = 0.5; first row), displacement (second row),
effective stress (third row), and pressure (last row) for the linear model (left column, blue), the nonlinear-k0 model (middle
column, red), and the nonlinear-kKC model (right column, green) (see §IV A). For the nonlinear models, we plot these results
against the Lagrangian coordinate X = x − us(x, t) for clarity; for the linear model, we adopt a Lagrangian interpretation
and simply replace x with X in the relevant expressions (see §III C and §V B). In all cases, the displacement is linear and the
porosity, stress, and pressure are uniform. Fluid flow plays no role in the steady state, so the middle and right columns are
identical.

and very strongly deformed at the edges, from which the
fluid can easily escape. The deformation propagates in-
ward toward the middle from both ends over time, and
the pressure decays as the skeleton supports an increas-
ing fraction of the total stress. The nonlinear-kKC model

exhibits a more rounded deformation profile than either
the linear model or the nonlinear-k0 model, which is a
result of the fact that the reduced permeability in the
compressed outer regions slows and spreads the relax-
ation of the pressure field. The two nonlinear models
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FIG. 3. The linear model over-predicts the final deflection in consolidation under an applied effective stress, and this error is
primarily kinematic. Here we plot (a) the final deflection δ?/L against the applied effective stress σ′?/M for the linear model
(blue), the nonlinear model (solid red), and the intermediate model (dashed red) (see §IV A). We also show (b) the ratio of
these predictions to the linear one, δ?/δ?linear, on a semilogarithmic scale. The nonlinear and intermediate models both exhibit
much stiffer behavior than the linear model in compression, and the nonlinear model is stiffer than the intermediate model.
The relative error in both the linear and intermediate models is ∼δ?/L, which is consistent with the assumptions of linear
(poro)elasticity.

ultimately arrive at the same steady state, which is de-
termined strictly by the elasticity law (c.f., Figure 2).
The nonlinear models deform much less than the linear
model overall.

We examine the rate of deformation in Figure 5. All
three models relax exponentially toward their respec-
tive steady states, but the rate of relaxation depends
very strongly on the magnitude of the applied effective
stress and on the nonlinearities of the model. Specifi-
cally, the nonlinear-k0 model relaxes much faster than the
linear model, whereas the nonlinear-kKC model relaxes
much more slowly than the linear model. The relaxation
timescale τ , which is the characteristic time associated
with the decaying exponentials shown in Figure 5, is con-
stant for the linear model, but decreases with |σ′?| for the
nonlinear-k0 model and increases strongly with |σ′?| for
the nonlinear-kKC model (Figure 6). The timescales of
the nonlinear models differ from that of the linear model
by several-fold for moderate strain.

VI. FLUID-DRIVEN DEFORMATION

We now consider the uniaxial deformation of a porous
material driven by a net fluid flow through the material
from left to right (Figure 1c), which compresses the ma-
terial against the rigid right boundary. This problem
has attracted interest since the 1970s for applications
in filtration and the manufacturing of composites [e.g.,
70, 73, 76, 77, 80], in tissue mechanics [e.g., 68, 69], and
as a convenient model problem in poroelasticity [e.g.,
78, 84–86].

We assume that a pressure drop ∆p? is suddenly ap-

plied across the material at t = 0+, and we write this
as p(δ, t) = ∆p? and p(L, t) = 0 without loss of gener-
ality. We also assume for simplicity that the left edge
is unconstrained, σ′(δ, t) = 0, but our models and solu-
tions do not require this. Force balance then leads to
σ′(L, t) = −∆p?, implying that the right edge of the
skeleton is compressed against the right boundary.

As in the consolidation problem, the deformation will
evolve toward a state in which the solid is stationary. Un-
like in the consolidation problem, fluid flow is central to
this steady state because the flow drives the deformation.
The resulting deformation field is highly nonuniform be-
cause it must balance the internal pressure gradient. As
discussed in §IV B 3 above, the same steady state can be
achieved when the flow is instead driven by an imposed
fluid flux q?; we focus on the case of an applied pressure
drop here for simplicity, but our models and solutions are
general and can also be used for the case of an imposed
flux.

A. Steady state

The deformation will eventually reach a state in which
the flow is steady (q(t) → q? and vf (x, t) → vf (x))
and the solid is stationary (vs → 0 and φfvf → q?).
We present in Appendix D a general procedure for con-
structing steady-state solutions to the kinematically ex-
act model for arbitrary elasticity and permeability laws,
and we provide the key results for the two nonlinear mod-
els and the two intermediate models in Appendix F. Be-
low, we discuss the results for the nonlinear-k0 model and
the linear model.
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FIG. 4. Dynamics of the consolidation process for a soft porous material under an applied effective stress of σ′?/M = −0.5.
We show the porosity (first row), displacement (second row), effective stress (third row), and pressure (last row) at t/Tpe = 0,
0.001, 0.003, 0.01, 0.03, 0.1, and 1, as indicated (light to dark colors), for the linear model (left column, blue), the nonlinear-k0
model (middle column, red), and the nonlinear-kKC model (right column, green). For the nonlinear models, we plot these
results against the Lagrangian coordinate X = x − us(x, t) for clarity; for the linear model, we again adopt a Lagrangian
interpretation and simply replace x with X in the relevant expressions (see §III C and §V B). These results are for φf,0 = 0.5.

For the nonlinear-k0 model, the pressure and effec-
tive stress fields can be calculated by integrating Equa-

tion (31b) or (31c) with (31d),

p(x)

M
=
µq?L

k0M

(
1− x

L

)
, (56a)

σ′xx(x)

M
= −µq

?L

k0M

(
x

L
− δ?

L

)
. (56b)

Since the permeability is constant, the pressure drops
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FIG. 6. The consolidation timescale is constant and equal to π−2 for the linear model, but depends strongly on the magnitude
of the applied effective stress for the nonlinear models. Here, we plot (left) the timescale τ/Tpe against the magnitude of
the applied effective stress |σ′?/M| on a linear scale for the linear model (solid blue), the nonlinear-k0 model (solid red), the
nonlinear-kKC model (solid green), the intermediate-k0 model (dashed red), and the intermediate-kKC model (dashed green).
We also compare the relaxation timescales of all models with that of the linear model by plotting (right) τ/τ linear against
|σ′?/M| on a semilogarithmic scale. The nonlinear and intermediate models with constant permeability always relax much
faster than the linear model, whereas those with deformation-dependent permeability always relax much more slowly than the
linear model. These results are for φf,0 = 0.5.

linearly from p(δ?) = ∆p? to p(L) = 0. The effective
stress must therefore also vary linearly in x, rising in
magnitude from σ′xx(δ?) = 0 to σ′xx(L) = −∆p?. The
total stress is uniform and equal to σxx(x) = σ′xx(x) −
p(x) = −∆p?, and this is supported entirely by the fluid
at the left and entirely by the skeleton at the right.

The unknown flux q? can be calculated directly from

(see Appendix D)

µq?L

k0M
=

1

4

(
1

J(L)2
− 1

)
−
(

1

2J(L)

)
ln J(L)

J(L)
, (57)

where J(L) = (1− φf,0)/(1− φf (L)) is the Jacobian de-
terminant at x = L, which is readily calculated by invert-
ing σ′xx

(
φf (L)

)
= −∆p? using the elasticity law (Equa-

tion 38). For an imposed flux, Equation (57) should in-
stead be solved for J(L), which will then provide ∆p?.
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The unknown deflection δ? can then be calculated by
evaluating the pressure at x = δ? or the effective stress
at x = L, both of which lead to

δ?

L
= 1−

(
∆p?

M

)(
k0M
µq?L

)
. (58)

We can then calculate the Jacobian determinant field
J(x) from the effective stress field using Equation (38),

J(x) = −
[
µq?L

k0M

(
x

L
− δ?

L

)]−1
W

[
−µq

?L

k0M

(
x

L
− δ?

L

)]
,

(59)
where W( · ) is again the Lambert W function. The
porosity field φf (x) is again given by,

φf (x) = 1− 1− φf,0
J(x)

(60)

and, finally, the displacement field is

us(x)

L
=
δ?

L
− k0M
µq?L

[
1

4

(
1

J(x)2
− 1

)
− 1

2

(
1

J(x)
− 2

)
ln J(x)

J(x)

]
.

(61)

The linear model is, of course, much simpler. The
pressure and effective stress fields are similar to those for
the nonlinear-k0 model,

p(x)

M
≈ µq?L

k0M

(
1− x

L

)
, (62a)

σ′xx(x)

M
≈ − µq?L

k0M

( x
L

)
. (62b)

Evaluating the pressure at x ≈ 0 or the effective stress
at x = L immediately provides the relationship between
the flux and the pressure drop,

µq?L

k0M
≈ ∆p?

M
. (63)

The porosity field is calculated from the effective stress
field and linear elasticity,

φf (x)− φf,0
1− φf,0

≈ − µq?L

k0M

( x
L

)
, (64)

and the displacement field is calculated by integrating
the porosity field,

us(x)

L
≈ µq?L

2k0M

(
1− x

L

)2
. (65)

Since the stress and therefore the strain increase linearly
from left to right, the displacement is quadratic. Finally,
the deflection is simply given by δ? ≈ us(0),

δ?

L
≈ 1

2

µq?L

k0M
. (66)

We compare these predictions qualitatively in Figure 7,
including also the results for the nonlinear-kKC model.
As with consolidation, the nonlinear models deform less
than the linear model in all cases. Unlike with consoli-
dation, the permeability law has a strong impact on the
steady state: The nonlinear-kKC model deforms less than
the nonlinear-k0 model, and exhibits more strongly non-
linear behavior. We compare the predictions for the final
deflection δ? and the resulting flux q? in Figure 8, in-
cluding also the two intermediate models. Although all
of the nonlinear and intermediate models predict a much
smaller deflection than the linear model, the nonlinear-
k0 and intermediate-k0 models predict a larger steady-
state flux than the linear model, whereas the nonlinear-
kKC and intermediate-kKC models predict a much smaller
steady-state flux. This occurs because the steady-state
flux results from two competing physical effects. As the
driving pressure drop increases, we expect the deflection
to increase. As the deflection increases, the overall length
of the skeleton decreases and, since the pressure drop is
fixed, the pressure gradient across the material increases.
As a result, we expect from Darcy’s law that the flux
will scale like q? ∼ (k/µ)∆p?/(L − δ?). For constant
permeability, we therefore expect the flux to increase
faster-than-linearly with ∆p?, and this is indeed what
we see for the nonlinear-k0 and intermediate-k0 cases.
The changing length is a kinematic nonlinearity that is
neglected in the linear model, so q?linear is simply propor-
tional to ∆p? despite the fact that δ?linear is actually larger
than the nonlinear or intermediate predictions. However,
these models ignore the fact that the porosity decreases
as the deformation increases. When the permeability is
deformation-dependent, this decreases very strongly with
the porosity and overwhelms the effect of the changing
length, leading to a strongly slower-than-linear growth
of q? with ∆p?, and this is indeed what we see for the
nonlinear-kKC and intermediate-kKC models.

1. Dynamics

We next focus on the dynamic evolution of the defor-
mation. We again solve the nonlinear and intermediate
models numerically (Appendix C and [79]), and we again
solve the linear model analytically via separation of vari-
ables. The analytical solution can be written
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FIG. 7. Steady-state in fluid-driven deformation of a soft porous material, where fluid flow through the material from left to
right is driven by an imposed pressure drop ∆p?. Here, we show the results for ∆p?/M increasing from 0.1 to 0.5, as indicated.
We show the porosity (first row), displacement (second row), effective stress (third row), and pressure (last row) for the linear
model (left column, blue), the nonlinear-k0 model (middle column, red), and the nonlinear-kKC model (right column, green).
For the nonlinear models, we again plot these results against the Lagrangian coordinate X = x − us(x, t) for clarity; for the
linear model, we again adopt a Lagrangian interpretation of the spatial coordinate. The nonlinear models deform less than
the linear model in all cases, with the nonlinear-kKC model deforming the least but exhibiting the most strongly nonlinear
behavior. These results are for φf,0 = 0.5.
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FIG. 8. The linear model over-predicts the steady-state deformation relative to the nonlinear models during fluid-driven
deformation. For flow driven by an applied pressure drop ∆p?, we plot here the steady-state deflection δ? (top row) and
the steady-state fluid flux q? (bottom row) against ∆p? on a linear scale (left column) for the linear model (solid blue),
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higher flux than the linear model due to kinematic nonlinearity, but the nonlinear-kKC and intermediate-kKC models predict a
much lower flux than the linear model because the permeability decreases strongly as the pressure drop increases, leading to a
much lower flux for a given pressure drop.

φf (x, t) = φf,0 + (φ?f − φf,0)

{
x

L
+

∞∑
n=1

2

nπ

[
(−1)n

]
e
− (nπ)2t

Tpe sin
(nπx
L

)}
, (67a)

us(x, t)

L
= −

(
φ?f − φf,0
1− φf,0

){
1

2

[
1−

( x
L

)2]
−
∞∑
n=1

2

(nπ)2

[
(−1)n

]
e
− (nπ)2t

Tpe

[
(−1)n − cos

(nπx
L

)]}
, (67b)

where φf (0, t) = φf,0 and φf (L, t) = φ?f = φf,0 − (1 −
φf,0)(∆p?/M). We compare these solutions qualitatively
in Figure 9, including also the results for the nonlinear-
kKC case. Note once again that the spatial coordinate
in the linear model is ambiguous, and we again adopt a
Lagrangian interpretation.

When the flow starts, the fluid and the solid initially
travel together to the right. The pressure remains uni-

form throughout most of the skeleton since there is no
net flux of fluid through the skeleton, but there is a very
sharp pressure gradient at the right edge where the solid
is necessarily stationary. The motion of the solid toward
the right boundary gradually compresses the right edge
of the skeleton against the boundary, and this motion
slows over time as the effective stress builds from right
to left. The motion of the solid eventually stops and the
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FIG. 9. Dynamics of fluid-driven deformation for a soft porous material, where the net flow from left to right is driven by an
applied pressure drop ∆p? = 0.5. We show the porosity (first row), displacement (second row), effective stress (third row), and
pressure (last row) at t/Tpe = 0, 0.001, 0.003, 0.01, 0.03, 0.1, and 0.3, as indicated (light to dark colors), for the linear model
(left column, blue), the nonlinear-k0 model (middle column, red), and the nonlinear-kKC model (right column, green). For the
nonlinear models, we plot these results against the Lagrangian coordinate X = x− us(x, t) for clarity; for the linear model, we
again adopt a Lagrangian interpretation and simply replace x with X in the relevant expressions (see §III C and §V B). These
results are for φf,0 = 0.5.

deformation reaches steady state when the strain in the
skeleton is such that the gradient in effective stress bal-
ances the gradient in pressure. In this steady state, the
skeleton remains completely relaxed at the left edge and
is the most compressed at the right edge, transition from
left to right with a gradual increase in deformation and

magnitude of effective stress, and a gradual decrease in
pressure and porosity.

Both here and in the consolidation problem, the defor-
mation evolves with a classic boundary-layer structure
that may be susceptible to a matched asymptotic ap-
proach with t/Tpe the small parameter. The prospect
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of more accurately capturing the kinematic nonlinearity
while retaining some degree of analytical tractability is a
promising one for future work.

To examine the timescale of the deformation, we plot
the evolution of the deflection toward its final value as
a proxy for the global approach to steady state (Fig-
ure 10). As for consolidation, we find that the deflection
approaches steady state exponentially in all cases, and
that the nonlinear-k0 and nonlinear-kKC models evolve
more quickly and more slowly than the linear model, re-
spectively. We also investigate the impact of ∆p? on the
timescale (Figure 11). We find that the general trend is
the same as in consolidation (c.f., Figure 6), but that the
magnitude of the effect is smaller—That is, the timescale
during fluid-driven deformation depends less strongly on
∆p? than the timescale during consolidation depends on
σ′?. This is most likely due to the fact that the steady-
state is uniform in consolidation, with potentially large
compression throughout the entire material, whereas the
steady-state in fluid-driven deformation is highly nonuni-
form, with completely relaxed material at the left and
highly compressed material at the right.

VII. DISCUSSION & CONCLUSIONS

We have provided an overview and discussion of a com-
plete Eulerian framework for the arbitrarily large de-
formation of a porous material. In doing so, our main
goals were to (a) elucidate the key aspects of the rigor-
ous model, (b) provide physical insight into the subtleties
of poromechanical coupling, and (c) investigate the qual-
itative and quantitative nature of the error introduced by
linearizing this model. These points are often obscured
by the powerful mathematical and computational ma-
chinery that is typically brought to bear on these prob-
lems. We intend that our approach here can serve as
a concise, coherent, and approachable introduction to a
large body of work in classical continuum and porome-
chanics. We believe that this now provides a rostrum
to facilitate further theoretical advances and new appli-
cations in soil mechanics, hydrogeology, biophysics, and
biomedical engineering.

We have also applied this theory to two canonical
model problems in uniaxial deformation, one in which
deformation drives fluid flow and one in which fluid flow
drives deformation. In the former, the consolidation
problem, an applied effective stress squeezes fluid from
a porous material. Although the steady-state is sim-
ple and controlled entirely by the solid mechanics, the
evolution of the deformation is controlled by the rate at
which fluid can flow through the material and out at
the boundaries; we showed that the resulting rate of re-
laxation is impacted strongly by kinematic nonlinearity
and even more strongly by deformation-dependent per-
meability. In the latter problem, fluid-driven deforma-
tion, a net through-flow compresses the material against
a rigid permeable boundary. The steady-state is highly

nonuniform, controlled by the steady balance between
the gradient in pressure and the gradient in stress. We
showed that both the evolution of the deformation and
the deflection and fluid flux at steady-state are impacted
strongly by kinematic nonlinearity and, again, even more
strongly by deformation-dependent permeability.

In the interest of emphasizing the nonlinear kinemat-
ics of large deformations, we have avoided complex,
material-specific constitutive models. Hencky elasticity
captures the full kinematic nonlinearity of large deforma-
tions in a very simple form, and we believe that it pro-
vides a reasonable compromise between rigor and com-
plexity for moderate deformations. However, real mate-
rials will always behave in a complex, material-specific
way when subject to sufficiently large strains, and the
framework considered here is fully compatible with other
constitutive models. Similarly, we have considered one
specific case of deformation-dependent permeability: The
normalized Kozeny-Carman formula. We have shown
that this typically amplifies the importance of kinematic
nonlinearity and has striking qualitative and quantita-
tive impacts on poromechanical behavior. Although this
example captures the key qualitative features of the cou-
pling between deformation and permeability, material-
specific relationships will be needed to provide quantita-
tive predictions for real materials.

In describing the kinematics of the solid skeleton, we
have adopted the single assumption that the constituent
material is incompressible. This has clear relevance to
soil mechanics and biophysics, but also in any situation
where the pressure and stress are small compared to the
bulk modulus of the solid grains (e.g., ∼30–40 GPa for
quartz sand). This assumption can be relaxed, although
doing so substantially complicates the large-deformation
theory [e.g., 32, 50, 52]. We have also focused on the case
of a single, incompressible pore fluid, but the theory is
readily generalized to a compressible or multiphase fluid
system [e.g., 32, 43].

Uniaxial deformations have provided a convenient
testbed for our purposes here, but they are unusual in
several respects that do not readily generalize to multi-
axial scenarios. Firstly, a uniaxial deformation can be
fully characterized by the change in porosity, σ′xx =
σ′xx(φf ); this simplifies the analysis, but it is not the case
for even simple biaxial deformations. Secondly, the cross-
section normal to the flow does not deform or rotate,
which greatly simplifies the nonlinearity of poromechani-
cal coupling. Finally, the exact relationship between dis-
placement and porosity is linear; this is again not the
case for even simple biaxial deformations. We expect
kinematic nonlinearity to play an even stronger role for
multi-axial deformations.
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Appendix A: Large-deformation poroelasticity in a
Lagrangian framework

Here we briefly summarize the Lagrangian approach
to large-deformation poroelasticity, a thorough discus-
sion and derivation of which is provided by Coussy [32].
In a Lagrangian frame, it is natural to work with so-

called nominal quantities, which measure the current
stresses, fluxes, etc. acting on or through the reference
(initial/relaxed) areas or volumes. For example, the nom-
inal porosity Φf measures the current fluid volume per
unit reference total volume, and is related to the true
porosity via Φf = Jφf . We denote the gradient and di-
vergence operators in the Lagrangian coordinate system
by grad(·) and div(·), respectively, to distinguish them
from the corresponding operators in the Eulerian coordi-
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nate system. The Lagrangian displacement field is

Us = x(X, t)−X, (A1)

where X is the Lagrangian (material) coordinate and
x(X, t) is the current position of the skeleton that was
initially at position X. The corresponding deformation-
gradient tensor is

F = grad(x) = I + grad(Us). (A2)

The Jacobian determinant is then related to Φf by

J = det (F) = 1 + Φf − Φf,0, (A3)

where Φf,0(X) is the reference porosity field, which we
again take to be undeformed. Continuity requires that

∂Φf
∂t

+ div (Wf ) = 0, (A4)

where Wf is the nominal flux of fluid through the solid
skeleton. The nominal flux is related to the pressure
gradient via Darcy’s law,

Wf = −JF−1F−ᵀ · k(φf )

µ
grad(p), (A5)

where the JF−1 portion of the prefactor converts the
true flux to the nominal flux, and the remaining factor
of F−ᵀ converts the Eulerian gradient to the Lagrangian
one. Mechanical equilibrium requires that

div(s) = 0, (A6)

where s is the nominal total stress. This is related to the
true total stress via

s = JσF−ᵀ. (A7)

The nominal effective stress s′ is then given by

s′ = s + JF−ᵀp. (A8)

Combining Equations (A4)–(A8), we finally have

∂Φf
∂t
− div

[
JF−1F−ᵀ · k(φf )

µ
grad(p)

]
= 0 and

(A9a)

div(s′) = div(JF−ᵀp).
(A9b)

Supplemented with a constitutive law for the solid skele-
ton (relating s′ to Us) and appropriate boundary condi-
tions, this constitutes a complete formulation of poroe-
lasticity in a Lagrangian framework [32]. This is more
suitable for computation than the Eulerian interpreta-
tion since the domain is fixed, but the underlying physi-
cal structure is substantially more opaque. Note that the
permeability must remain a function of the true porosity,
k = k(φf ) = k(Φf/J).

Linearizing Equations (A9) in the strain leads to

∂φf
∂t
− div

[
(1− φf,0)

k0
µ

grad(p)

]
≈ 0 and (A10a)

div(σ′) ≈ grad(p), (A10b)

which coincide with Equations (24) and (19), respec-
tively, but replacing x with X. Note that we have re-
verted from the nominal porosity to the true porosity,
and that these two differ at leading order :

Φf − Φf,0 =
φf − φf,0

1− φf
≈ φf − φf,0

1− φf,0
, (A11)

where the reference fields are always precisely equivalent,
Φf,0 ≡ φf,0, because they must necessarily refer to the
same reference state.

Appendix B: Eulerian and Lagrangian
interpretations of linear elasticity

The Eulerian (Eulerian-Almansi) and Lagrangian
(Green-Lagrange) finite-strain tensors are

e =
1

2

(
I−B−1

)
=

1

2

(
I− F−ᵀF−1

)
(B1)

and

E =
1

2
(C− I) =

1

2
(FᵀF− I) , (B2)

respectively. Linear elasticity, as described above, is ef-
fectively a linearized Eulerian constitutive law, where
stress is linear in Eulerian strain ∂u/∂x. This can be
written as

εe =
1

2

[
∂us
∂x

+

(
∂us
∂x

)ᵀ]
= I− 1

2

(
F−1 + F−ᵀ

)
. (B3)

However, a linearized Lagrangian constitutive law, where
stress is linear in Lagrangian strain ∂u/∂X, is equally
valid, and can be written as

εE =
1

2

[
∂us
∂X

+

(
∂us
∂X

)ᵀ]
=

1

2

(
F + Fᵀ

)
− I. (B4)

The former is nonlinear in a Lagrangian frame whereas
the latter is nonlinear in an Eulerian frame. We used
the linearized Eulerian law above, but in a Lagrangian
frame it would be more appropriate to use the linearized
Lagrangian law. The results are equivalent at leading
order in the strain (∂u/∂x ≈ ∂u/∂X), but they diverge
as strains become non-negligible.

Appendix C: Finite-volume method with a moving
boundary

To solve Equation (31a) numerically, we formulate a
finite-volume method on an adaptive grid. We pro-
vide a reference implementation in the Supplemental Ma-
terial [79]. At any time t, the domain extends from
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x = δ(t) to x = L. We divide this into N cells of
equal width ∆x(t) = [L − δ(t)]/N , where cell i has
center xi(t) = δ(t) + (i − 1/2)∆x(t) and we denote its
left and right edges by xi−1/2(t) = xi(t) − ∆x(t)/2 and
xi+1/2(t) = xi(t) + ∆x(t)/2, respectively. Making use of
the expressions

∂

∂t
∆x = − 1

N

dδ

dt
= − ∆x

L− δ
δ̇ and (C1a)

∂

∂t
xi =

L− xi
L− δ

δ̇, (C1b)

we formulate a finite-volume method in the standard
way [e.g., 87], integrating Equation (31a) over cell i,∫ xi+1/2

xi−1/2

{
∂φf
∂t

+
∂

∂x

[
φfvf

]}
dx = 0, (C2)

where

φfvf = φf q(t)− (1− φf )
k(φf )

µ

∂p

∂x
, (C3)

as derived above. We arrive at∫ xi+1/2

xi−1/2

∂φf
∂t

dx+

[
φfvf

]∣∣∣∣xi+1/2

xi−1/2

= 0. (C4)

After manipulating the first term using the Leibniz inte-
gral rule and regrouping, we have

∂

∂t

∫ xi+1/2

xi−1/2

φf dx+

[
−
(
L− x
L− δ

)
φf δ̇+φfvf

]∣∣∣∣xi+1/2

xi−1/2

= 0.

(C5)
Defining φf,i to be the average of φf within cell i,

φf,i ≡
1

∆x

∫ xi+1/2

xi−1/2

φf dx, (C6)

we finally have

∂φf,i
∂t
−

(
δ̇

L− δ

)
φf,i

+
1

∆x

[
−
(
L− x
L− δ

)
φf δ̇ + φfvf

]∣∣∣∣xi+1/2

xi−1/2

= 0.

(C7)

We discretize the quantity in square brackets by upwind-
ing the advective components and using a centered dif-
ference for the diffusive components. Simultaneously, we
must also solve an evolution equation for the position of
the moving boundary. This comes from Equation (31c)
and (35),

δ̇ = q(t) +

(
k(φf )

µ

∂p

∂x

) ∣∣∣∣
x=δ

. (C8)

This system can be written directly in terms of the poros-
ity once a stress-strain constitutive law is specified, at
which point we have a closed set of equations in φf and
δ. We integrate these equations in time using an explicit
Runge-Kutta scheme.

Appendix D: Steady-state solutions: General
procedure

In steady state, it is possible to construct (usually im-
plicit) analytical solutions for any combination of elas-
ticity and permeability law. We outline the general pro-
cedure below and provide a reference implementation in
the Supplemental Material [79]. Barry and Aldis [88]
suggested a somewhat similar procedure for axisymmet-
ric geometries [c.f., §5 of Ref. 88].

Of the four quantities σ′?, q?, ∆p?, and δ?, two must
be known in advance. We assume here that these are σ′?

and either q? or ∆p?, but it is straightforward to adapt
or invert this procedure for other pairs. This procedure
degenerates when there is no flow at steady state, q? =
0 ↔ ∆p? = 0, as in consolidation. The solution in this
case depends only on the solid mechanics, and is very
straightforward to derive directly from the mechanics of
uniaxial strain.

1. We begin by formulating, and evaluating if possible,
two dimensionless indefinite integrals:

I1(φf ) ≡ 1

k0M

∫
k(φf )

dσ′xx
dφf

dφf and (D1a)

I2(φf ) ≡ 1

k0M

∫ (
φf − φf,0
1− φf,0

)
k(φf )

dσ′xx
dφf

dφf .

(D1b)

This relies on the fact that the effective stress can always
be written directly in terms of the porosity in this ge-
ometry, σ′xx = σ′xx(φf ) (see the discussion at the end of
§IV B 2). For the elasticity and permeability laws consid-
ered above, we provide the results in Appendix F.

2. At steady state, we have that vs = 0 and φfvf = q?.
The former statement with Equation (31c), or the latter
statement with Equation (31b), leads to

q? +
k(φf )

µ

∂σ′xx
∂x

= 0, (D2)

where we have replaced the pressure gradient with the
effective stress gradient using Equation (31d). Equa-
tion (D2) can be rearranged and integrated to give

−µq
?L

k0M

(
x

L
− δ?

L

)
= I1

(
φf (x)

)
− I1

(
φf (δ?)

)
, (D3)

where φf (δ?) is calculated from σ′? by inverting
σ′xx
(
φf (δ?)

)
= σ′?. We next derive an expression for

us(x) using Equation (30), which can be rearranged us-
ing Equation (D2) and then integrated to give

us(x)

L
=
δ?

L
− k0M
µq?L

[
I2
(
φf (x)

)
− I2

(
φf (δ?)

)]
, (D4)

where we have applied the boundary condition that
us(δ

?) = δ?. Finally, we evaluate Equations (D3) and
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(D4) at x = L by applying the boundary condition that
us(L) = 0, and rearranging to eliminate δ?:[
I2
(
φf (L)

)
− I2

(
φf (δ?)

)]
−
[
I1
(
φf (L)

)
− I1

(
φf (δ?)

)]
=
µq?L

k0M
.

(D5)

If ∆p? is known, φf (L) can calculated by inverting
σ′xx
(
φf (L)

)
= σ′? − ∆p?. Equation (D5) then pro-

vides an explicit expression for q?. If q? is known in-
stead, Equation (D5) provides an implicit expression for
φf (L), which can then be used to calculate ∆p? from
∆p? = σ′? − σ′xx

(
φf (L)

)
.

3. Now that both q? and ∆p? are known, δ? can be calcu-
lated explicitly from Equation (D4) evaluated at x = L,

δ?

L
=
k0M
µq?L

[
I2
(
φf (L)

)
− I2

(
φf (δ?)

)]
. (D6)

4. Equation (D3) now provides an implicit expression
for φf (x) in terms of q? and δ?.

5. Equation (D4) now provides an explicit expression for
us(x) in terms of q?, δ?, and φf (x).

6. Finally, the effective stress can be calculated from
φf (x), and then the pressure from the effective stress,

σ′xx(x) = σ′xx
(
φf (x)

)
, (D7a)

p(x) = σ′xx(x)− (σ′? −∆p?), (D7b)

where the latter comes from integrating Equation (31d)
and applying the final boundary condition, p(L) = 0.

This procedure can be implemented analytically as long
as the integrals can be evaluated exactly, although nu-
merical root-finding is required in most cases. When
the integrals cannot be evaluated exactly, it is straight-
forward to implement this numerically using standard
quadrature techniques.

Appendix E: Steady-state solutions: Maximum
values

The effective stress is always largest in magnitude at
the right boundary (x = L), so this is where the poros-
ity and permeability are the smallest, and the flow must
stop when these vanish. Provided that σ′? is known, this
allows for the direct calculation of the maximum achiev-
able values q?max, ∆p?max, and δ?max for which the porosity
vanishes at x = L. The maximum flux q?max can be eval-
uated directly from Equation (D5) by setting φf (L) = 0,

µq?maxL

k0M
=

[
I2
(
0
)
−I2

(
φf (δ?)

)]
−
[
I1
(
0
)
−I1

(
φf (δ?)

)]
.

(E1)

The maximum pressure drop ∆p?max can be evaluated
directly from the elasticity law by setting φf (L) = 0,

∆p?max = σ′? − σ′xx(φf = 0). (E2)

The maximum deflection δ?max can be evaluated directly
from Equation (D6) by setting q? = q?max and φf (L) = 0,

δ?max

L
=

k0M
µq?maxL

[
I2
(
0
)
− I2

(
φf (δ?)

)]
. (E3)

These three values occur simultaneously for a given σ′?,
and they are physical limits in the sense that it is not
possible to drive a flux greater than q?max or a deflection
greater than δ?max, or to apply a pressure drop greater
than ∆p?max, without producing a negative porosity at
the right boundary. Although solutions may exist for
larger values, they will be non-physical.

Appendix F: Steady-state solutions: Integrals for
specific cases

Here, we evaluate the integrals I1(φf ) and I2(φf )
(Equation D1) for the scenarios considered in §VI A
above: Linear elasticity (for use with the intermediate
model) and Hencky elasticity (for use with the nonlin-
ear model), each for both constant permeability (k = k0)
and deformation-dependent permeability (k = k(φf ) via
the normalized Kozeny-Carman formula, Equation 12).
In each case, we first write the elasticity law in terms of
the porosity and then evaluate the first derivative of this
function. For linear elasticity, we have

σ′xx(φf )

M
=
φf − φf,0
1− φf,0

and
1

M
dσ′xx
dφf

=
1

1− φf,0
. (F1)

For Hencky elasticity, we instead have

σ′xx(φf )

M
=

(
1− φf

1− φf,0

)
ln

(
1− φf,0
1− φf

)
and (F2a)

1

M
dσ′xx
dφf

=
1

1− φf,0

[
1− ln

(
1− φf,0
1− φf

)]
. (F2b)

We now evaluate the two integrals. These expressions
can then be used with the procedure described in Ap-
pendix D to evaluate the full steady-state solutions for
these constitutive models. Note that the integrals are
indefinite, so arbitrary constants can be added or sub-
tracted from the expressions below without loss of gen-
erality.
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• intermediate-k0 (linear elasticity with constant permeability)

I1(φf ) =
φf − φf,0
1− φf,0

and I2(φf ) =
1

2

(
φf − φf,0
1− φf,0

)2

(F3)

• intermediate-kKC (linear elasticity with normalized Kozeny-Carman permeability)

I1(φf ) =
1− φf,0
φ3f,0

[
1

2
φ2f + 2φf +

1

1− φf
+ 3 ln(1− φf )

]
and (F4a)

I2(φf ) =
1

φ3f,0

[
− 1

3
(1− φf )3 +

1

2
(4− φf,0)(1− φf )2

− 3(2− φf,0)(1− φf ) +
1− φf,0
1− φf

+ (4− 3φf,0) ln(1− φf )

] (F4b)

• nonlinear-k0 (Hencky elasticity with constant permeability)

I1(φf ) =

(
1− φf

1− φf,0

)
ln

(
1− φf,0
1− φf

)
and (F5a)

I2(φf ) =
1

4

(
1− φf

1− φf,0

)2

+
1

2

[
1−

(
φf − φf,0
1− φf,0
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)
(F5b)

• nonlinear-kKC (Hencky elasticity with normalized Kozeny-Carman permeability)

I1(φf ) =
1− φf,0
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(
φ3f + 3φ2f − 4φf − 2
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)
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)
+ 6 ln2
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1− φf,0
1− φf

)
− 2φf +

8

1− φf
+ 2 ln(1− φf )

] (F6a)

I2(φf ) =
1
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{
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+ 6

[
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]
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